
Latency-sensitive hashing for 
collaborative Web caching

Presented by:
Xin Qi

Yong Yang

09/04/2002



About Authors:

• Kun-Lung Wu
– Ph.D in University of Illinois at Urbana-Champaign
– IBM Thomas J. Watson Research Center and currently manager 

of the Software Tools and Techniques group. 
– published more than 50 papers in refereed journals and 

conferences. Holds or has applied for 15 US patents. 
• Philip S Yu

– Ph.D in Stanford University
– IBM Thomas J. Watson Research Center and currently manager 

of the Software Tools and Techniques group. 
– Published more than 270 papers in refereed journals and 

conferences. Holds or has applied for 92 US patents. 



Content table

• Introduction
• New latency-sensitive hashing scheme
• New approach to evaluating the LSH and simulation 

model
• Trace-driven simulations Results analysis 
• Conclusion
• Questions



Why Caching?

• Internet grows very quick.
• The problems are network congestion and server 

overloading.
• User response times for accessing the web have 

become increasingly unsatisfactory.
• Web caching is needed to reduce network traffic.
• Three ways to cache: Caching at client, Caching at proxy 

and Caching at Servers. 



Why Proxy?

• Proxy was firstly used to allow accesses to the internet 
from users within a firewall.

• Proxy served a previous request and cached document 
for next one. 

• Web caching at proxy server can not only save network 
bandwidth but also lower access latency for the clients.



Collaborative Web Caching

• A single server is single point of failure
• A single server cache is always a bottleneck
• Multiple proxies are used.



A generic WWW caching system



Geographically distributed proxies

• Response times tend to be negatively impacted for those 
requests hashed into geographically distant proxies or 
overloaded proxies.

• Distant proxies tend to incur longer network latency 
delays

• Overloaded proxies can cause significant delays too.
• Strong need to consider the latency issue in hashing 

based web caching among geographically distributed 
proxies.



Geographically distributed proxies

• Geographically clustered hashing (GCH)
• Requests are served only by proxies in a geographically close 

region.
• Work well if the proxies within a region can adequately service all 

the requests originated within the same region.
• However, proxies in one region may be overloaded while those in 

another region are under loaded

• Geographically distributed hashing (GDH)
• Requests are hashed into all cooperating proxy caches regardless

of geographical location.
• Load tends to be more balanced among all the geographically 

distributed cooperating caches compared with GCH
• However, GDH did not take into account network latency delays due 

to geographical distances.



Geographically distributed proxies 
(cont’d)

• Latency-sensitive hashing (LSH)
– It hashes requests into all proxies
– It counts latency delays and potential overloaded proxies.
– Firstly, a request is hashed into an anchor hash bucket. Each 

hash bucket is mapped to one of the geographically distributed 
proxies.

– Secondly,  a selection algorithm is used to pick a proxy among a
small number of hash buckets adjacent to the anchor hash 
bucket.

– The selection is based on objective to reduce network latency 
and to avoid creating over-loaded proxies.



An example

Three Geographically distributed clusters of proxies



An example of a geographically 
distributed Hashing



An example of a geographically 
distributed Hashing(cont’d)

• This example shows the potential problem of hashing 
requests into more and more geographically distributed 
proxies.

• The network latency can be a problem for those that are 
hashed into geographically distant  proxies.



An example of latency-sensitive 
hashing



An example of latency-sensitive 
hashing (cont’d)

• Compared with GDH, the proxy with lowest latency will 
be chosen. 

• Mapping of hash buckets to proxies and the selection of 
window size are important to its performance.

• It is not obvious to do so if requests are evenly 
distributed to all proxies when there are different 
numbers of proxies within a cluster.



Indirect Mapping Scheme

• Map each hash bucket to an index of a proxy ID array 
instead of directly mapping each hash bucket into a 
proxy ID.

• From this proxy ID array, we then obtain the proxy ID for 
the hash bucket.

• Two parts for indirect mapping scheme: 
1. Construction of proxy ID array.
2. The assignment of the indices of the proxy ID 

array to hash buckets.



An example of an indirect mapping 
scheme for LSH



Indirect Mapping
• Construction of Proxy ID array
• Two-level round-robin fashion
• Size of PA is N*LCMc, N is the number of clusters and LCMc is the l.c.m. of Ci.

• Construction of hash bucket segment
• LCMp is the l.c.m. of nj

• The total size of the hash bucket segment is ∑⋅ ip CLCM



Load Balance
• Without considering Load Balance, the LSH degenerates 

into GCH.
• If the load of a proxy is too high, this proxy should not be 

selected.
• DNS is easy to detect the load condition of all proxies
• DNS is a better place to implement the LSH.



Performance Evaluation

• Trace driven simulator that models the three hashing 
schemes, GCH, GDH, and LSH.

• Nine proxies organized into three geographical clusters, 
each cluster has three proxies.

• Each Proxy has the same amount of computing 
resources.



Performance Evaluation(cont’d)

• For each proxy, implemented:
– A CPU server

• FIFO service queue
– A cache manager

• LRU stack

• Response time for a request whose object can be found 
locally = L + Thttp + T cache + Thttp + L + Q

• L: latency delay
• Thttp: service time for processing an HTTP request or reply
• T cache: service time for looking up an object from its cache or

storing an object into its cache
• Q: the queue delay the request incurs waiting for the CPU



Performance Evaluation(cont’d)

• Response time for a request whose object is a cache miss 
= L + Thttp + T cache + C miss +T cache +Thttp + L + Q
– C miss: A cache miss delay if the requested object can not found 

locally.
– Assume Tcache = 0.5*Thttp

• Zipf-like distribution
– Zipf(x, M) is a parametric distribution where the probability of 

selecting the ith item is proportional to 1/i(1-x), where x  is a 
parameter and i belongs to {1, …, M}



Distributions of clients around the 
proximity of each proxy cache



The impact of request origination skew 
on average response time



The impact of request origination skew 
on coefficient of variation



The level of load imbalance with no skew

More balanced Less balanced



The level of load imbalance with high skew



Simulation Results

• GCH is very sensitive to skew in request origination
– GCH can not effectively utilize proxies in other clusters to help 

balance the load
• GDH is immune to the skew in request origination

– Hashing is based on URL and thus the load distribution among 
the proxies remains the same regardless of skew in request 
origination.

• LSH can distribute requests among all the proxies, but it 
is slightly less balanced compared with GDH
– In order to lower latency delays, LSH tends to choose a proxy 

within the same cluster as the browser originating the request.



The impact of hot-spot references on 
average response time



The level of load imbalance with hot-
spot references



Simulation Results

• GDH can become quite unbalanced in the presence of 
hot-spot references
– Each UTL is hashed into the same proxy cache no matter which 

browser issues the request.
• GCH is less susceptible to 9-4 trace hot-spot references, 

but highly sensitive to 9-6 trace.
• LSH handles is almost insensitive to hot-spot references.

– LSH can select different proxies to offload the hot-spot 
references originating from different browsers.



The impact of selection window size when 
the system is lightly loaded and balanced



The impact of selection window size when 
the system is moderately loaded and 

unbalanced



The level of load imbalance when the 
system is lightly loaded and well balanced



The level of load imbalance when the 
system is moderately loaded and 

unbalanced



Simulation Results

• For light load and relatively well balanced system, a 
larger w enables more requests to be hashed into 
geographically closer proxies. The average response 
time is better.

• For a moderately loaded and unbalanced system,  w=3 
may cause too many requests to be hashed into 
geographically closer proxies, resulting in slightly less 
balanced system compared with w=2. When W=1, 
system is highly unbalanced.



Conclusion

• GCH hashes requests originated from one region into 
proxies within the same region. It’s performance is poor.

• GDH hashes requests to all proxies regardless of 
geographical locations. It fails in the presence of hot-spot 
references.

• LSH effectively handles both skew in request origination 
and hot spot references by hashing requests among 
geographically distributed proxies.

• Overall system is lightly loaded, LSH effectively reduces 
latency delays by hashing requests in to geographically 
closer proxies.



Questions?


