Wireless Networks
Wireless Networks Outline

- Terminology, WLAN types, IEEE Standards
- RFID (Radio Frequency IDentification)
- IEEE 802.11a/b/g/n
- 802.11 AP Management Functions
 - Association, scanning
- 802.11 MAC Sub-Layer
 - DCF
 - CSMA/CA
 - MACAW
Wireless Networks Outline

- **802.11 MAC Sub-Layer (cont.)**
 - RTS/CTS
 - PCF
 - Beacons, DIFS, SIFS
 - Frame Details
 - PLCP preamble and header
 - Address fields
 - Dynamic Rate Adaptation
 - Frame Fragmentation
Broad View of Wireless Technologies

- Cellular (2G to 4G)
 - WiMax {long range wireless}
- WiFi
- WSN’s
- Near Field Communications

The focus here is on WiFi technologies and MAC layer issues!!
RFID in Brief

- RFID uses **radio waves** to transfer data from an electronic tag (RFID tag or label), attached to an object, through a reader to identify and track the object.

- The tag's information is stored electronically.

- Some RFID tags can be read from several meters away and beyond the line of sight of the reader.
RFID in Brief

- An RFID reader transmits an encoded radio signal to interrogate the tag.
- With a small RF transmitter and receiver, the RFID tag receives the message and responds with its identification information.
- Many RFID tags have no battery. Instead, the tag uses the radio energy transmitted by the reader as its energy source.
LAN, WLAN and WSN Terminology

<table>
<thead>
<tr>
<th>Standard</th>
<th>Technology</th>
<th>Medium Access Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.3</td>
<td>Ethernet</td>
<td>CSMA/CD</td>
</tr>
<tr>
<td>802.11a/b/g/n</td>
<td>WiFi</td>
<td>CSMA/CA</td>
</tr>
<tr>
<td>802.15.4</td>
<td>ZigBee</td>
<td>802.11-based, lower data rates, lower power</td>
</tr>
<tr>
<td>Bluetooth</td>
<td>TDMA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bluetooth:

- Wireless **Personal Area Networks (PANs)** that provide secure, globally unlicensed short-range radio communication.
- Clusters with max of 8: cluster head + 7 nodes

WBAN (Wireless Body Area Networks):

- Generally 802.15.4 or TDMA medical PANs
Elements of a Wireless Network

- **Network Infrastructure**
- **Wireless Hosts**
 - Laptop, PDA, smart phone
 - Run applications
 - May be stationary (non-mobile) or mobile
 - Wireless does not always mean mobility
Elements of a Wireless Network

- Base station (BS)
 - Typically connected to the wired network
 - Relay - responsible for sending packets between the wired network and wireless host(s) in its "area"
 - E.g., cell towers, 802.11 access points
Wireless Local Area Networks (WLANs)

- The proliferation of laptop computers and other mobile devices (PDAs and cell phones) created an obvious application level demand for wireless local area networking.
- Companies jumped in, quickly developing incompatible wireless products in the 1990's.
- Industry decided to entrust standardization to IEEE committee that dealt with wired LANs
 - namely, the IEEE 802 committee!!
IEEE 802 Standards Working Groups

<table>
<thead>
<tr>
<th>Number</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.1</td>
<td>Overview and architecture of LANs</td>
</tr>
<tr>
<td>802.2</td>
<td>Logical link control</td>
</tr>
<tr>
<td>802.3 *</td>
<td>Ethernet</td>
</tr>
<tr>
<td>802.4 ▼</td>
<td>Token bus (was briefly used in manufacturing plants)</td>
</tr>
<tr>
<td>802.5</td>
<td>Token ring (IBM’s entry into the LAN world)</td>
</tr>
<tr>
<td>802.6 ▼</td>
<td>Dual queue dual bus (early metropolitan area network)</td>
</tr>
<tr>
<td>802.7 ▼</td>
<td>Technical advisory group on broadband technologies</td>
</tr>
<tr>
<td>802.8 †</td>
<td>Technical advisory group on fiber optic technologies</td>
</tr>
<tr>
<td>802.9 ▼</td>
<td>Isochronous LANs (for real-time applications)</td>
</tr>
<tr>
<td>802.10 ▼</td>
<td>Virtual LANs and security</td>
</tr>
<tr>
<td>802.11 *</td>
<td>Wireless LANs</td>
</tr>
<tr>
<td>802.12 ▼</td>
<td>Demand priority (Hewlett-Packard’s AnyLAN)</td>
</tr>
<tr>
<td>802.13</td>
<td>Unlucky number. Nobody wanted it</td>
</tr>
<tr>
<td>802.14 ▼</td>
<td>Cable modems (defunct: an industry consortium got there first)</td>
</tr>
<tr>
<td>802.15 *</td>
<td>Personal area networks (Bluetooth)</td>
</tr>
<tr>
<td>802.16 *</td>
<td>Broadband wireless</td>
</tr>
<tr>
<td>802.17</td>
<td>Resilient packet ring</td>
</tr>
</tbody>
</table>

Figure 1-38. The important ones are marked with *. The ones marked with ▼ are hibernating. The one marked with † gave up.
The following IEEE 802.11 standards exist or are in development to support the creation of technologies for wireless local area networking:

- **802.11a** - 54 Mbps standard, 5 GHz signaling (ratified 1999)
- **802.11b** - 11 Mbps standard, 2.4 GHz signaling (1999)
- **802.11c** - operation of bridge connections (moved to 802.1D)
- **802.11d** - worldwide compliance with regulations for use of wireless signal spectrum (2001)
- **802.11e** - Quality of Service (QoS) support (ratified in 2005)
- **802.11f** - Inter-Access Point Protocol recommendation for communication between access points to support roaming clients (2003)
- **802.11g** - 54 Mbps standard, 2.4 GHz signaling (2003)
- **802.11h** - enhanced version of 802.11a to support European regulatory requirements (2003)
- **802.11i** - security improvements for the 802.11 family (2004)
- **802.11j** - enhancements to 5 GHz signaling to support Japan regulatory requirements (2004)
- **802.11k** - WLAN system management (in progress)
IEEE 802.11

The following IEEE 802.11 standards exist or are in development to support the creation of technologies for wireless local area networking:

- **802.11m** - maintenance of 802.11 family documentation
- **802.11n** - OFDM version at 248 Mbps; MIMO version up to 600 Mbps
 formally voted into the standard in September 2009!
- **802.11p** - Wireless Access for the Vehicular Environment
- **802.11r** - fast roaming support via Basic Service Set transitions
- **802.11s** - ESS mesh networking for access points
- **802.11t** - Wireless Performance Prediction - recommendation for testing standards and metrics
- **802.11u** - internetworking with 3G / cellular and other forms of external networks
- **802.11v** - wireless network management / device configuration
- **802.11w** - Protected Management Frames security enhancement
- **802.11x** - skipped (generic name for the 802.11 family)
- **802.11y** - Contention Based Protocol for interference avoidance
Wireless Link Standards

Data rate (Mbps)
- 200
- 54
- 5-11
- 4
- 1
- .384
- .056

Indoor
10-30m

Outdoor
50-200m

Mid-range outdoor
200m – 4 Km

Long-range outdoor
5Km – 20 Km

Wireless Standards:
- 2G: IS-95, CDMA, GSM
- 2.5G: UMTS/WCDMA, CDMA2000
- 3G: UMTS/WCDMA-HSPDA, CDMA2000-1xEVDO
- 4G: LTWE WIMAX
- 802.11a, 802.11b, 802.11a,g point-to-point
- 802.15

Advanced Computer Networks
Wireless Networks
Wireless Link Characteristics

Differences from wired link...

- **Decreased signal strength**: radio signal attenuates as it propagates through matter (path loss).

- **Interference from other sources**: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well.

- **Multipath propagation**: radio signal reflects off objects ground, arriving at destination at slightly different times. \{known as multipath fading\}

... makes communication across (even a point to point) wireless link much more difficult.
Classification of Wireless Networks

- **Base Station**: all communication via an *Access Point* (AP) {hub topology}.

 - Other nodes can be fixed or mobile.

- **Infrastructure Wireless**: AP is connected to the wired Internet.
Classification of Wireless Networks

- **Ad Hoc Wireless**: wireless nodes communicate directly with one another.
 - **Mesh Networks**: have a relatively stable topology and usually involve multi-hop routing.

- **MANETs (Mobile Ad Hoc Networks)**: ad hoc nodes are mobile.
 - **VANETs (Vehicular Ad-Hoc Networks)**
 - a technology that uses moving cars as nodes in a network to create a mobile network.
Figure 1-36. (a) Wireless networking with a base station. (b) Ad hoc networking.
Infrastructure Wireless LAN

(a) Infrastructure Wireless LAN
Wireless Mesh Network

IEEE 802.11a/g or IEEE 802.16 Mesh Backbone

IEEE 802.11b Local Footprint

Mesh Node Client
Wireless Network Taxonomy

<table>
<thead>
<tr>
<th>Infrastructure (e.g., APs)</th>
<th>Single Hop</th>
<th>Multiple Hops</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Infrastructure</td>
<td>host connects to base station (WiFi, WiMAX, cellular) which connects to larger Internet</td>
<td>host may have to relay through several wireless nodes to connect to larger Internet: Mesh Net</td>
</tr>
<tr>
<td></td>
<td>no base station, no connection to larger Internet (Bluetooth, ad hoc nets)</td>
<td>no base station, no connection to larger Internet. May have to relay to reach other wireless nodes. MANET, VANET</td>
</tr>
</tbody>
</table>

K & R
The 802.11 Protocol Stack

Figure 4-25. Part of the 802.11 protocol stack.

Note - ordinary 802.11 products are no longer being manufactured.

Tanenbaum
Media Access Control

Logical Link Control

Contention-free service

MAC Layer

Point Coordination Function (PCF)

Contention service

Distributed Coordination Function (DCF)

<table>
<thead>
<tr>
<th>2.4-Ghz frequency-hopping spread spectrum</th>
<th>2.4-Ghz direct-sequence spread spectrum</th>
<th>Infrared 1 Mbps 2 Mbps</th>
<th>5-Ghz orthogonal FDM 6, 9, 12, 18, 24, 36, 48, 54 Mbps</th>
<th>2.4-Ghz direct sequence spread spectrum 5.5 Mbps 11 Mbps</th>
<th>2.4-Ghz DS-SS 6, 9, 12, 18, 24, 36, 48, 54 Mbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Mbps 2 Mbps</td>
</tr>
</tbody>
</table>

IEEE 802.11 IEEE 802.11a IEEE 802.11b IEEE 802.11g

WPI Advanced Computer Networks Wireless Networks
IEEE 802.11 Physical Layer

- Physical layer conforms to OSI (seven options)
 - 1997: 802.11 infrared, FHSS, DSSS {FHSS and DSSS run in the 2.4GHz band}
 - 1999: 802.11a OFDM and 802.11b HR-DSSS
 - 2003: 802.11g OFDM
 - 2009: 802.11n OFDM and MIMO

802.11 Infrared
- Two capacities: 1 Mbps or 2 Mbps.
- Range is 10 to 20 meters and cannot penetrate walls.
- Does not work outdoors.

802.11 FHSS (Frequency Hopping Spread Spectrum)
- The main issue is multipath fading.
- [P&D] The idea behind spread spectrum is to spread the signal over a wider frequency to minimize the interference from other devices.
- 79 non-overlapping channels, each 1 Mhz wide at low end of 2.4 GHz ISM band.
- The same pseudo-random number generator used by all stations to start the hopping process.
- Dwell time: min. time on channel before hopping (400msec).
IEEE 802.11 Physical Layer

- **802.11 DSSS (Direct Sequence Spread Spectrum)**
 - The main idea is to represent each bit in the frame by multiple bits in the transmitted signal (i.e., it sends the XOR of that bit and \(n \) random bits).
 - Spreads signal over entire spectrum using pseudo-random sequence (similar to CDMA see Kurose & Ross Chap 6).
 - Each bit transmitted using an **11-bit** chipping Barker sequence, PSK at 1Mbaud.
 - This yields a capacity of 1 or 2 Mbps.

![Diagram showing example 4-bit chipping sequence]

Figure 2.37 Example 4-bit chipping sequence
Code Division Multiple Access (CDMA)

- Used in several wireless broadcast channels (cellular and satellite) standards.
- A unique "code" is assigned to each user; i.e., code set partitioning.
- All users share the same frequency, but each user has its own chipping sequence (i.e., unique code) to encode data.
- \[\text{encoded signal} = (\text{original data}) \times (\text{chipping sequence}) \]
- \[\text{decoding: inner-product of encoded signal and chipping sequence} \]
- Allows multiple users to "coexist" and transmit simultaneously with minimal interference (if codes are "orthogonal").
CDMA Encode/Decode

sender

- **data bits**
 - Slot 1: \(d_1 = -1 \)
 - Slot 0: \(d_0 = 1 \)

- **code**
 - Slot 1: [1111]
 - Slot 0: [1111]

receiver

- **code**
 - Slot 1: [1111]
 - Slot 0: [1111]

channel output

\[Z_{i,m} = d_i \cdot c_m \]

- Slot 1: [11111]
- Slot 0: [11111]

received input

\[D_i = \sum_{m=1}^{M} Z_{i,m} \cdot c_m \]

- Slot 1: [11111]
- Slot 0: [11111]

K & R

Advanced Computer Networks Wireless Networks
CDMA: Two-Sender Interference

Sender 1
- Data bits: 1 1 1 1 1 1 1
- Code: -1 -1 -1 -1 -1 -1 -1
- Data bits: 1 1 1 1 1 1 1
- Code: -1 -1 -1 -1 -1 -1 -1

Sender 2
- Data bits: 1 1 1 1 1 1 1
- Code: -1 -1 -1 -1 -1 -1 -1

Channel
- $Z_{i,m}^1 = d_i^1 c_m^1$
- $Z_{i,m}^2 = d_i^2 c_m^2$

Receiver
- $d_i^1 = \sum_{m=1}^{M} Z_{i,m}^* c_m^1$
- $d_i^2 = \sum_{m=1}^{M} Z_{i,m}^* c_m^2$

K & R
IEEE 802.11 Physical Layer

- **802.11a OFDM (Orthogonal Frequency Divisional Multiplexing)**
 - Compatible with European HiperLan2.
 - **54 Mbps** in wider 5.5 GHz band \(\Rightarrow\) transmission range is limited.
 - Uses 52 FDM sub-channels (48 for data; 4 for synchronization).
 - Encoding is complex (PSM up to 18 Mbps and QAM above this capacity).
 - E.g., at 54 Mbps 216 data bits encoded into into 288-bit symbols.
 - More difficulty penetrating walls.

net achievable throughput in the mid-20 Mbps!!
IEEE 802.11 Physical Layer

- **802.11b HR-DSSS (High Rate Direct Sequence Spread Spectrum)**
 - 11a and 11b shows a split in the standards committee.
 - 11b approved and hit the market before 11a.
 - Up to **11 Mbps** in 2.4 GHz band using 11 million chips/sec.
 - Note in this bandwidth, this protocol has to deal with interference from microwave ovens, cordless phones and garage door openers.
 - Range is 7 times greater than 11a.
 - 11b and 11a are incompatible!!
 net achievable throughput in 6 Mbps range!!
IEEE 802.11 Physical Layer

- **802.11g OFDM (Orthogonal Frequency Division Multiplexing)**
 - Tries to combine the best of both 802.11a and 802.11b.
 - Supports bandwidths up to **54 Mbps**.
 - Uses 2.4 GHz frequency for greater range.
 - Is backward compatible with 802.11b.

- **Note** – common for products to support 802.11a/b/g in a single NIC.
Data Rate vs Distance (m)

<table>
<thead>
<tr>
<th>Data Rate (Mbps)</th>
<th>802.11b</th>
<th>802.11a</th>
<th>802.11g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>90+</td>
<td>—</td>
<td>90+</td>
</tr>
<tr>
<td>2</td>
<td>75</td>
<td>—</td>
<td>75</td>
</tr>
<tr>
<td>5.5(b)/6(a/g)</td>
<td>60</td>
<td>60+</td>
<td>65</td>
</tr>
<tr>
<td>9</td>
<td>—</td>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>11(b)/12(a/g)</td>
<td>50</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>18</td>
<td>—</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>24</td>
<td>—</td>
<td>30</td>
<td>45</td>
</tr>
<tr>
<td>36</td>
<td>—</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>48</td>
<td>—</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>54</td>
<td>—</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>
IEEE 802.11 Physical Layer

- **802.11n OFDM** version at 248 Mbps

- **Physical Layer Changes:**
 - Multiple-Input-Multiple-Output (MIMO)
 - maximum of 600 Mbps with the use of four spatial streams at a channel width of 40 MHz.
 - Spatial Division Multiplexing (SDM)

- **MAC Layer Changes:**
 - Frame aggregation into single block for transmission.
Larger than Ethernet frame

<table>
<thead>
<tr>
<th>Field</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC</td>
<td>2</td>
</tr>
<tr>
<td>D/I</td>
<td>2</td>
</tr>
<tr>
<td>Address</td>
<td>6</td>
</tr>
<tr>
<td>Address</td>
<td>6</td>
</tr>
<tr>
<td>Address</td>
<td>6</td>
</tr>
<tr>
<td>SC</td>
<td>2</td>
</tr>
<tr>
<td>Address</td>
<td>6</td>
</tr>
<tr>
<td>Frame body</td>
<td>0 to 2312</td>
</tr>
<tr>
<td>CRC</td>
<td>4</td>
</tr>
</tbody>
</table>

FC = Frame control
D/I = Duration/Connection ID
SC = Sequence control
802.11 LAN Architecture

- Wireless host communicates with base station
 - Base station = access point (AP)

- Basic Service Set (BSS) (aka “cell”) in infrastructure mode contains:
 - Wireless hosts
 - Access point (AP): base station
 - Ad hoc mode: hosts only

BSS 1

BSS 2

Internet

AP

Hub, switch or router
802.11 Management Functions

- Channel Selection
- Scanning
- Station (user) Authentication and Association
- Beacon Management
- Power Management Mode
802.11b: 2.4GHz-2.485GHz spectrum divided into **11 channels** (overlapping frequencies).

- AP admin chooses frequency for AP.
- Interference is possible: The channel can be same as that chosen by a neighbor AP!

Wireless nodes must **associate** with an AP.

- Node scans channels, listening for beacon frames containing AP’s name (SSID) and MAC address.
- Node makes choice for AP association {default is best RSSI}.
- may perform authentication [K&R Chapter 8].
- will typically run DHCP to get IP address in AP's subnet.
802.11 Overlapping Channels

- 802.11b/g transmission occurs on one of 11 overlapping channels in the 2.4GHz North American ISM band.
802.11: Passive/Active Scanning

Passive Scanning
(1) beacon frames sent from APs.
(2) association **Request** frame sent: H1 to selected AP.
(3) association **Response** frame sent: AP to H1.

Active Scanning
(1) **Probe Request** frame broadcast from H1.
(2) **Probe Response** frame sent from APs.
(3) Association **Request** frame sent: H1 to selected AP.
(4) Association **Response** frame sent: AP to H1.
In 802.11 wireless LANs, “seizing the channel” does not exist as in 802.3 wired Ethernet.

Two additional problems:
- Hidden Terminal Problem
- Exposed Station Problem

To deal with these two problems 802.11 supports two modes of operation:
- DCF (Distributed Coordination Function)
- PCF (Point Coordination Function).

All implementations must support DCF, but PCF is optional.
Figure 4-26. (a) The hidden terminal problem. (b) The exposed station problem.
The Hidden Terminal Problem

- Wireless stations have transmission ranges and not all stations are within radio range of each other.
- Simple CSMA will not work!
- C transmits to B.
- If A "senses" the channel, it will not hear C's transmission and falsely conclude that A can begin a transmission to B.
The Exposed Station Problem

- This is the inverse problem.
- B wants to send to C and listens to the channel.
- When B hears A’s transmission, B falsely assumes that it cannot send to C.
Distribute Coordination Function (DCF)

CSMA/CA (CSMA with Collision Avoidance) uses one of two modes of operation:

- virtual carrier sensing
- physical carrier sensing

The two methods are supported by:

1. **MACAW** *(Multiple Access with Collision Avoidance for Wireless)* with virtual carrier sensing.
2. 1-persistent physical carrier sensing.
MACA protocol reduces hidden and exposed terminal problems:

- Sender broadcasts a Request-to-Send (RTS) and the intended receiver sends a Clear-to-Send (CTS).
- Upon receipt of a CTS, the sender begins transmission of the frame.
- RTS, CTS help determine who else is in range or busy (Collision Avoidance).

- Can a collision still occur?
Wireless LAN Protocols

- **MACAW** added ACKs, Carrier Sense, and BEB done per stream and **not** per station.

![Diagram](image)

Figure 4-12. (a) A sending an RTS to B. (b) B responding with a CTS to A.

Tanenbaum
Virtual Channel Sensing in CSMA/CA

Figure 4-27. The use of virtual channel sensing using CSMA/CA.

- C (in range of A) receives the RTS and based on information in RTS creates a virtual channel busy NAV (Network Allocation Vector).
- D (in range of B) receives the CTS and creates a shorter NAV.
Collision Avoidance: RTS-CTS Exchange

K & R

A

AP

B

RTS(A)

RTS(B)

collision

reservation

CTS(A)

DATA (A)

ACK(A)

NAV defer
What is the advantage of RTS/CTS?

RTS is 20 bytes, and CTS is 14 bytes. MPDU can be 2300 bytes.

- "virtual" implies source station sets the **duration field** in data frame or in RTS and CTS frames.
- Stations then adjust their NAV accordingly!
1-Persistent Physical Carrier Sensing

- The station \textit{senses} the channel when it wants to send.

- If idle, the station transmits.
 - A wireless station does not sense the channel while transmitting.

- If the channel is busy, the station defers until idle and then transmits (1-persistent).

- Upon collision (no ACK received), wait a \textit{random time} using binary exponential backoff (BEB).
IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

1. If sense channel idle for **DIFS** then
 - Transmit entire frame (no **CD**).

2. If sense channel busy then
 - Choose a random backoff time.
 - When channel is busy, counter is frozen.
 - Timer counts down while channel idle and transmit when timer expires.
 - If no **ACK**, increase random backoff interval, repeat 2.

802.11 receiver

- If frame received **OK**
 - Return **ACK** after **SIFS** (**ACK** needed due to hidden terminal problem.)
Point Coordinated Function (PCF)

- PCF uses a base station (BS) to poll other stations to see if they have frames to send.
- No collisions occur.
- Base station sends **beacon frame** periodically.
- Base station can tell another station to sleep to save on batteries and base station holds frames for sleeping station.
- Subsequently, BS awakens sleeping node via **beacon frame**.
DCF and PCF Co-Existence

Distributed and centralized control can co-exist using InterFrame Spacing.

- **SIFS (Short IFS)**:: the time waited between packets in an ongoing dialog (RTS, CTS, data, ACK, next frame)
- **PIFS (PCF IFS)**:: when no SIFS response, base station can issue beacon or poll.
- **DIFS (DCF IFS)**:: when no PIFS, any station can attempt to acquire the channel.
- **EIFS (Extended IFS)**:: lowest priority interval used to report bad or unknown frame.
Inter-frame Spacing in 802.11

Figure 4-29. Interframe Spacing in 802.11.
Basic CSMA/CA

Fig. 1 CSMA/CA protocol of IEEE 802.11 MAC DCF. [N. Kim]
802.11b Physical Layer

'Adjust transmission rate on the fly'

Fig. 2 IEEE 802.11b HR/DSSS PHY framing structure.
802.11 Frames - Addresses

<table>
<thead>
<tr>
<th>frame control</th>
<th>duration</th>
<th>address 1</th>
<th>address 2</th>
<th>address 3</th>
<th>seq control</th>
<th>address 4</th>
<th>payload</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>0 - 2312</td>
<td>4</td>
</tr>
</tbody>
</table>

Address 1: MAC address of wireless host or AP to receive this frame
Address 2: MAC address of wireless host or AP transmitting this frame
Address 3: MAC address of router interface to which AP is attached
Address 4: used only in ad hoc mode
802.11 Frame - Addresses

AP MAC addr	H1 MAC addr	R1 MAC addr
address 1 | address 2 | address 3

802.3 frame

802.11 frame

Internet

router

H1

AP

R1

address 1
address 2
address 3

K & R
802.11 Frame Addresses (more)

duration of reserved transmission time (RTS/CTS)

<table>
<thead>
<tr>
<th>Protocol version</th>
<th>Type</th>
<th>Subtype</th>
<th>To AP</th>
<th>From AP</th>
<th>More frag</th>
<th>Retry</th>
<th>Power mgt</th>
<th>More data</th>
<th>WEP</th>
<th>Rsvd</th>
</tr>
</thead>
</table>

frame seq # (for RDT)

frame type

(RTS, CTS, ACK, data)
802.11: Mobility within Same Subnet

- H1 remains in same IP subnet: IP address can remain same.

- Switch: Which AP is associated with H1?
 - Uses self-learning (Ch. 5)
 - Switch will see frame from H1 and “remember” which switch port can be used to reach H1.
Wireless Network Details

- All APs (or base stations) will periodically send a **beacon frame** (10 to 100 times a second).

- **Beacon frames** are also used by DCF to synchronize and handle nodes that want to **sleep**.
 - Node sets Power management bit to indicate going to sleep and timer wakes node up for next beacon.
 - The AP will buffer frames intended for a sleeping wireless client and wakeup for reception with beacon frame.
Wireless Network Details

- AP downstream/upstream traffic performance is asymmetric.

- AP has buffers for downstream/upstream queueing.

- Wireless communication quality between two nodes can be asymmetric due to multipath fading. {Characterization paper shows this!}
Dynamic Rate Adaptation

- 802.11b, g and n use dynamic rate adaptation based on frame loss (algorithms internal to wireless card at the AP).
 - e.g. for 802.11b choices are: 11, 5.5, 2 and 1 Mbps
- Standard 802.11 retries:
 - 7 retries for RTS and CTS
 - 4 retries for Data and ACK frames
- RTS/CTS may be turned off by default. [Research has shown that RTS/CTS degrades performance when hidden terminal is not an issue].
Node Contention

Fig. 7 Throughput with node contentions.

[N. Kim]
Wireless Link Characteristics

SNR: signal-to-noise ratio

- larger SNR – easier to extract signal from noise.

- SNR versus BER tradeoffs

 given a physical layer: increase power -> increase SNR -> decrease BER.
 given a SNR: choose physical layer that meets BER requirement, aiming for highest throughput.

- SNR may change with mobility: dynamically adapt physical layer (modulation technique, rate).
Dynamic Rate Adaptation

Mobile Node Example:

1. SNR decreases, BER increases as node moves away from base station.
2. When BER becomes too high, switch to lower transmission rate but with lower BER.

Idea:: lower maximum data rate for higher throughput.

Note - Performance Anomaly paper shows there are other issues when wireless flows contend at AP!
Fig. 6. Throughput comparison of our proposed rate adaptation scheme (CARA-1) against RTS/CTS, ARF, and single-rate schemes for one-to-one topology networks with various distance (r)
ARF - Original Rate Adaptation

Adapts upward after 10 successes

(a) ARF

[CARA paper]
- High wireless error rates \Rightarrow long packets have less probability of being successfully transmitted.
- Solution: MAC layer fragmentation with stop-and-wait protocol on the fragments.

Tanenbaum

Advanced Computer Networks Wireless Networks
Wireless Networks Summary

- Terminology, WLAN types, IEEE Standards
 - Infrastructure, ad hoc, MANET, Base Station, Access Point, single and multi-hop
- IEEE 802.11a/b/g/n
 - Differences in data rate and transmission technologies
 - FHSS, DSSS, CDMA, OFDM, HR-DSSS, MIMO
802.11 AP Management Functions
- Association with AP, active and passive scanning, beacon frames

802.11 MAC Sub-Layer
- Overlapping channels
- Hidden terminal problem, exposed station problem
- DCF
 - CSMA/CA
 - MACAW
Wireless Networks Summary

- 802.11 MAC Sub-Layer (cont.)
 - RTS/CTS
 - PCF
 - Beacons, DIFS, SIFS, sleeping nodes
 - Frame Details
 - PLCP preamble and header
 - 3 or 4 Address fields used in 802.11
 - SNR vs BER issues
 - Dynamic Rate Adaptation
 - Frame Fragmentation