Distributed Servers Architecture for Networked Video Services

S.-H. Gary Chan and Fouad Tobagi

Presented by Todd Flanagan

A Little About the Authors

- Academic Pedigree with business backgrounds
- Not publishing for a university
- Tobagi background in project management and co-founded a multimedia networking company

Overview

- Motivation
- Simplifying Assumptions
- Probability and Queuing Review
- Overview
- Previous Work
- Schemes
- Analysis
- Results and Comparisons
- Conclusions

Motivation

- What does this have to do with differentiated services?
- Local interest EMC, Compaq, SUN, Storage Networks, Akami, and others
- Applications paper
- Not published through a university effort

Simplifying Assumptions

- A movie or video is any file with long streaming duration (> 30 min)
- Local network transmission cost is almost free
- The network is properly sized and channels are available on demand
- Latency of the central repository is low
- Network is stable, fault-recovery is part of the network and implied, and service-interruptions aren't an issue
- Network channel and storage cost is linear

Nomenclature

TABLE II					
NOMENCLATURE	USED	IN	THIS	PAPER	

Symbol		Meaning
T_h	÷	Movie length (minutes)
b_0	:	Streaming rate of the movies (MB/min)
α	2	Storage cost (\$/(min·MB))
β	;	Network channel cost (\$/(min-channel))
γ	:	$\triangleq b_0 \alpha / \beta$, storage cost w.r.t. channel cost (channel/min, or simply, /min)
N_s	:	The number of local servers in the system
λ_i		Request rate for a specific movie in the local server i (req/min)
λ	7	Total request rate for a specific movie in the system (req/min)
Λ	1	Total request rate for all the movies in the system (req/min)
\overline{B}_i \overline{S}	:	Average buffer used for a movie in the local server i (minutes)
\overline{S}	;	Average number of repository channels used for a movie
C	÷	The total cost of the distributed architecture (\$/min)
Ĉ	:	Normalized total cost of the distributed architecture w.r.t. β

Probability and Queuing

- Stochastic processes
- Poisson process properties
 - Arrival rate = λ
 - Expected arrivals in time $T = \lambda T$
 - Interarrival time = $1/\lambda$
 - Interarrival time obeys exponential distribution
- Little's Law

$$- q = \lambda T_q$$

Overview

- On demand video system
 - Servers and near storage
 - Tertiary tape libraries and juke boxes
 - Limited by the streaming capacity of the system
- Need more streaming access in the form of more servers
- Traditional local clustered server model bound by the same high network cost
- Distributed servers architecture
 - Take advantage of locality of demand
 - Assumes much lower transmission costs to local users
 - More scalable

Overview (2)

- Storage can be leased on demand
- γ = ratio of storage cost to network
 small γ -> relatively cheap storage
- Tradeoff network cost versus storage cost
- Movies have notion of skewness
 - High demand movies should be cached locally
 - Low demand serviced directly
 - Intermediate class should be partially cached
- Cost decision should be made continuously over time

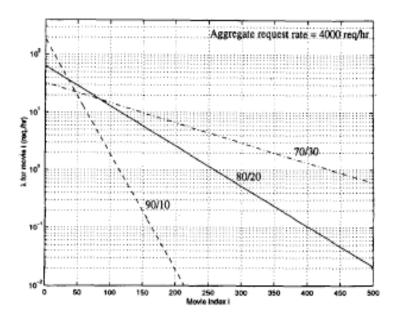


Fig. 1. λ for movie *i* in a video system with 500 movies and $\Lambda = 4000$ req/h (geometric video popularity).

Overview (3)

- Three models of distributed servers archetecture
 - Uncooperative cable tv
 - Cooperative multicast shared streaming channel
 - Cooperative exchange campus or metropolitan network
- This paper studies a number of caching schemes, all employing circular buffers and partial caching
- All requests arriving during the cache window duration are served from the cache
- Claim that using partial caching on temporary storage can lower the system cost by an order of magnitude

Previous Work

- Most previous work studied some aspect of a VOD system, such as setup cost, delivering bursty traffic or scheduling with *a priori* knowledge
- Other work done with client buffering
- This study deals with multicasting and server caching and analyze the tradeoff between storage and network channels

Schemes

- Unicast
- Multicast
 - Two flavors
- Communicating servers

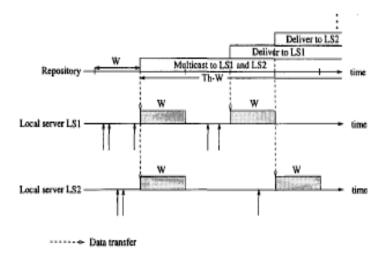
Scheme - Unicast

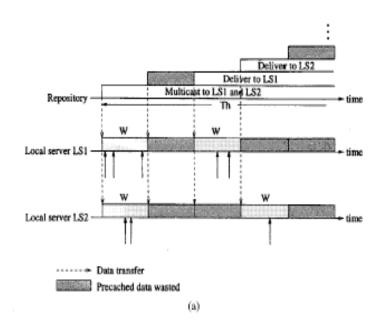
- Fixed buffer for each movie
- T_h minutes to stream the movie to the server
- W minute buffer at the server
- Think Tivo buffers for commercials
- Arrivals within W form a cache group
- Buffer can be reduced by "trimming the buffer", but cost reduction is negligible

Fig. 3. Scheme for unicast delivery.

Scheme - Multicast with Prestoring

- Local server stores a leader of size W
- Periodic multicast schedule with slot interval W
- If no requests during W, next slot multicast cancelled
- Single multicast stream is used to serve multiple requests demanded at different times, only one multicast stream cost
- W=0 is a true VOD system




Fig. 4. Prestoring scheme for multicast delivery.

Scheme - Multicast with Precaching (1)

- No permanent storage in local servers
- Decision to cache made in advance
- If no requests, cached data is wasted
- If not cached, incoming request is VOD

Scheme - Multicast with Precaching (2)

- Periodic multicasting with precaching
- Movie multicast on interval of W min
- If request arrives, stream held for T_h mir
- Otherwise, stream terminated

Scheme - Multicast with Precaching (3)

- Request driven precaching
- Same as above, excep that multicast is initiated on receipt of first request (for all servers)
- All servers cache window of length W

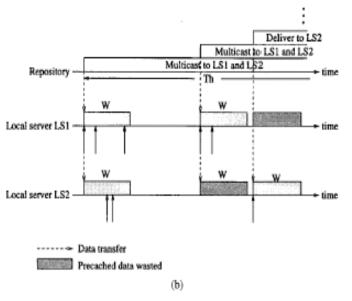


Fig. 5. Precaching schemes for multicast delivery. (a) Periodic multicasting with precaching. (b) Request-driven precaching.

Scheme - Communicating Servers

- Movie unicast to one server
- Additional local requests served from within group forming a chain
- Chain is broken when two buffer allocations are separated by more than W minutes

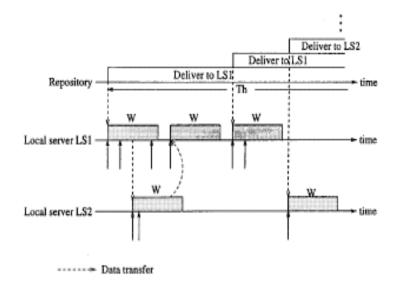


Fig. 6. Scheme for communicating servers.

Scheme Analysis

- Movie length T_h min
- Streaming rate b₀ MB/min
- Request process is Poisson
- Interested in
 - Ave number of network channels, \overline{S}
 - Ave buffer size, \overline{B}
 - Total system cost: $\hat{C} = \gamma \sum \overline{B}_i + \overline{S}$

Analysis - Unicast

- Interarrival time = W + $1/\lambda$
- By Little's Law: $\overline{S} = \frac{T_h}{W + \frac{1}{\lambda}}$
- Average number of buffers allocated = $(1/(W+1/\lambda))T_h$ which yields \overline{B}
- Eventually: $\hat{C} = (\gamma \lambda)\overline{B} + \lambda T_h$
- To minimize \hat{c} , either cache or don't - $\lambda < \gamma B = W = 0$ - $\lambda > \gamma B = T_h$

Analysis - Multicast Delivery

- Note that Poisson arrival process drives all results
 - Determines the probability of an arrival, thus the probability that a cache action is wasted
- Big scary equations all boil down to capturing cost from storage, channel due to caching, channel cost due to non-caching
- Average buffer size falls out of probability that a buffer is wasted or not

Analysis - Communicating Servers

- Assumes that there are many local servers so that requests come to different servers
 - Allows effective chaining
- From Poisson, average concurrent requests is λT_h so average buffer size is $\lambda T_h W$
- Interarrival time based on breaking the chain
 - Good chaining means long interarrival times

Results - Unicast

- For unicast, tradeoff
 between S and B give λ is
 linear with slope (-λ)
- Optimal caching strategy is all or nothing
- Determining factors for caching a movie
 - Skewness
 - Cheapness of storage

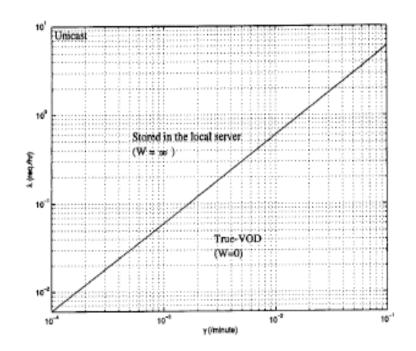


Fig. 7. Relationship between λ and γ to minimize the system cost for unicast delivery.

Results - Multicast with Prestoring

- There is an optimal W to minimize cost
- The storage component of this curve becomes steeper as γ increases

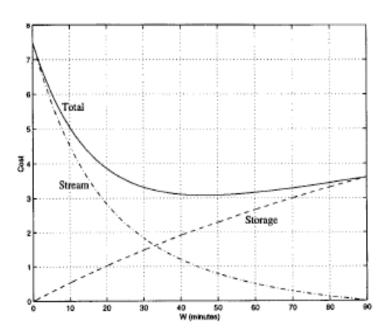


Fig. 8. \hat{C}, \overline{S} , and $\gamma \overline{B}$ versus W for prestoring ($\lambda = 5$ req/min, $N_s = 20$, $\gamma = 0.002$ /min, and $T_h = 90$ min).

Results - $W^* vs \lambda$ for Mulitcast with Prestoring

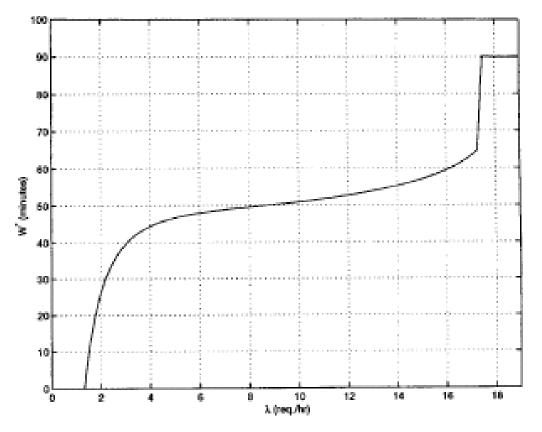


Fig. 9. W^* versus λ for prestoring ($N_s = 20, \gamma = 0.002$ /min, and $T_{\lambda} = 90$ min).

Results - $W^* vs \lambda$ for Multicast with Precaching

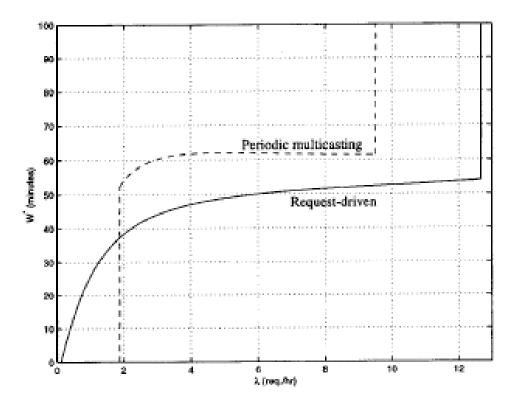


Fig. 10. W^* versus λ for precaching ($\gamma = 0.002/\text{min}$, $N_s = 20$, and $T_h = 90$ min).

Results - W^* vs λ for Chaining

- The higher the request rate, the easier it is to chain
- For simplicity, unicast and multicast channel cost are considered equal
- Assumes zero cost for interserver communication
- Even with this assumption, chaining shouldn't be higher cost than other systems unless local communication costs are very high

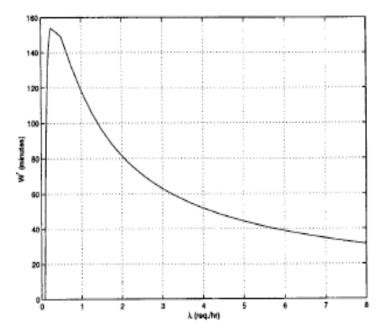


Fig. 11. W^* versus λ for chaining ($\gamma = 0.002$ /min, and $T_h = 90$ min).

Comparison of $C^* vs \lambda$

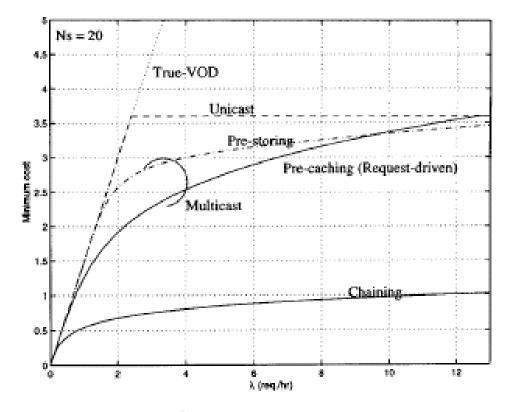


Fig. 12. Comparison of \tilde{C}^* versus λ for the proposed caching schemes ($\gamma = 0.002/\text{min}$, and $T_h = 90$ min).

Further Analysis - Batching and Multicasting (1)

- Assumes users will tolerate some delay
- Batching allows fewer multicast streams to be used, thus lowering the associated cost
- DS architecture can achieve lower system cost with zero delay

Further Analysis - Batching and Multicasting (2)

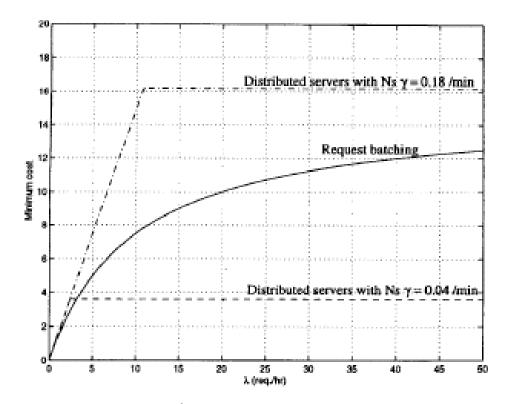


Fig. 13. Comparison of \hat{C}^* versus λ between a system with request batching and a distributed servers architecture based on unicast delivery ($D_{\max} = 6 \min$, and $T_h = 90 \min$).

The Big Picture - Total Cost per Minute vs Λ

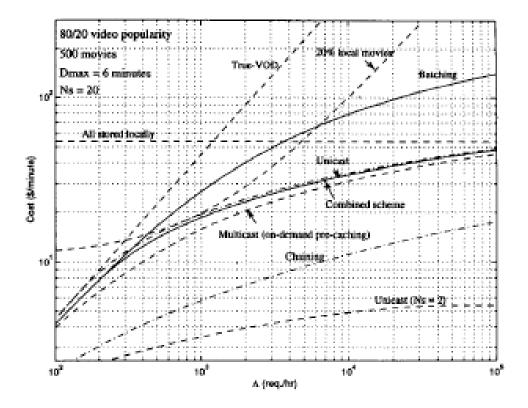


Fig. 14. Total cost per minute versus A for different systems ($\gamma = 0.002/\text{min}$, $\beta = \$0.03/(\text{min-channel})$, $N_s = 20$, number of movies = 500, 80/20 video popularity, $D_{\text{max}} = 6$ min, and $T_h = 90$ min).

Conclusions

- Strengths
 - Flexible general model for analyzing cost tradeoffs
 - Solid analysis
- Weaknesses
 - Optimistic about skewness
 - Optimistic about Poisson arrival
 - Zero cost for local network