The War Between Mice and Elephants

Liang Guo, Ibrahim Matta

Presented by Vasilios Mitrokostas for CS 577 / EE 537

Images taken from Pankaj Didwania's 2013 presentation of this paper
An Issue of Fairness

Long connections are unintentionally favored over short connections by TCP congestion control algorithm
Mouse
Mouse

- Many connections, short traffic
Elephant
Elephant

- Few connections, large traffic
- 80-20 rule
The Elephant Wins

- Blame TCP; three main factors
 - Conservative ramp up of transmission rate
 - Painful packet loss for shorter connections
 - No packet samples for mice
TCP: Conservative Ramp Up

- Sending window starts at the smallest value
- This hurts many small connections which need to begin at this point each time
TCP: Painful Packet Loss

- A short connection's congestion window doesn't have enough packets to detect packet loss by duplicate ACKs
 - . . . so it's only detected by timeout, slowing the rate of data transmission
TCP: No Packet Samples

- TCP uses samples of packets to help determine timeout
 - . . . but each of the many, short connections lacks sampling data, so timeouts are set to conservative, large value
How to Combat Unfairness

- Guo and Matta's proposal; fight fire with fire

- Simulations say: give short connections preferential treatment to induce fairness
 - A weighted policy to classify TCP flows by size
 - RIO (RED with In and Out) queue management
Validating the Problem

- How did the authors draw these conclusions?
 - A study of short and long TCP flows
 - Previous papers highlight the uphill battle faced by mice . . . but their solutions modify TCP
 - Issue: isolating flows by class (short vs. long) may cause packet reordering, leading to poor performance

- Guo and Matta: place control inside the network with RIO
Proposed Solution

Mitigate packet loss by giving preferential treatment to short connections
RIO: Classify In or Out

- Classify packets as In or Out to determine size, allowing for preferential treatment
- Favor short connections at bottleneck link queues, so they experience fewer dropped packets
Why Is Packet Loss Critical?

- When loss rate is small, average transmission time is not greatly impacted.
- When loss rate is large, time increases drastically (see TCP-Newreno test below, randomly dropped packets).

![Graph showing coefficient of variation vs. loss rate]
Why Does Variability Happen?

- High loss rate = high chance for TCP to enter exponential backoff (congestion avoidance) phase, resulting in more variability
- Low loss rate = two options for TCP: transmit aggressively with slow-start or transmit in congestion avoidance phase, resulting in more variability (less consistency)
- First source of variability is on individual packets—greater impact on short flows due to number
- Second source of variability in end-phase—greater impact on long flows which finish beyond slow-start
Comparison by Simulation

- Network simulator *ns* by E. Amir et al.
- 10 long flows (100 packets) vs. 10 short flows (10,000 packets) (TCP-Newreno)
- 1.25Mbps link

Link utilization: (left) DropTail, (middle) RED, and (right) RIO-PS
Too Unfair to Elephants?

- RIO-PS (preferential treatment to short flows) graph shows short flows taking more of the total link utilization than long flows . . . unequal

- This is OK; early completion returns resources to long flows, so long-term goodput is maintained

- In fact, it results in a more stable environment for long flows because of fewer disturbances from short flows (once they finish)
Goodput Comparison

- Overall goodput for all flows remains stable
- 500 second simulation, note difference in load (RED and RIO-PS favor higher loads)

<table>
<thead>
<tr>
<th>Link B/W</th>
<th>Flows</th>
<th>DropTail</th>
<th>RED</th>
<th>RIO-PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25Mbps</td>
<td>All</td>
<td>153479</td>
<td>154269</td>
<td>154486</td>
</tr>
<tr>
<td></td>
<td>Short</td>
<td>40973</td>
<td>49897</td>
<td>49945</td>
</tr>
<tr>
<td></td>
<td>Long</td>
<td>112506</td>
<td>104372</td>
<td>104541</td>
</tr>
<tr>
<td>1.5Mbps</td>
<td>All</td>
<td>185650</td>
<td>184315</td>
<td>183154</td>
</tr>
<tr>
<td></td>
<td>Short</td>
<td>43854</td>
<td>49990</td>
<td>49990</td>
</tr>
<tr>
<td></td>
<td>Long</td>
<td>141796</td>
<td>134325</td>
<td>133164</td>
</tr>
</tbody>
</table>

TABLE I

NETWORK GOODPUT UNDER DIFFERENT SCHEMES
Implementation: Edge Routers

• Employ a Diffserv-like network architecture to differentiate between short and long TCP flows

• This is done through edge routers
 □ Edge router tracks each flow, counting packets
 □ Once a threshold L_t is met, flow is considered long (the first L_t packets of such a flow are considered short)
 • Authors claim this is OK because first few packets are vulnerable to packet losses, and this makes the system fair to all starting TCP connections
 □ Every so often (T_u time units), flow is considered finished if no packets are observed in the period
Choosing Variables

- Threshold L_t can be static or dynamic; can allow edge router to modify every T_c based on short and long flow counts . . . the Short-to-Long-Ratio (SLR)
- Choosing T_u and T_c needs further research ($T_u = 1$ sec, $T_c = 10$ sec in simulation)
Implementation: Core Routers

- Core routers give preferential treatment to short packets using RIO
- See packet dropping figure below; note that In (short) packet queuing is not affected by Out (long) packet arrivals
Packet Reordering: Not a Problem

• Only one FIFO queue is used for all packets, short and long
 □ No packet reordering even if same-flow packets are classified differently
Simulation

Is RIO-PS as beneficial as claimed?
Simulation of RIO-PS

- Web traffic model; each page requires TCP connection
 - Tuned to maximize power, ratio between throughput and delay. High power implies high throughput and low delay
Single Client Experiment

- 4,000-second simulation
 - (2,000-second warm-up)
- Record response time using preferential treatment
 - What about initial timeout (ITO) from 3 seconds to 1 second? Authors warn unnecessary retransmissions may lead to congestion collapse (slow links or high round-trip delay), but plot results anyway (donkey)

![Graphs showing file size vs. time ratio](image)

(a) Initial Retransmission Timer 3 seconds
(b) Initial Retransmission Timer 1 second

Average response time relative to RED
Advantage

- Performance improvements; reduction on overall mark/drop rate without risk of queue overload at the bottleneck link

 - Why? Short flows now have fewer packet drops, which means fewer congestion notifications

![Graphs showing instantaneous queue size and drop/mark rate](image)
Fairness Index

- Computed using a fairness index formula based on response time T_i

$$FI = \frac{\left(\sum_{i=1}^{10} T_i\right)^2}{10 \sum_{i=1}^{10} T_i^2},$$

(a) Fairness Index of Short Connections

(b) Fairness Index of Long Connections

Fairness of Transmission Time
Fairness Index Continued

- Transmission times and goodput

(a) Transmission Time of Short Connections

(b) Transmission Time of Long Connections

Transmission Time of Foreground Traffic

<table>
<thead>
<tr>
<th>Scheme</th>
<th>DropTail</th>
<th>RED</th>
<th>RIO-PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp1 (ITO=3sec)</td>
<td>4207841</td>
<td>4264890</td>
<td>4255711</td>
</tr>
<tr>
<td>Exp1 (ITO=1sec)</td>
<td>4234309</td>
<td>4254291</td>
<td>4244158</td>
</tr>
</tbody>
</table>

NETWORK GOODPUT OVER THE LAST 2000 SECONDS
Unbalanced Requests Experiment

- Paper suggests preferential treatment still helps, but results are captured in another paper due to space limitation
Evaluation

Does the model hold in real-world cases? Can it be feasibly deployed?
Evaluating the Simulation Model

- The web traffic model used for simulation is the “Dumbbell and Dancehall” one-way traffic model.
- Guo and Matta claim that the RIO-PS scheme still grants an advantage when reverse traffic is present.
 - Why? Short exchanges due to control packet handling on the client side are protected by this scheme (due to the preferential treatment).
- Authors also say simulation results mean RIO-PS works in extremely unbalanced cases, so odd traffic topologies would not be a problem (is this true?)
Evaluating Deployment

- A paper on edge devices is referenced to show that per-flow state maintenance (In vs. Out) and per-packet processing does not significantly impact end-to-end performance (sounds nebulous)
- RIO-PS only needs to be implemented at busy bottleneck links
Conclusions

• RIO-PS benefits short connections, which represent the majority of TCP flows
 □ Long flows are thus minimally impacted

• Goodput is either the same or improved, depending on the network

• Flexible architecture; only edge routers need to be tuned