The Mote Revolution:
Low Power Wireless Sensor Network Devices

University of California, Berkeley

Joseph Polastre
Robert Szewczyk
Cory Sharp
David Culler

Hot Chips 2004 : Aug 22-24, 2004
Outline

- Trends and Applications
- Mote History and Evolution
- Design Principles
- Telos
Faster, Smaller, Numerous

- Moore’s Law
 - “Stuff” (transistors, etc) doubling every 1-2 years

- Bell’s Law
 - New computing class every 10 years

Streaming Data to/from the Physical World

Hot Chips 2004 : Aug 22-24, 2004
Applications

- Environmental Monitoring
 - Habitat Monitoring
 - Integrated Biology
 - Structural Monitoring

- Interactive and Control
 - Pursuer-Evader
 - Intrusion Detection
 - Automation

Density & Scale
Sample Rate & Precision
Disconnection & Lifetime
Mobility
Low Latency

Hot Chips 2004 : Aug 22-24, 2004
Open Experimental Platform

TinyOS

Services

Networking

WeC 99
“Smart Rock”

Rene 11/00

Dot 9/01

Mica 1/02

Small microcontroller
- 8 kB code
- 512 B data

Simple, low-power radio
- 10 kbps ASK

EEPROM (32 KB)

Simple sensors

Designed for experimentation

-sensor boards

-power boards

Demonstrate scale

NEST open exp. Platform
- 128 kB code, 4 kB data
- 40kbps OOK/ASK radio
- 512 kB Flash

Mica2 12/02
- 38.4kbps radio
- FSK

Spec 6/03
- “Mote on a chip”

Telos 4/04
- Robust
- Low Power
- 250kbps
- Easy to use

Commercial Off The Shelf Components (COTS)
Hot Chips 2004 : Aug 22-24, 2004
Mote Evolution

Microcontroller

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcontroller</td>
<td>AT90LS8535</td>
<td>ATmega163</td>
<td>ATmega128</td>
<td>TI MSP430</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program memory (KB)</td>
<td>8</td>
<td>16</td>
<td>128</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAM (KB)</td>
<td>0.5</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Power (mW)</td>
<td>15</td>
<td>15</td>
<td>8</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep Power (μW)</td>
<td>45</td>
<td>45</td>
<td>75</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wakeup Time (μs)</td>
<td>1000</td>
<td>36</td>
<td>180</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nonvolatile storage

<table>
<thead>
<tr>
<th>Chip</th>
<th>24LC256</th>
<th>AT45DB041B</th>
<th>ST M24M01S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection type</td>
<td>I²C</td>
<td>SPI</td>
<td>I²C</td>
</tr>
<tr>
<td>Size (KB)</td>
<td>32</td>
<td>512</td>
<td>128</td>
</tr>
</tbody>
</table>

Communication

<table>
<thead>
<tr>
<th>Radio</th>
<th>TR1000</th>
<th>TR1000</th>
<th>CC1000</th>
<th>CC2420</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data rate (kbps)</td>
<td>10</td>
<td>40</td>
<td>38.4</td>
<td>250</td>
</tr>
<tr>
<td>Modulation type</td>
<td>OOK</td>
<td>ASK</td>
<td>FSK</td>
<td>O-QPSK</td>
</tr>
<tr>
<td>Receive Power (mW)</td>
<td>9</td>
<td>12</td>
<td>29</td>
<td>38</td>
</tr>
<tr>
<td>Transmit Power at 0dBm (mW)</td>
<td>36</td>
<td>36</td>
<td>42</td>
<td>35</td>
</tr>
</tbody>
</table>

Power Consumption

<table>
<thead>
<tr>
<th>Minimum Operation (V)</th>
<th>2.7</th>
<th>2.7</th>
<th>2.7</th>
<th>1.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Active Power (mW)</td>
<td>24</td>
<td>27</td>
<td>44</td>
<td>89</td>
</tr>
</tbody>
</table>

Expansion and Sensor Interface

<table>
<thead>
<tr>
<th>Expansion</th>
<th>none</th>
<th>51-pin</th>
<th>51-pin</th>
<th>none</th>
<th>51-pin</th>
<th>19-pin</th>
<th>51-pin</th>
<th>10-pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>IEEE 1284 (programming) and RS232 (requires additional hardware)</td>
<td>USB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated Sensors</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
Mote

- A very low cost low power computer
- Monitors one or more sensors
- A Radio Link to the outside world
- Are the building blocks of Wireless Sensor Networks (WSN)
Low Power Operation

- Efficient Hardware
 - Integration and Isolation
 - Complementary functionality (DMA, USART, etc)
 - Selectable Power States (Off, Sleep, Standby)
 - Operate at low voltages and low current
 - Run to cut-off voltage of power source

- Efficient Software
 - Fine grained control of hardware
 - Utilize wireless broadcast medium
 - Aggregate

Hot Chips 2004 : Aug 22-24, 2004
Typical WSN Application

- **Periodic**
 - Data Collection
 - Network Maintenance
 - *Majority of operation*

- **Triggered Events**
 - Detection/Notification
 - *Infrequently occurs*
 - *But… must be reported quickly and reliably*

- **Long Lifetime**
 - Months to Years without changing batteries
 - Power management is the key to WSN success

“*The Mote Revolution: Low Power Wireless Sensor Network Devices*”
Hot Chips 2004 : Aug 22-24, 2004
Design Principles

- Key to Low **Duty Cycle** Operation:
 - Sleep – majority of the time
 - Wakeup – quickly start processing
 - Active – minimize work & return to sleep
Sleep

- Majority of time, node is asleep
 - >99%
- Minimize sleep current through
 - Isolating and shutting down individual circuits
 - Using low power hardware
 - Need RAM retention
- Run auxiliary hardware components from low speed oscillators (typically 32kHz)
 - Perform ADC conversions, DMA transfers, and bus operations while microcontroller core is stopped

Hot Chips 2004 : Aug 22-24, 2004
Telos Platform

- A new platform for low power research
 - Monitoring applications:
 - Environmental
 - Building
 - Tracking

- Long lifetime, low power, low cost

- Built from application experiences and low duty cycle design principles

- Robustness
 - Integrated antenna
 - Integrated sensors
 - Soldered connections

- Standards Based
 - IEEE 802.15.4
 - USB

- IEEE 802.15.4 ZigBee
 - CC2420 radio
 - Frame-based
 - 250kbps
 - 2.4GHz ISM band

- TI MSP430
 - Ultra low power
 - 1.6µA sleep
 - 460µA active
 - 1.8V operation

Open embedded platform with open source tools, operating system (TinyOS), and designs.

Hot Chips 2004 : Aug 22-24, 2004
Minimize Power Consumption

- Compare to MicaZ: a Mica2 mote with AVR mcu and 802.15.4 radio

- Sleep
 - Majority of the time
 - Telos: 2.4\(\mu \)A
 - MicaZ: 30\(\mu \)A

- Wakeup
 - As quickly as possible to process and return to sleep
 - Telos: 290ns typical, 6\(\mu \)s max
 - MicaZ: 60\(\mu \)s max internal oscillator, 4ms external

- Active
 - Get your work done and get back to sleep
 - Telos: 4-8MHz 16-bit
 - MicaZ: 8MHz 8-bit
CC2420 Radio
IEEE 802.15.4 Compliant

- CC2420
 - Fast data rate, robust signal
 - 250kbps : 2Mchip/s : DSSS
 - 2.4GHz : Offset QPSK : 5MHz
 - 16 channels in 802.15.4
 - -94dBm sensitivity
 - Low Voltage Operation
 - 1.8V minimum supply
 - Software Assistance for Low Power Microcontrollers
 - 128byte TX/RX buffers for full packet support
 - Automatic address decoding and automatic acknowledgements
 - Hardware encryption/authentication
 - Link quality indicator (assist software link estimation)
 - samples error rate of first 8 chips of packet (8 chips/bit)

Hot Chips 2004 : Aug 22-24, 2004
Power Calculation Comparison

Design for low power

<table>
<thead>
<tr>
<th>Device</th>
<th>Power Consumption</th>
<th>Data Rate</th>
<th>Voltage</th>
<th>Battery Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mica2 (AVR)</td>
<td>0.2 ms wakeup 30 µW sleep 33 mW active 21 mW radio 19 kbps 2.5V min</td>
<td>250 kbps</td>
<td>2.5V</td>
<td>2/3 of AA capacity</td>
</tr>
<tr>
<td>MicaZ (AVR)</td>
<td>0.2 ms wakeup 30 µW sleep 33 mW active 45 mW radio 250 kbps 2.5V min</td>
<td>250 kbps</td>
<td>2.5V</td>
<td>2/3 of AA capacity</td>
</tr>
<tr>
<td>Telos (TI MSP)</td>
<td>0.006 ms wakeup 2 µW sleep 3 mW active 45 mW radio 250 kbps 1.8V min</td>
<td>250 kbps</td>
<td>1.8V</td>
<td>8/8 of AA capacity</td>
</tr>
</tbody>
</table>

Supporting mesh networking with a pair of AA batteries reporting data once every 3 minutes using synchronization (<1% duty cycle)

- Mica2 (AVR): 453 days
- MicaZ (AVR): 328 days
- Telos (TI MSP): 945 days

Hot Chips 2004 : Aug 22-24, 2004
Sensors

- Integrated Sensors
 - Sensirion SHT11
 - Humidity (3.5%)
 - Temperature (0.5°C)
 - Digital sensor
 - Hamamatsu S1087
 - Photosynthetically active light
 - Silicon diode
 - Hamamatsu S1337-BQ
 - Total solar light
 - Silicon diode

- Expansion
 - 6 ADC channels
 - 4 digital I/O
 - Existing sensor boards
 - Magnetometer
 - Ultrasound
 - Accelerometer
 - 4 PIR sensors
 - Microphone
 - Buzzer