CSFQ

Core-Stateless Fair Queueing

Presented by
Nagaraj Shirali
Choong-Soo Lee
About the Authors

Ion Stoica – CMU
• PhD degree from Carnegie Mellon University
• Assistant Professor at University of California, Berkeley
• Networking with an emphasis on Quality of Service and traffic management in the Internet

Hui Zhang – CMU
• PhD degree from University of California, Berkeley
• Associate Professor at Carnegie Mellon University
• Internet, multimedia systems, resource management, and performance analysis

Scott Shenker – Xerox PARC
• Chair for the Integrated Services (INTSERV) charter
Outline

• Introduction
• Background: Definitions and Previous Work
• CSFQ and its Algorithms
• Simulations
• Evaluations of CSFQ
• Conclusions and Future Work
Introduction

• **Main Idea:**
 - Achieve fair bandwidth allocations at the router without the implementation complexity usually associated with it.

• **Goals:**
 - Achieve fair allocation close to Fair Queueing and comparable or better than RED and FRED under most scenarios.
 - Reduce complexity by not having the core node maintain per flow state.
 - Approximate weighted FQ.
Outline

• Introduction
• **Background: Definitions and Previous Work**
• CSFQ and its Algorithms
• Simulations
• Evaluations of CSFQ
• Conclusions and Future Work
Previous Work

- FIFO queueing with Drop Tail
- Random Early Drop (RED)
- Flow Random Early Drop (FRED)
- Fair Queueing (FQ)
FIFO queueing with Drop Tail

Disadvantages:

- Pushes congestion control out to end hosts (TCP)
- Introduces *global synchronization* when packets are dropped from several connections
Random Early Drop (RED)

Disadvantage:
• For web traffic, RED provides no clear advantage over tail-drop FIFO for end-user response times
Flow Random Early Drop (FRED)

Disadvantage:
- Complex to implement – maintain state on per-flow basis
Disadvantage:
• Need to perform packet classification and maintain state and buffers on per-flow basis and perform operations on per-flow basis
Definitions

- **Island of routers** – a contiguous portion of the network with well defined interior and edges.
- **Edge Router** – computes per-flow rate estimates and labels the packets with these estimates.
- **Core Router** – uses FIFO queueing and keeps no per-flow state, employs a probabilistic dropping algorithm that uses the packet label and its own measurement of aggregate traffic.
- **Stateless** – absence of per-flow state at the core routers.
Island of Routers

Core-stateless network

edge node core node

Source: CSFQ, Stoica, Berkeley
Outline

• Introduction
• Background: Definitions and Previous Work
• CSFQ and its Algorithms
• Simulations
• Evaluations of CSFQ
• Conclusions and Future Work
CSFQ and its Algorithms

Assumptions:

• Fair Allocation methods like FQ are necessary for congestion control.

• The complexity involved is a major hindrance to their adoption.
In an island of routers, edge routers compute per-flow rate estimates and label the packets with these estimates.

Core routers use FIFO queueing and keep no per-flow state, they employ a probabilistic dropping algorithm based on packet labels and own aggregate traffic estimates.
CSFQ

- Bandwidth allocations using this method are approximately fair.

- Core routers keep no per-flow state and avoid using complicated packet scheduling and buffering algorithms, hence are easier to adopt.
• Assume that flow i has arrival rate $r_i(t)$ and the fair rate is $a(t)$.
• If $r_i(t) < a(t)$, all of its traffic is forwarded.
• If $r_i(t) > a(t)$, then a fraction $\left(\frac{r_i(t) - a(t)}{r_i(t)}\right)$ will be dropped; each packet of the flow is dropped with probability $\left(\frac{1-a(t)}{r_i(t)}\right)$. Thus the output rate of any flow i will be $\max(r_i(t), a(t))$.
The problem now becomes how to calculate the flow rate $r_i(t)$ values and the fair rate $a(t)$, without keeping per flow state in the core routers.

Flow rates $r_i(t)$, are calculated at edge routers which keep per flow state and then insert the rate value inside the packet header of packets belonging to that flow.
• To estimate the fair rate $a(t)$, an iterative procedure is used: core routers estimate aggregate arrival rate A and the aggregate rate of accepted traffic F (arrival rate – dropped packets).

• Based on these, the fair rate a is computed periodically as:
 - if there is no congestion ($A \leq C$ where C is the link’s capacity), then a is set to the maximum $r_i(t)$
 - if the links are congested, then $a_{\text{new}} = a_{\text{old}} \cdot C/F$
CSFQ - Example

Assume we have two flows \(f_1 \) and \(f_2 \), with rates \(r_1 = 20 \) and \(r_2 = 30 \) and the link’s capacity is \(C = 30 \). Initially let’s say that only \(r_1 \) is active and the link is not congested, so \(a_1 = 20 \). Then \(r_2 \) becomes active. Since no packets were dropped, \(F = 50 \).

Since \(A = 50 > C \), \(a_2 = a_1 \cdot \frac{C}{F} = 20 \cdot \frac{30}{50} = 12 \)

Therefore, for \(f_1 \) \((1-12/20 = 40\%)\) of its packets are dropped while for \(f_2 \) \((1-12/30 = 60\%)\) of its packets are dropped and \(F = 12+12 = 24 \)

Since \(A > C \), \(a_3 = a_2 \cdot \frac{C}{F} = 12 \cdot \frac{30}{24} = 15 \)

Now \(F = 30 \), and \(a_4 = a_3 \cdot \frac{C}{F} = 15 \cdot \frac{30}{30} = 15 \). Therefore, \(a \) has converged to the right fair rate.

Source: Network Reading Group, Stoica
Estimation of flow arrival rates:

\[R_{new} = (1-e^{-T/K})*l/T + e^{-T/K}*R_{old} \]

where \(T \) = packet interarrival time

\(l \) = packet size

\(K \) = constant

To summarize, *Edge routers* needs to

1) Classify the packet to a flow
2) Update the fair share rate estimation for the outgoing link
3) Update the flow rate estimation
4) Label the packet
Outline

• Introduction
• Background: Definitions and Previous Work
• CSFQ and its Algorithms
• **Simulations**
• Evaluations of CSFQ
• Conclusions and Future Work
Simulations – Single Congested Link

\[\alpha = \frac{10\text{Mbps}}{32} \]

\[T_i = (i+1)\alpha \text{ where } 0 \leq i \leq 31 \]
Simulations – Single Congested Link
Simulations – Single Congested Link

UDP Flows
- 0
- 1
- 2
- 31

TCP Flows

10Mbps

UDP flows at 10Mbps
Simulations – Single Congested Link

[Graph showing bandwidth (Mbps) vs. flow number]
Simulations – Single Congested Link

\[\alpha = \frac{10 \text{Mbps}}{N} \]

\[T_i = 2\alpha \text{ where } 1 \leq i \leq N - 1 \]
Simulations – Single Congested Link
Simulations – Multiple Congested Links

TCP/UDP Source

UDP1 UDP10

Sinks

TCP/UDP Sink

Sources

UDP1 UDP10

10Mbps Links
Simulations – Multiple Congested Links

UDP

Allocated Bandwidth / Ideal Bandwidth

Number of Congested Links

DAIR
CSFQ
FAED
RED
FIFO
Simulations – Multiple Congested Links

TCP

![Graph showing the effect of TCP with different congestion control mechanisms on bandwidth utilization vs. number of congested links.]

Allocated Bandwidth / Ideal Bandwidth

Number of Congested Links

ACN: CSFQ
Simulations – Coexistence of Adaptation Schemes

• RLM (Receiver-driven Layered Multicast)
 • Only first 5 layers (~0.992Mbps)
 • TCP-friendly like
• 3 RLM flows and 1 TCP flow
Simulations – Coexistence of Adaptation Schemes

FIFO

Throughput (Mbps)

Time (ms/c)

TCP, RLM1, RLM2, RLM3
Simulations – Coexistence of Adaptation Schemes

RED

Throughput (Mbps)

Time (sec)
Simulations – Coexistence of Adaptation Schemes

FRED
Simulations – Coexistence of Adaptation Schemes
Simulations – Coexistence of Adaptation Schemes

CSFQ

![Graph showing throughput over time for different protocols including TCP, RLM1, RLM2, and RLM3.](image-url)
Simulations – Different Traffic Models

- 1 On/Off Flows
 - 100ms on, 1900ms off
 - Rate : 10Mbps
 - Sends 6758 packets
- 19 competing TCP flows
Simulations – Different Traffic Models

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Delivered</th>
<th>Dropped</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRR</td>
<td>601</td>
<td>6157</td>
</tr>
<tr>
<td>CSFQ</td>
<td>1680</td>
<td>5078</td>
</tr>
<tr>
<td>FRED</td>
<td>1714</td>
<td>5044</td>
</tr>
<tr>
<td>RED</td>
<td>5322</td>
<td>1436</td>
</tr>
<tr>
<td>FIFO</td>
<td>5452</td>
<td>1306</td>
</tr>
</tbody>
</table>
Simulations – Different Traffic Models

- 60 TCP Flows
 - Exponentially distributed inter-arrival times with mean of 0.05ms
 - Pareto distributed transfer time with mean of 20 packets
- 1 UDP flow (10Mbps)
Simulations – Different Traffic Models

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Mean time</th>
<th>Std. dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRR</td>
<td>25</td>
<td>99</td>
</tr>
<tr>
<td>CSFQ</td>
<td>62</td>
<td>142</td>
</tr>
<tr>
<td>FRED</td>
<td>40</td>
<td>174</td>
</tr>
<tr>
<td>RED</td>
<td>592</td>
<td>1274</td>
</tr>
<tr>
<td>FIFO</td>
<td>840</td>
<td>1695</td>
</tr>
</tbody>
</table>
Simulations – Large Latency

• 10Mbps link with 100ms latency
• 1 UDP flow at 10Mbps
• 19 TCP flows

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Mean</th>
<th>Std. dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRR</td>
<td>6080</td>
<td>64</td>
</tr>
<tr>
<td>CSFQ</td>
<td>5761</td>
<td>220</td>
</tr>
<tr>
<td>FRED</td>
<td>4974</td>
<td>190</td>
</tr>
<tr>
<td>RED</td>
<td>628</td>
<td>80</td>
</tr>
<tr>
<td>FIFO</td>
<td>378</td>
<td>69</td>
</tr>
</tbody>
</table>
Simulations – Packet Relabeling

Sources

Sink

10Mbps links
Simulations – Packet Relabeling

<table>
<thead>
<tr>
<th>Traffic</th>
<th>Flow 1</th>
<th>Flow 2</th>
<th>Flow 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP</td>
<td>3.36</td>
<td>3.32</td>
<td>3.28</td>
</tr>
<tr>
<td>TCP</td>
<td>3.43</td>
<td>3.13</td>
<td>3.43</td>
</tr>
</tbody>
</table>
Outline

- Introduction
- Background: Definitions and Previous Work
- CSFQ and its Algorithms
- Simulations
- Evaluations of CSFQ
- Conclusions and Future Work
Evaluations of CSFQ

- Reasonable approximation of fair share
- Roughly comparable performance to FRED
 - Sometimes much better than FRED
 - Note: FRED has per-packet overhead
- Not quite as fair as DRR
Outline

• Introduction
• Background: Definitions and Previous Work
• CSFQ and its Algorithms
• Simulations
• Evaluations of CSFQ
• Conclusions and Future Work
Conclusions and Future Work

• CSFQ
 • rate-based active queue management
 • Rate estimation at the edge and packet labels for core routers
• Large latency effect
• Possible extension of CSFQ for QoS
• Slide 2
 - Ion Stoica – research interest is to develop techniques and architectures that allow powerful and flexible network services to be deployed in the Internet without compromising its scalability and robustness.
 - Scott Shenker - The working group will focus on defining a minimal set of global requirements which transition the Internet into a robust integrated-service communications infrastructure.
• Slide 4
 - Congestion today (1998) is controlled by end-hosts (TCP)
 - FQ – has to maintain state, manage buffers, perform packet scheduling on per-flow basis.
• Slide 8
 - SFloyd, Jacobson, 93. For long-lived TCP connections like file transfer, it might make a difference.
• Slide 9
 - Dong Lin, Robert Morris in 1997 – works well with different traffic – TCP and UDP etc.
• Slide 10
 - DDR – Deficit Round Robin or WFQ.
• Slide 21
 - Exponential average to estimate the rate of flow since this closely reflects a fluid averaging process which is independent of the packetizing structure. And the solution is bounded as it converges to a real value.