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Purpose of This Paper

� Compare four routing protocols 
� Wireless
� Ad-hoc
� Multi-hop routing problem

� Provide realistic, quantitative analysis
� Node Mobility
� Characteristics of physical layer
� Characteristics of air interface
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Outline 

� Background
� Simulation environment
� Ad-hoc protocols described
� Analysis methodology
� Simulation results
� Additional observations
� Conclusion
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Ad-Hoc Networking

� Wireless mobile nodes
� �Infrastructure-less� networking
� Destination may not  be in transmitter range
� Node is both host and router
� Each node involved in discovery of �Multi-

hop� path through network
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UAV

Ad Hoc Networking Concept

Enclave

Enclave

MHmosaic - 6 (12/29/98)

Enclave
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Simulation Environment

� 50 wireless mobile nodes in a 1500m x 
300m space

� ns-2 network simulator with modifications
� Realistic physical layer (i.e. prop delay)
� Node Mobility
� Radio network interfaces (i.e. ant gain)
� IEEE 802.11 Medium Access Control 

protocol



8WPI

Simulation Environment
Physical Layer Model - Propagation

� Radio wave attenuation causes degraded 
receive signal at antenna

� Propagation models in free space 
attenuate receive power by 1/r2

� Models that consider reflection use 1/r4

r = distance between antennas
� This model uses both



9WPI

Simulation Environment
Physical Layer Model - Propagation

r < 100 m

Free Space Model
Receive Power~ 1/r2

Two-Ray Model
Receive Power~ 1/r4

r > 100 m
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Simulation Environment
Physical Layer Model � Mobile Nodes & Network Interfaces

� Nodes have position and velocity in a 
topography (flat/digital elevation)

� Nodes have wireless network interfaces
� Interfaces of the same type on all nodes are 

connected by a single physical channel 
� Physical channel object calculates

� Propagation delay to each interface on that channel
� Power of received signal at interface
� Schedules packet reception event
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� Receiving interface compares power with 
carrier sense and receive power thresholds
� RCV PWR < Carrier sense thresh then discard as noise
� RCV PWR > Carrier sense thresh < RCV thresh then mark 

packet in error, pass to MAC layer
� Else pass to MAC layer

Physical
Channel 
Object

NI

NI
NI

NISending
Interface 

Receiving
Interface

RCV PWR? 

Receiving
Interface

RCV PWR? 
Receiving
Interface

RCV PWR? 

Simulation Environment
Physical Layer Model � Mobile Nodes & Network Interfaces
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Simulation Environment
Link Layer Model � MAC protocol 

� MAC layer receives packet from net interface
� If receiver not idle

� If RCV PWR of packet in receiver ≥ 10dB higher than new 
packet then discard new

� If RCV PWR < 10 dB higher � collision � discard both
� If receiver idle

� Compute transmission time
� Schedules packet reception complete event
� Address filtering and pass up protocol stack

� Link Layer uses 802.11 MAC Distributed 
Coordination Function - uses carrier sense 
mechanism to reduce collisions
� Transmission preceded by RTS/CTS to reserve channel
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Simulation Environment
Other Characteristics 

� Address Resolution
� An address resolution protocol (ARP) is used to 

resolve IP addresses to the link layer
� ARP requests are broadcast

� Packet Buffering
� Each node has a drop tail queue to hold up to 50 

packets awaiting transmission by net interface
� Additional 50 packet queues implemented in 

DSR and AODV
� For packets awaiting discovery of a route 
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Simulation Environment 
Ad-Hoc Network Routing Protocols

� Implemented according to specs and 
designer clarifications

� Modifications based on experimentation:
� Period broadcasts and responses were 

jittered 0-10ms to prevent synchronization
� Routing information queued ahead of ARP 

and data at network interface
� Used link breakage detection feedback from 

802.11 MAC except in DSDV
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DSDV
Characteristics

� Hop-by-hop distance vector protocol
� Nodes broadcast periodic routing updates
� Guaranteed loop free
� Node routing table lists next hop for each 

destination
� Tags �route� in table with sequence number (SN)

� Route to destination with higher SN is better
� If  SN equal then route with lower metric better

� Node advertises an increasing even SN for itself
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DSDV
Basic Mechanisms

� When node B decides route to D is broken, 
B increases SN for that route by one (SN 
now odd) and advertises the route with an 
infinite metric

� Any node �A� that routes through B adds the 
infinite metric to their route table 

� �A� keeps this metric until it hears a new 
route to D with a higher SN
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DSDV
Basic Mechanisms

A

C

B

E

D
X

�B senses its route to D has broken

SN=30

�D advertises even SN 30

Dest NH SN Met
D - 30 1
D A 30 4

Dest NH SN Met
D B 30 2
D C 30 3

�B adv infinite metric to A
�A changes metric 

ADV
Dest NH SN Met
D B 30 ∞
D C 30 3

�B labels route with infinite metric and increases SN to 31

Dest NH SN Met
D - 31 ∞
D A 30 4

�D adv new SN 
�Nodes propagate new SN

ADV

Dest NH SN Met
D B 30 ∞
D C 32 3

Dest NH SN Met
D - 31 ∞
D A 32 4

SN=32
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DSDV
Implementation Decisions

� No 802.11 MAC link layer breakage detection
� Node B detects link to D is broken
� Increases SN by 1 then broadcasts a triggered route 

update with infinite metric
� All nodes propagate new SN and metric as oppose 

to only those routing traffic through B rendering node 
D unreachable

� Using DSDV-SQ vs DSDV
� When should we send triggered update?

� When node receives new SN or just new metric
� Update with each new SN requires more overhead

� Chose DSDV-SQ despite increased routing 
overhead because of better packet delivery ratio



19WPI

TORA
Characteristics

� On demand distributed routing protocol
� Discover routes on demand
� Provide multiple routes to destination
� Establish routes quickly
� Minimize routing overhead by localizing reaction to 

topological changes
� Shortest path routing lower priority

� Will use longer route to avoid overhead of discovering new ones

� �Link reversal� algorithm
� Described as water flowing downhill toward destination
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TORA
Basic Mechanisms � Link Reversal

A

C

B

E D

�Network of tubes model routing state of the real 
network

�Tubes represent links, intersections represent nodes
�Each node has height with respect to the destination
�Here Node A routes through B to destination D
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TORA
Basic Mechanisms - Link Reversal

� If the tube between nodes B and D becomes 
blocked, B raises its height with respect to its 
remaining neighbors

� Water flows out of B towards A who had been 
routing through B

A

C

B

E D

X



22WPI

TORA
Basic Mechanisms � Route Discovery

� Each node has a logically separate copy of TORA 
for each destination D

� Broadcasts QUERY with address of D
� QUERY propagates through network until it 

reaches D or a node with route to D
� Node receiving QUERY broadcasts UPDATE with 

nodes height with respect to D
� All nodes that receive UPDATE set their height 

higher than neighbor from which it was received
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TORA
Basic Mechanisms � Route Maintenance

� When a node discovers invalid route it
� Adjusts height higher than its neighbors
� Broadcasts UPDATE

� If all neighbors have infinite height then node 
broadcasts QUERY to discovery new route

� If network partition is found (isolated enclave) 
then node broadcasts CLEAR to reset state
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TORA
Implementation Decisions

� TORA requires in-order delivery of routing control 
messages so it is layered with IMEP

� IMEP provides link sensing and a consistent picture 
of a node�s neighbors to TORA
�Transmit periodic beacon � each node answers with Hello
�Queues control messages for aggregation into blocks 
reducing overhead (TORA excluded - limit long-lived loops) 

�Blocks carry SN and list of nodes not yet acknowledged
�IMEP queues messages for 150-250ms - retransmits block 
with period 500ms with timeout at 1500ms

�Upon timeout IMEP declares link down and notifies TORA
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TORA
Implementation Decisions

� In-order delivery is enforced at receiver by:
� Receive node B passes block from A up stack to TORA 

only if SN = expected SN
� Blocks with lower SN are dropped
� Blocks with higher SN are queued until missing blocks 

arrive or up to 1500ms
� At 1500ms node A will have declared link to B down

� Node B IMEP layer declares link down to maintain 
consistent picture with node A

� Improved IMEP link sensing � require beacons only 
when node is disconnected from all other nodes
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DSR
Characteristics

� Source routing protocol
� Each packet carries list of nodes in path in 

its header
� Intermediate nodes do not maintain routing 

information
� No need for periodic route ads or 

neighbor detection 
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DSR
Basic Mechanisms

� Source node S uses Route Discovery to find route to 
destination D
� S broadcasts ROUTE REQUEST � flooded in a controlled manner 

(initial hop limit set to zero, if no reply then propagate)
� Answered by D or by a node with route to D with ROUTE REPLY
� Each node maintains cache of source routes to limit frequency and 

propagation or ROUTE REQUESTs
� S uses Route Maintenance to detect topology changes that 

break a source route (i.e. node out of range)
� Notifies S with ROUTE ERROR
� S can use another cached route or invoke ROUTE REQUEST
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DSR
Implementation Decisions

� DSR supports unidirectional routes
� However 802.11 requires RTS/CTS/Data/Ack exchange
� Implementation requires ROUTE REPLY from destination 

via reverse of ROUTE REQUEST
� Else S would not learn the unidirectional route

� Network Interfaces in promiscuous mode
� Protocol receives all packets the interface hears
� Learns information about source routes

� Route repair
� If intermediate node senses broken link it will search 

cache for alternate route and repair source route 
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DSR
Implementation Mechanism � Promiscuous Mode

A

D

B
S

C

�S sends message X with source route C-B-A-D

X – CBAD

�C forwards message to B

X – CBAD

X – CBAD�A reads header and finds self

X – …BAD
GR – CAD

�A broadcasts Gratuitous Reply 
�Message X continues to D 

X – CBAD

X – CBAD

�A hears message on physical channel

X – CBAD
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AODV
Characteristics

� Combination of DSR and DSDV
� Uses on demand Route Discovery and 

Route Maintenance of DSR
� Hop-by-hop routing, SN and beacons 

from DSDV
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AODV
Basic Mechanisms

� Route Discovery
� Source node S broadcasts ROUTE REQUEST to include last known 

SN for destination D
� Each node along path creates a reverse route back to S
� ROUTE REPLY sent by D or by a node with route to D contains # hops 

to D and last seen SN
� Each node in path of REPLY to S create the forward route
� State created is hop-by-hop (node only remembers next hop)

� Route Maintenance
� AODV uses Hello Messages to detect link breakage 
� Failure to receive three HELLOS indicates link down
� Upstream nodes notified by UNSOLICITED ROUTE REPLY containing 

an infinite metric for that destination
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AODV
Implementation Decisions

� Authors tested another version of AODV that relies 
only on Link Layer feedback from 802.11 as seen in 
DSR
� Link breakage detection is on demand
� Detected only when attempting to send packet

� Performance was improved in AODV-LL version 
� Saves overhead of HELLO messages

� Reduced the time before new ROUTE REQUEST is 
sent if no REPLY was received from 120s to 6s
� Nodes hold reverse route information for only 3s
� Without this route information a REPLY can�t find source
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Simulation Constants
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Analysis Methodology

� Goal � compare protocols - not determine the 
optimum performance in the scenarios

� Measure ability to react to changes and deliver 
packets successfully

� Given a variety of workloads, movement patterns 
and environmental conditions

� Compare using 210 scenarios each running for 
900s

� Radio characteristics modeled after Lucent DSSS 
radio
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Analysis Methodology
Movement Model

� Random waypoint model
� Node begins simulation stationary for pause time s
� Selects random destination and moves at a speed 

uniformly distributed from 0 and max
� Node then pauses again for pause time s
� Repeating for the duration of the 900s

� 7 pause times 0,30,60,120,300,600,900 s
� 0s = constant motion   900s = stationary

� 70 movement patterns (10 per each pause time)
� Max speed = 20m/s  Ave speed 10m/s 

� Comparison made with Max speed = 1m/s
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Analysis Methodology
Communication Model

� Chose CBR sources to maintain exactness of 
scenario

� Fixed send rate at 4 packets/s
� Three different patterns with 10,20,30 sources

� Protocols determine routes 40,80,120 times/s
� Packet size 64-bytes

� 1024 byte packets caused congestion due to small 
simulation space (short RTT)

� Did not use TCP because congestion control 
mechanisms alters sending times making 
scenarios between protocols different
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Analysis Methodology
Scenario Characteristics � Route Lengths

� Simulator 
measured the 
�ideal� lengths 
of the routes 
(in hops) in all 
210 scenarios 

� Average data 
packet traveled 
2.6 hops
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Analysis Methodology
Scenario Characteristics � Connectivity Changes

� Link connectivity changes whenever a node 
leaves radio contact with another node

� Jump in # of
changes of 
1m/s max 
speed at 30s
pause time is
an artifact of
the scenario
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Analysis Methodology
Metrics

� Packet delivery ratio
� Ratio of the # packets originated by CBR sources to 

the # received at CBR sink
� Completeness and correctness: loss rate - throughput

� Routing overhead
� Total # of routing packets transmitted during simulation 

(each hop is one transmission)
� Scalability and efficiency in terms of battery power

� Path Optimality
� The difference between the number of hops taken and 

the optimum path available
� Efficiency of network resources
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Simulation Results
Comparison Summary � Packet Delivery Ratio - 20 Sources

� Less mobility = 
better performance

� DSR & AODV-LL > 
95%

� DSDV-SQ fails at 
pause time < 300s
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Simulation Results
Comparison Summary � Routing Overhead - 20 Sources

� TORA, DSR, 
AODV-LL are on-
demand protocols
Overhead drops 
with less mobility

� DSDV-SQ is a 
periodic protocol
near constant 
overhead with 
respect to mobility 
rate



Simulation Results
Details Packet Delivery Ratio � All Three Source Rates 
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Simulation Results
Packet Delivery Ratio � DSR 
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Simulation Results
Packet Delivery Ratio � AODV-LL 
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Simulation Results
Details Packet Delivery Ratio � DSDV-SQ 

� DSDV-SQ fails at 
pause time < 300s 
for all # of sources

� Packets dropped 
because of stale 
routing table -
forced packets 
over broken links

� DSDV-SQ 
maintains only one 
route per 
destination

� Packet is dropped 
if MAC layer is 
unable to deliver
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Simulation Results
Details Packet Delivery Ratio � TORA 

� TORA > 90% for 
10, 20 sources

� Packet drops from 
short-lived loops �
due to link reversal

� Rate drops to 40% 
with 30 sources at 
full mobility

� Here TORA fails 
due to congestion 
collapse
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Simulation Results
Details Routing Overhead � Comparison for All Sources 

� TORA, DSR, 
AODV-LL being on 
demand protocols
show overhead 
increases as 
sources increase

� DSR and AODV-LL 
have same shape 
plots but AODV-LL 
has nearly 5 times 
the overhead 

� DSDV-SQ has near 
constant overhead
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Simulation Results
Details Routing Overhead � DSR

� With increase in 
sources incremental 
increase in 
overhead is 
proportionally less

� Info from one Route 
Discovery used to 
complete a new one

� DSR uses caching, 
promiscuous 
interface, and zero 
hop route requests 
to limit overhead
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Simulation Results
Details Routing Overhead � AODV-LL

� Same characteristic 
as DSR with 
increasing sources

� AODV-LL has up to 
5 times the 
overhead of DSR

� Difference due to 
route discoveries 
going to every node 
and lack of caching
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Simulation Results
Details Routing Overhead � DSDV-SQ

� DSDV-SQ has near 
constant overhead

� Destination updates SN 
each15s

� With 50 nodes a periodic 
update with new SN is 
being sent every second

� New SN generates 
triggered updates from 
each node receiving it

� Effective rate of 
triggered updates is one 
per node per second = 
45,000 for 900s 
simulation
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Simulation Results
Details Routing Overhead � TORA

� Constant and variable 
routing overhead

� Constant part due to 
IMEP Beacon/Hello 
messages for 
neighbor discovery

� Variable part from 
TORA route discovery 
and maintenance 
times IMEP control for 
in-order delivery

� Overhead causes 
collisions and data 
packet drops

� Perceptions of links 
breaking causes more 
UPDATES - collapse



52WPI

Simulation Results
Details Path Optimality

� DSDV-SQ and DSR 
used close to optimal 
routes � no change is 
noticed when broken 
out by pause time

� AODV-LL and TORA 
exceeded optimal as 
much as four hops �
though TORA does 
not attempt to be 
optimal

� AODV-LL and TORA  
difference from 
optimal increases with 
mobility



Simulation Results
Lower Movement Speed � 1m/s

� All protocols deliver more 
than 98.5% of packets

� DSDV-SQ periodicity continues 
to produce consistent overhead

� TORA still troubled by its link 
status/sensing mechanism IMEP
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Additional Observations
Source Routing Overhead - Bytes vs Packets

� When overhead measured in bytes AODV-LL outperforms 
DSR � AODV keeps a hop by hop state count vs. the source 
routing info in the DSR packet header



Additional Observations
DSDV-SQ vs. DSDV

Triggered updates with every 
new SN vs. updates only with 
new metric

DSDV overhead is nearly a
factor of four less than DSDV-SQ
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Additional Observations
Reliability of Broadcast Packets 

� Broadcast packets can not reserve 
wireless channel before transmitting

� Therefore they are less reliable than 
unicast packets

� Sampling of scenarios found that 99.8% 
unicast packets were successfully 
received vs. 92.6% of broadcast packets

� The difference due to collisions
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Summary

� First paper to perform realistic quantitative 
analysis comparing performance of ad hoc 
networking protocols

� Modification of ns-2 network simulator 
provides an accurate simulation of MAC and 
physical layer of 802.11 standard

� Simulated protocols cover a range of design 
choices
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Conclusion

� DSDV performs well at low mobility and low speed 
with consistent overhead

� TORA is worst in overhead but delivers over 90% at 
10,20 sources � doesn�t scale 

� DSR performs well at all rates, speeds and sources 
with low packet overhead � source routing causes 
high byte overhead

� AODV performs near as well as DSR eliminating 
source routing overhead - # of overhead packets is 
high which can be more �expensive�at high mobility
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BACKUP SLIDES
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DSDV-SQ
Implementation Mechanisms - Sim Constants
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TORA
Implementation Mechanisms - Sim Constants
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DSR
Implementation Mechanisms - Sim Constants
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AODV-LL
Implementation Mechanisms - Sim Constants


