Promoting the Use of End-to-End Congestion Control in the Internet

Sally Floyd and Kevin Fall
IEEE/ACM Transactions on Networking
May 1999
Outline

• The problem of Unresponsive Flows
 – Fairness problems
 – The danger of congestion collapse
 – Forms of congestion collapse

• The solution: regulating unresponsive flows at the router
 – TCP-friendly flows
 – classifying flows

• Alternative approaches
Approaches for controlling best-effort Internet traffic

• Deploying per-flow scheduling mechanisms to approximate max-min fairness.
• Use end-to-end congestion control with incentives
• Rely on pricing mechanisms to control sharing
The problem of Unresponsive Flows

- *Unresponsive flows* do not use end-to-end congestion control and do not reduce their load on the network in response to packet drops.

- Unresponsive behavior causes:
 - unfairness
 - congestion collapse
Figure 1: Simulation network.
Unfairness

- Unresponsive flows can cause bandwidth starvation of *well-behaved* responsive traffic.
- TCP flows competing with unresponsive UDP flows for scarce bandwidth
 - When TCP flows reduce their sending rates in response to congestion indicators, uncooperative UDP flows will capture more of the available bandwidth.
Definitions

• goodput = the capacity delivered to the receiver, excluding duplicate packets
• robust senders
 – send large packets
 – small roundtrip time
 – OR large sender window {helps with fast retransmit}
Definitions

• Fragile senders
 – Large RTT
 – Small congestion window
simple results to remember

- With TCP congestion control, throughput varies \textit{inversely} with connection’s roundtrip time.
- With multiple \underline{congested} gateways, throughput varies as the \textit{inverse} of the square root of the number of congested gateways.
- \underline{per-flow} scheduling can control the allocation among a set of competing flows.
Congestion Collapse

- occurs when an increase in network load results in a decrease in the useful work done by the network.
- classical congestion collapse
- congestion collapse from undelivered packets
- fragmentation-based congestion collapse
- congestion collapse from increased control traffic
- congestion collapse from stale packets
Classical Congestion Collapse

- *classical congestion collapse* - is due to unnecessary retransmission of packets
 - this is a stable condition that can result in throughput that is a small fraction of normal
 - corrected by Jacobson’s mechanisms
Congestion Collapse from Undelivered Packets

• wasted bandwidth due to pushing packets through the network that are dropped before reaching their destination.
 – author’s claim: biggest problem today because of open-loop applications not using end-to-end congestion control.
 – not stable: returns to normal when load is reduced
Congestion Collapse from Undelivered Packets

- per-flow mechanisms at the router (in Figure 7) cannot guarantee elimination of this form of congestion control.
- Figure 8 shows the limiting case where a very large number of very small bandwidth flows without congestion control threaten congestion collapse in a highly-congested network regardless of scheduling discipline at the router.
- key claim: essential factor is the absence of end-to-end congestion control for UDP traffic.
Fragmentation-based Congestion Collapse

- caused by transmitting cells or fragments that will be discarded because they cannot be reassembled
- some fragments are discarded while other fragments are delivered thus wasting capacity
- fixes involve network layer knowledge being given to data link layer, e.g.
 - Early Packet Discard in ATM switches
 - path MTU discovery to minimize packet fragmentation
Congestion Collapse from Increased Control Traffic

- an increasingly large fraction of bytes transmitted belonging to control traffic
 - packet headers
 - routing updates
 - multicast join and prune messages {e.g. RLM}
 - DNS messages
Congestion Collapse from Stale Packets or Unwanted Packets

• occurs when congested links carry packets no longer wanted by the user.
 – when data transfers take too long due to queues are too long {e.g. audio or video jitter}
 – when Web sites unnecessarily push Web data that was never requested.
Philosophy of Cooperation

• authors believe cooperating flows can coexist if the right incentives are put in place for the competing flows

• paper explores mechanisms that could be deployed to provide incentives for flows to participate in cooperative methods for congestion control.
Classification of Flows

• a flow is defined on the granularity of source and destination IP addresses and port number {each TCP connection is a flow}

• router should regulate flows classified as:
 – unresponsive flows
 – not TCP-friendly flows
 – disproportionate-bandwidth flows
TCP-friendly flows

- A flow is *TCP-friendly* if the flow’s arrival rate does not exceed the bandwidth of a conformant TCP connection in the same circumstances.

- **major assumption:** TCP is characterized by reducing its congestion window at least by half upon receiving congestion indications and of increasing its congestion window by a constant rate of at most one packet per roundtrip time otherwise AIMD assumption.
TCP-friendly test

• Given a non-bursty packet drop rate of p, the maximum sending rate for a TCP connection is T bytes/sec., where

$$T \leq \frac{1.5 \sqrt{(2/3)} \times B}{R \times \sqrt{p}}$$

for a TCP connection sending packets of size B bytes with a fairly constant roundtrip time (including queuing delays) of R seconds.
TCP friendly test

• The test is only applied at level of granularity of a TCP connection.
• An actual TCP flow will generally use less than maximum bandwidth, T.
• Philosophy says it is reasonable for a router to restrict bandwidth of any flow with arrival rate higher than that of any conformant TCP implementation. Is it reasonable??
TCP friendly test

• The measurements should be taken over a sufficiently large time interval (several RTTs).
• The test only applies for non-bursty packet drop behavior. *Blatant commercial for RED?*
• Robust flows may avoid detection, specifically flows with small roundtrip times.
Identifying Unresponsive Flows

- TCP-friendly test is of limited usefulness for routers unable to assume strong bounds on TCP packet sizes and roundtrip times.

A more general test :: verify that a high-bandwidth flow was responsive, i.e., its arrival rate decreases appropriately in response to increased packet drop rate.
Identifying Unresponsive Flows

• Possible unresponsive flow test:: If the steady state drop rate increases by a factor x and the presented load for a high-bandwidth flow does not decrease by a factor close to \sqrt{x} or more, the flow can be deemed unresponsive.

• This test needs an estimate of flow’s arrival rate (e.g. CSFQ) and packet drop rate over several long intervals.

Unresponsive flows are stealing bandwidth from responsive TCP-friendly flows!
Identifying Disproportionate Bandwidth Flows

• a disproportionate share of bandwidth is a significantly larger share than other flows in the presence of suppressed demand from some of the other flows.

• This test could restrict conformant TCP flows (i.e., robust TCP flows).

• A flow is using a disproportionate share of best-effort bandwidth if its fraction of the aggregate arrival rate is more than $\log (3n)/n$ {natural log} where n is the number of flows with packet drops in the recent reporting interval.
Identifying Disproportionate Bandwidth Flows

- They define a flow as having a high arrival rate relative to the level of congestion if its arrival rate is greater than c/\sqrt{p} for some constant c.
- Example settings using results from appendix: with $B = 512$ bytes and $R = 0.05$ seconds, c is set to 12,000.
Disproportionate Bandwidth Test [Example]

• A best-effort flow has disproportionate bandwidth if:

\[\text{estimated arrival rate} > \frac{12000}{\sqrt{p}} \]

and

\[\text{estimated arrival rate} > \frac{\log(3n)}{n} \text{ of the best-effort bandwidth.} \]
Alternative Approaches

• per-flow scheduling mechanisms (RR, FQ) to isolate flows
 – Authors claim - incentives are backwards here.

• discusses FIFO and suggests middle ground of Class-Based Queueing (CBQ) or Stochastic Fair Queueing (SFQ)

• Authors question *min-max fairness* and suggests considering the number of congested links on flow path.
Conclusions

- Mechanisms for detecting and restricting unresponsive flows are needed.
- **TCP-friendly** is the right philosophy, i.e., peaceful coexistence of distinct flow classes.
- These mechanisms would provide an incentive in support of end-to-end congestion control.