A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols

Broch et al

Presented by Brian Card
Outline

- Introduction
- NS enhancements
- Protocols:
 - DSDV
 - TORA
 - DRS
 - AODV
- Evaluation
- Conclusions
Introduction
Introduction

How Does Node 1 Communicate with Node 4?
Introduction

How Does Node 1 Communicate with Node 4?
What if the network looks like this?
What if the network looks like this?
What if the network looks like this?

Multiple paths from Node 1 to Node 4, which one is the best?
What if the network is mobile?
What if the network is mobile?

• Need intelligent routing between nodes
Mobile Ah-Hoc Networks

- Hop between nodes when point to point communication is not possible
- Nodes can leave and join the network at any time
- Link characteristics between nodes unpredictable
- Nodes may move!
 - In and out of range
 - Can cause variations in link characteristics
Protocols for Ad-Hoc Mobile Networks

• Need to quickly and accurately find routes to different nodes
• Need to be able to recalculate based on changing node positions or changes in link characteristics
• Need to be efficient
Issues with Protocols for Ad-Hoc Mobile Networks

• Several protocols already exist, how do we know which one to choose?
 – No performance evaluation comparing protocols

• Simulation tools don’t accurately model mobile networks
 – No support for physical layer characteristics
 – No support for MAC layer
 – No support for node positions

• This paper attempts to address these issues
Outline

• Introduction
• **NS enhancements**
• Protocols:
 • DSDV
 • TORA
 • DRS
 • AODV
• Evaluation
• Conclusions
NS Enhancements

• NS (Network Simulator) is a discrete event simulator widely used for network performance evaluation
• Extensive support for simulating TCP
• No support for Wi-Fi MAC layer or physical layer
• No position information
Physical Layer Additions to NS

• $1/r^2$ attenuation model within reference distance (100m), $1/r^4$ attenuation model afterwards

• Movement is modeled using position as a function of time using flat surface or topographical map

• Power is tracked for each interface, when model predicts power is lower than receive threshold the packet is marked as dropped in error

• Carrier sensing threshold is used to treat low power transmissions as noise

• Propagation delay is also accounted for
MAC Layer additions to NS

• Physical lay feed packets to MAC Layer
• *virtual carrier sensing* is used at the MAC layer (RTS/CTS)
• ACK packets are transmitted for unicast packets, retransmits occur from sender until ACKs are received
Other NS Updates

• ARP (Address Resolution Protocol) is used for determining link-layer IP addresses
 – This is important because ARP REQUEST is broadcast and can interact with protocols

• Each node has a 50 packet send queue. Drop-tail is used for queue management
Outline

• Introduction
• NS enhancements
• **Protocols:**
 • DSDV
 • TORA
 • DRS
 • AODV
• Evaluation
• Conclusions
Protocols

• Authors implemented 4 different routing protocols
• Some changes were made to the protocols to improve performance
• The following changes were made to all of them:
 – Broadcasts and broadcast responses were jittered using a random delay between 0 and 10 ms to prevent synchronization
 – Routing packets were transmitted before data or ARP packets
 ▪ This was to ensure that routing information propagated quickly
 – Link breakage was detected at the MAC layer except for DSDV
DSDV: Destination-Sequenced Distance Vector

- Hop by hop distance vector routing protocol
- Each node keeps a routing table with three fields for each destination:
 - Next hop
 - Sequence number
 - Metric
- Routers are chosen based on sequence number and metric
- *Higher* sequence number (newer route) wins first
- Afterwards *lower* metric wins
DSDV: Destination-Sequenced Distance Vector

- Nodes are periodically sending out sequence numbers which represent the ‘freshness’ of a link.
- When a link is broken, the nodes mark the metric as infinite.
- This causes routes to avoid that node.
- When the node comes back up, a new sequence number is generated and packets flow over the new link.
DSDV Implementation

• MAC protocol link breakages are not used
 – Authors noted when using MAC level breakages if a single link is broken the node becomes unreachable
 – Sequence number from the breakage becomes higher than other sequence numbers and becomes the preferred route
 – This causes the node to be completely unreachable (packet drops) until it can advertise and create a new sequence number
DSDV and DSDV-SQ

- Original protocol description is ambiguous about when to send updates
- Authors use an additional scheme they call DSDV-SQ (SQ for sequence number) which also sends out updates when a sequence number changes
- This increases overhead, but provides better performance since broken links are detected sooner
- Authors use this for all experiments and provide a comparison to DSDV at the end of the paper
DSDV Constants

Table I: Constants used in the DSDV-SQ simulation.

<table>
<thead>
<tr>
<th>Constant</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periodic route update interval</td>
<td>15 s</td>
</tr>
<tr>
<td>Periodic updates missed before link declared broken</td>
<td>3</td>
</tr>
<tr>
<td>Initial triggered update weighted settling time</td>
<td>6 s</td>
</tr>
<tr>
<td>Weighted settling time weighting factor</td>
<td>7/8</td>
</tr>
<tr>
<td>Route advertisement aggregation time</td>
<td>1 s</td>
</tr>
<tr>
<td>Maximum packets buffered per node per destination</td>
<td>5</td>
</tr>
</tbody>
</table>
TORA: Temporarily-Ordered Routing Algorithm

- Routes are discovered on-demand
- Network is modeled like a system of pipes with the packets being water in the pipes
- Protocol is layered on top of IMEP to provide guaranteed in-order packet delivery
 - Other protocols do not require this
- IMEP can be used for address resolution but the authors did not use this and used ARP for all protocols
- IMEP also groups TORA and IMEP control messages into blocks called ‘object blocks’
TORA Basic Usage

- QUERY packet broadcasted when a packet needs to be delivered to some address.
- Packet moves through the network until it reaches the destination or a node that can route to the destination.
- When a QUERY packet is received an UPDATE packet is then sent with the node’s height with respect to that destination.
 - Height is used to calculate the flow parameters.
 - Greater height indicates more resistance.
- Each node that receives an UPDATE packet then adjusts its own height for that destination to be larger than the value in the UPDATE packet.
- When a link is broken, the height is updated to a local maximum and an UPDATE packet is sent out.
Implementation

• TORA sensitive to intervals used for IMEP ‘object blocks’, no guidance given by specification with respect to these parameters
 – authors chose 150-250ms

• TORA nodes must have an accurate picture of the network
 – In order guaranteed delivery very important
 – If A can’t reach B then B must also think that it can’t reach A
TORA Constants

<table>
<thead>
<tr>
<th>BEACON period</th>
<th>1 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time after which a link is declared down if no BEACON or HELLO packets were exchanged</td>
<td>3 s</td>
</tr>
<tr>
<td>Time after which an object block is retransmitted if no acknowledgment is received</td>
<td>500 ms</td>
</tr>
<tr>
<td>Time after which an object block is not retransmitted and the link to the destination is declared down</td>
<td>1500 ms</td>
</tr>
<tr>
<td>Min HELLO and ACK aggregation delay</td>
<td>150 ms</td>
</tr>
<tr>
<td>Max HELLO and ACK aggregation delay</td>
<td>250 ms</td>
</tr>
</tbody>
</table>
DSR: Dynamic Source Routing

- Each packet contains the entire route needed to deliver the packet
- Each node does not maintain up to date routing information
 - No route advertisements that are used in other protocols
DSR Basic Usage

• When a packet needs to be sent a ROUTE REQUEST is broadcasted
 – Either the destination node or another node that knows how to get to the destination respond with a ROUTE REPLY
 – Nodes cache messages and use them to aggressively limit the spread of ROUTE REQUEST messages
 – This process is called Route Discovery

• When network topology changes, a ROUTE ERROR is used to indicate a broken link
 – Used to invalidate caches
 – This process is called Route Maintenance
DSR Implementation

• Only support bi-directional links
 — ROUTE REPLY packets traverse same links the ROUTE REQUESTS were sent over

• The first time a ROUTE REQUEST is made, send it to only the neighbor nodes
 — This reduces network usage and allows a sender to query the caches of it’s neighbors and optimize for the use case where the destination is in range
 — If nothing comes back, re-broadcast and allow propagation.

• All nodes scan for ROUTE ERRORs in promiscuous mode
 — Also if a node hears a packet and it can route to the destination, it sends a pre-emptive ROUTE REPLY

• Finally, routers will change the route if it knows the next hop is not available and it has another path in it’s cache
DRS Constants

<table>
<thead>
<tr>
<th>Time between retransmitted ROUTE REQUESTS (exponentially backed off)</th>
<th>500 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size of source route header carrying n addresses</td>
<td>$4n + 4$ bytes</td>
</tr>
<tr>
<td>Timeout for nonpropagating search</td>
<td>30 ms</td>
</tr>
<tr>
<td>Time to hold packets awaiting routes</td>
<td>30 s</td>
</tr>
<tr>
<td>Max rate for sending gratuitous REPLYS for a route</td>
<td>1/s</td>
</tr>
</tbody>
</table>
AODV: Ad Hoc On-Demand Distance Vector

- Combination of DSR and DSDV
 - Combines Route Discovery and Route Maintenance from DSR
 - With hop-by-hop routing, sequence numbers and beacons from DSDV

- Creates both forward and reverse routes from nodes when ROUTE REQUESTs are sent out

- Nodes only remember the next hop and not the entire route

- Periodic HELLO messages are broadcasted by nodes, if a node misses 3 HELLOs from a neighbor the node is marked down, and this state is broadcasted
AODV Implementation

• Authors created variation called AODV-LL which uses the link layer to detect broken links
 – Removes overhead from periodic HELLO messages, but broken links can only be detected on demand!

• AODV-LL performs slightly better than AODV

• Changed ROUTE REPLY timeout from 120 seconds to 6 seconds
 – Protocol reacts to dropped packets much faster with this lower timeout
AODV-LL Constants

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time for which a route is considered active</td>
<td>300 s</td>
</tr>
<tr>
<td>Lifetime on a ROUTE REPLY sent by destination node</td>
<td>600 s</td>
</tr>
<tr>
<td>Number of times a ROUTE REQUEST is retried</td>
<td>3</td>
</tr>
<tr>
<td>Time before a ROUTE REQUEST is retried</td>
<td>6 s</td>
</tr>
<tr>
<td>Time for which the broadcast id for a forwarded ROUTE REQUEST is kept</td>
<td>3 s</td>
</tr>
<tr>
<td>Time for which reverse route information for a ROUTE REPLY is kept</td>
<td>3 s</td>
</tr>
<tr>
<td>Time before broken link is deleted from routing table</td>
<td>3 s</td>
</tr>
<tr>
<td>MAC layer link breakage detection</td>
<td>yes</td>
</tr>
</tbody>
</table>
Outline

- Introduction
- NS enhancements
- Protocols:
 - DSDV
 - TORA
 - DRS
 - AODV
- **Evaluation**
- Conclusions
Experimental Setup

- Major component of the paper is to test how protocols react with moving nodes and physical layer / MAC simulations
- 50 nodes for a 900 second simulation
- Rectangular area to test longer routes
- Generate 210 different scenarios, run each algorithm against each scenario and compare results
Experimental Scenarios

- Each scenario was a pre-recorded sequence of events
- Nodes switched between being stationary and moving, stationary time was called *pause time*
 - 7 different pause times: 0, 30, 60, 120, 600, 900
 - 0 means constantly moving, 900 is no movement
- 10 randomly generated movement patterns for each pause time
- 20 meters/sec max speed, 10 meter/sec avg speed
Data Sources

- Varied the number of sources from 10, 20, 30
- Packet sizes of 64 bytes or 1024 bytes
- 4 packets per second
- All sources use UDP traffic transmitted at constant bit rates
- 3 sets of sources X 70 movement patterns = 210 scenarios
- No TCP sources
Measured Shorted Path Lengths

- Simulation software measures the number of hops for each path for each scenario.
- Changing speed has little effect on number of hops.
- 2.6 hops on average.

Figure 1 Distribution of the shortest path available to each application packet originated over all scenarios.
Measured Shorted Path Lengths

- Simulation software measures the number of hops for each path for each scenario.
- Changing speed has little effect on number of hops.
- 2.6 hops on average.

Number of hops for 20 m/s vs 1 m/s is about the same.

Figure 1: Distribution of the shortest path available to each application packet originated over all scenarios.
Link Connectivity Changes

• Number of times that a node goes in or out of range of another node

Table V Average number of link connectivity changes during each 900-second simulation as a function of pause time.

<table>
<thead>
<tr>
<th>Pause Time</th>
<th># of Connectivity Changes @ 1 m/s</th>
<th># of Connectivity Changes @ 20 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>898</td>
<td>11857</td>
</tr>
<tr>
<td>30</td>
<td>908</td>
<td>8984</td>
</tr>
<tr>
<td>60</td>
<td>792</td>
<td>7738</td>
</tr>
<tr>
<td>120</td>
<td>732</td>
<td>5390</td>
</tr>
<tr>
<td>300</td>
<td>512</td>
<td>2428</td>
</tr>
<tr>
<td>600</td>
<td>245</td>
<td>1270</td>
</tr>
<tr>
<td>900</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Routing Overhead

• “Total number of packets transmitted during the simulation. For packets sent over multiple hops, each transmission of the packet (each hop) counts as one transmission”
Routing Overhead

Figure 3 Comparison between the four protocols of the number of routing packets sent (routing overhead) as a function of pause time. Pause time 0 represents constant mobility.
Routing Overhead

Figure 3 Comparison between the four protocols of the number of routing packets sent (routing overhead) as a function of pause time. Pause time 0 represents constant mobility.

DSDV-SQ is constant
DSR has lowest overhead
Packet Delivery Ratio

• ratio between number of packets originated by the application layer CBR sources and the number of packets received at the destination. Higher is better.
Packet Delivery Ratio

Figure 2 Comparison between the four protocols of the fraction of application data packets successfully delivered (packet delivery ratio) as a function of pause time. Pause time 0 represents constant mobility.
Packet Delivery Ratio – Varying the Number of Sources

• Figure 4 shows several charts, each chart has a protocol responds to 10, 20 and 30 CBR sources based on pause time.

• Higher values are better
Packet Delivery Ratio – DSDV-SQ

(a) DSDV-SQ
Packet Delivery Ratio - DSR
Packet Deliver Ratio - TORA
Packet Delivery Ratio – AODV-LL
Packet Delivery Ratio

• DSR and AODV-LL have good performance at most pause times.
 — Number of sources does not affect performance
• DSDV-SQ and TORA perform poorly at high levels of mobility
• TORA only protocol that’s significantly affected by a larger number of sources
Routing Overhead

- Number of packets that each protocol is generating
- Charts in Figure 3 show a single protocol each and vary the number of sources
- Lower values are better
Routing Overhead – DSDV-SQ

(a) DSDV-SQ
Routing Overhead - DSR
Routing Overhead - TORA

![Graph showing routing overhead over pause time for 10, 20, and 30 sources in TORA.]
Routing Overhead - TORA

Millions!
Routing Overhead – AODV-LL

(d) AODV-LL

Pause time (secs)

Routing overhead (packets)

- 10 sources
- 20 sources
- 30 sources

Worcester Polytechnic Institute
Routing Overhead

- DSR and AODV-LL show similar curves, but AODV-LL generates 4 times as many packets!
 - Remember AODV-LL is based on DSR, but also has routing state at the nodes

- DSDV-SQ has a constant amount of overhead
 - Periodic beacons at fixed time intervals

- TORA generates many packets
 - Authors state congestion collapse from too many MAC layer collisions, which caused it to think the links were down and this generated UPDATE packets
 - Each UPDATE packet requires reliable delivery, which wasn’t possible because of MAC collisions. This triggered retransmits.
 - Positive feedback loop eventually consumed the network
Path Optimality

• “The difference between the number of hops a packet took to reach its destination and the length of the shortest path that physically existed through the network when the packet was originated”

• How good are these routes?

• Only a bar at 0 is perfect, anything above 0 means extra hops
Path Optimality

Figure 6 Difference between the number of hops each packet took to reach its destination and the optimal number of hops required. Data is for 20 sources.

Difference from shortest, anything not 0 is bad
Path Optimality

Figure 6 Difference between the number of hops each packet took to reach its destination and the optimal number of hops required. Data is for 20 sources.

'Tail' from TORA and AODV-LL
Path Optimality

- DVDS-SQ and DSR do well
- TORA and AODV-LL generate some non-optimal routes
- Authors note that TORA and AODV-LL perform better when mobility is low
Movement Speed

- Re-run some experiments with 1 m/s speed instead of 20 m/s
Figure 7 Comparison of the fraction of application data packets successfully delivered as a function of pause time. Speed is 1 m/s.
Figure 8 Comparison of the number of routing packets sent as a function of pause time. Speed is 1 m/s.
Movement Speed

- DSR’s caching is even more effective at low speeds!
 - Significantly better than AODV-LL
- DSDV-SQ still has constant overhead
Total Packet Overhead

- Includes data used to control routing in bytes
- DSR no longer as far out in front because entire route is contained in each packet
DSDV Without SQ Addition

• Comparison of traditional DSDV without the additional update packets being sent whenever a sequence number changes

• In general routing overhead is lower, but reliability suffers except at very high mobility
DSDV Without SQ Addition

Figure 10 Fraction of originated data packets successfully delivered by DSDV-SQ and DSDV.
DSDV Without SQ Addition

Figure 11 Routing overhead as a function of pause time for DSDV-SQ and DSDV.
Outline

• Introduction
• NS enhancements
• Protocols:
 • DSDV
 • TORA
 • DRS
 • AODV
• Evaluation
• Conclusions
Conclusions

• Large differences in the approaches of the protocols used and the performance of those protocols
• DSR appears to do better in most tests
• DSR is the only algorithm that does not require state at the nodes!
 – In high mobility situations routing state becomes stale and other protocols
 – DRS avoids this by rebuilding on most requests
 – DRS has promiscuous caching which helps reduce the number of packets sent
Conclusions (cont)

- Several good enhancements to NS
 - 802.11 MAC Layer
 - Physical Layer Simulator
 - Node mobility

- Some protocols (TORA) did not handle MAC collisions or lost packets well
 - Authors note previous TORA simulations were in ‘ideal’ environments

- Overall interesting comparison between protocols