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Introduction

e Main ldea:

- Achieve fair bandwidth allocations at the router without
the implementation complexity usually associated with it.

e Goals:

- Achieve fair allocation close to Fair Queueing and
comparable or better than RED and FRED under most
scenarios.

- Reduce complexity by not having the core node maintain
per flow state.

- Approximate weighted FQ.
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Previous Work

 FIFO queueing with Drop Tail
« Random Early Drop (RED)
« Flow Random Early Drop (FRED)

o Fair Queueing (FQ)
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FIFO queueing with Drop Tall

FIFO SERVER
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Disadvantages:
* Pushes congestion control out to end hosts (TCP)

* Introduces global synchronization when packets are
dropped from several connections
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Random Early Drop (RED)
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Flow Random Early Drop (FRED)

FIFO SERVER
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Disadvantage:
 Complex to implement — maintain state on per-flow basis
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Fair Queueing

()
> u

Disadvantage:

* Need to perform packet classification and maintain state
and buffers on per-flow basis and perform operations on
per-flow basis
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Definitions

e |sland of routers — a contiguous portion of the
network with well defined interior and edges.

 Edge Router — computes per-flow rate estimates and
labels the packets with these estimates.

« Core Router - uses FIFO queueing and keeps no per-
flow state, employs a probabilistic dropping algorithm
that uses the packet label and its own measurement of
aggregate traffic.

o Stateless — absence of per-flow state at the core
routers.
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Island of Routers

Core-stateless network

.edge node core node

Source: CSFQ, Stoica, Berkeley
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CSFQ and its Algorithms

Assumptions:

« Fair Allocation methods like FQ are necessary for
congestion control.

 The complexity involved is a major hindrance to their
adoption.
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CSFQ

* In an island of routers, edge routers compute per-flow
rate estimates and label the packets with these
estimates.

e Core routers use FIFO queueing and keep no per-flow
state, they employ a probabilistic dropping algorithm
based on packet labels and own aggregate traffic
estimates.
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CSFQ

« Bandwidth allocations using this method are
approximately fair.

o Core routers keep no per-flow state and avoid using
complicated packet scheduling and buffering algorithms,
hence are easier to adopt.
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CSFQ
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Estimator

« Assume that flow i has arrival rate r(t) and the fair rate is a(t).

« Ifr(t) <af(t), all of its traffic is forwarded.

« Ifr(t) > a(t), then a fraction (r,(t) - a(t))/ r,(t) will be dropped; each
packet of the flow is dropped with probability (1-a(t)/r(t)). Thus the
output rate of any flow i will be max(r(t) ,a(t)).
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CSFQ

e The problem now becomes how to calculate the flow rate
r(t) values and the fair rate a(t), without keeping per flow
state in the core routers.

* Flow rates r(t), are calculated at edge routers which keep
per flow state and then insert the rate value inside the
packet header of packets belonging to that flow.
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CSFQ

« To estimate the fair rate a(t), an iterative procedure is
used: core routers estimate aggregate arrival rate A and
the aggregate rate of accepted traffic F (arrival rate —
dropped packets).

 Based on these, the fair rate a is computed periodically
as:

- if there is no congestion (A<=C where C is the link’s
capacity), then a is set to the maximum r;(t)

- If the links are congested, then a,,, = a,4*C/F

new
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CSFQ - Example

Assume we have two flows f, and f, with rates r, =20 and r, = 30
and the link’s capacity is C = 30. Initially let’s say that only r, is active
and the link is not congested, so a, = 20. Then r, becomes active.
Since no packets were dropped, F = 50.

Since A =50>C, a, = a,* C/F =20 * 30/50 = 12

Therefore, for f; (1-12/20 = 40%) of its packets are dropped while for f,
(1-12/30 = 60%) of its packets are dropped and F = 12+12 =24

Since A>C, a; = a,* C/[F =12 * 30/124 = 15

Now F = 30, and a, = a;* C/F = 15 * 30/30 = 15. Therefore, a has
converged to the right fair rate.

Source: Network Reading Group, Stoica

@*wp i ACN: CSFQ 20



CSFQ

Estimation of flow arrival rates:
Rnew — (1_e-T/K)*|/T + e_T/K*RoId

where T = packet interarrival time
| = packet size
K = constant

To summarize, Edge routers needs to

1) Classify the packet to a flow

2) Update the fair share rate estimation for the outgoing link
3) Update the flow rate estimation

4) Label the packet
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Simulations — Single Congested Link

10Mbps Q
UDP
Flows <
. q = 10Mbps
32
\ @ T =(i +1)a where 0<i <31
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Simulations — Single Congested Link
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Simulations — Single Congested Link
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Simulations — Single Congested Link
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Simulations — Single Congested Link

TCP
Flow

UDP
Flows

q = 10Mbps
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\ T =20 wherel<i<N-1
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Simulations — Single Congested Link
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Simulations — Multiple Congested Links
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Simulations — Multiple Congested Links
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Simulations — Multiple Congested Links
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Simulations — Coexistence of
Adaptation Schemes

« RLM (Receiver-driven Layered Multicast)
* Only first 5 layers (~0.992Mbps)
 TCP-friendly like

e 3 RLM flows and 1 TCP flow
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Simulations — Coexistence of

Adaptation Schemes
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Simulations

— Coexistence of
Adaptation Schemes
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Simulations — Coexistence of

Adaptation Schemes
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Simulations — Coexistence of

DRR
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Simulations — Coexistence of

Adaptation Schemes
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Simulations — Different Traffic Models

e 1 On/Off Flows
e 100ms on, 1900ms off
« Rate : 10Mbps
e Sends 6758 packets

e 19 competing TCP flows
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Simulations — Different Traffic Models

Algorithm Delivered Dropped
DRR 601 6157
CSFQ 1680 5078
~RED 1714 5044
RED 5322 1436
~IFO 5452 1306
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Simulations — Different Traffic Models

e 60 TCP Flows

« Exponentially distributed inter-arrival times
with mean of 0.05ms

e Pareto distributed transfer time with mean of
20 packets

e 1 UDP flow (10Mbps)
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Simulations — Different Traffic Models

Algorithm Mean time |Std. dev
DRR 25 99
CSFQ 62 142
~FRED 40 174

RED 592 1274
~IFO 840 1695
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Simulations — Large Latency

e 10Mbps link with 100ms latency

1 UDP flow at 10Mbps

e 19 TCP flows

Algorithm Mean Std. dev
DRR 6080 64
CSFQ 5761 220
~RED 4974 190

RED 628 80

~IFO 378 69

L WPI
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Simulations — Packet Relabeling

Sources
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Simulations — Packet Relabeling

Traffic Flow 1 Flow 2 Flow 3
UDP 3.36 3.32 3.28
TCP 3.43 3.13 3.43
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Evaluations of CSFQ

e Reasonable approximation of fair share
 Roughly comparable performance to FRED
 Sometimes much better than FRED
* Note : FRED has per-packet overhead
* Not quite as fair as DRR
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Conclusions and Future Work

e CSFQ
e rate-based active gueue management

 Rate estimation at the edge and packet labels
for core routers

e Large latency effect
* Possible extension of CSFQ for QoS
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Back-up Slide(s)

o Slide 2

- lon Stoica — research interest is to develop techniques and architectures that allow powerful and
flexible network services to be deployed in the Internet without compromising its scalability and
robustness.

- Scott Shenker - The working group will focus on defining a minimal set of global requirements
which transition the Internet into a robust integrated-service communications infrastructure.

o Slide 4

- Congestion today (1998) is controlled by end-hosts (TCP)

- FQ - has to maintain state, manage buffers, perform packet scheduling on per-flow basis.

« Slide 8

- SFloyd, Jacobson, 93. For long-lived TCP connections like file transfer, it might make a difference.
« Slide9

- Dong Lin, Robert Morris in 1997 — works well with different traffic — TCP and UDP etc.

 Slide 10

-  DDR - Deficit Round Robin or WFQ.

o Slide 21

- Exponential average to estimate the rate of flow since this closely reflects a fluid averaging
process which is independent of the packetizing structure. And the solution is bounded as it
converges to a real value.
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