CARA: Collision-Aware Rate Adaptation for IEEE 802.11 WLANs

Presented by
Eric Wang
Outline

- Introduction
- Related Work
- Preliminaries
- CARA
- Performance Evaluation
- Conclusion and Future Work
Basic CSMA/CA

Fig. 1 CSMA/CA protocol of IEEE 802.11 MAC DCF.
Introduction

• 802.11 no rate adaption scheme
• Most open-loop adaption schemes don’t consider collision
 – Malfunction when collisions happen
• CARA
 – Combines RTS/CTS exchange with CCA
 – Collision vs. channel errors
 – No change to current 802.11 standard
Outline

• Introduction
• Related Work
• Preliminaries
• CARA
• Performance Evaluation
• Conclusion and Future Work
Related Work

• Rate adaption scheme classifications:
 – Closed-loop
 • Receiver feedback of desired rate by RTS/CTS
 • Transmitter adapts rate accordingly
 • Costly! Waste of bandwidth.
 – Open-loop
 • Further classified into two categories
Open-loop rate adaption

• Subcategory 1
 – Decides transmission rate by local channel est.
 • eg. ACK frame receptions
 • Usually good performance as closed-loop
 • Extra implementation efforts.

• Subcategory 2
 – Make use of local ACK information.
 • Simple implementation
Rate adaption Scheme issues

• When to increase
 – Transmitter adaptively changes rate over time

• When to decrease
 – Open-loop scheme malfunctions during collision
 – No differentiate between collision and channel errors
 – Thus, decrease over-aggressively.
Preliminaries

• CSMA/CA
 – DCF, PCF
 – CCA
• RTS/CTS exchange
 – Useful in highly-contending WLAN
• ARF
 – Timing function and missing ACK frame
• CARA
Outline

• Introduction
• Related Work
• Preliminaries
• CARA
• Performance Evaluation
• Conclusion and Future Work
CARA

• Adopts two methods to differentiate collisions from channel errors:
 – RTS probing (mandatory)
 – CCA detection (optional)
Identifying collision via RTS probing

- RTS probing is mandatory
 - Assume transmission error negligible
 - Small size, robust transmission rate
 - Failure of RTS transmission indicates collision
 - After RTS/CTS exchange
 - Data transmission error caused by channel errors
 - No misinterpretation
 - Overhead of adding RTS/CTS is large
 - RTS probing: enables RTS/CTS exchange only when transmission failure of data frames happens
State Transition Diagram
<table>
<thead>
<tr>
<th>Notations</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>consecutive success count</td>
</tr>
<tr>
<td>(n)</td>
<td>consecutive failure count</td>
</tr>
<tr>
<td>(M_{th})</td>
<td>consecutive success threshold</td>
</tr>
<tr>
<td>(N_{th})</td>
<td>consecutive failure threshold</td>
</tr>
<tr>
<td>(TxPend)</td>
<td>status: a data frame is pending</td>
</tr>
<tr>
<td>(R_{dt})</td>
<td>array of transmission rates</td>
</tr>
<tr>
<td></td>
<td>(802.11a = {6, 12, 18, 24, 36, 48, 54,\text{Mbps}})</td>
</tr>
<tr>
<td></td>
<td>(802.11b = {1, 2, 5.5, 11,\text{Mbps}})</td>
</tr>
<tr>
<td>(r_{dt})</td>
<td>transmission rate: an element of (R_{dt})</td>
</tr>
<tr>
<td>++</td>
<td>increase transmission rate to the next higher one</td>
</tr>
<tr>
<td>--</td>
<td>decrease transmission rate to the next lower one</td>
</tr>
<tr>
<td>(P_{th})</td>
<td>probe activation threshold</td>
</tr>
<tr>
<td>(RTSThr)</td>
<td>frame size-based RTS Threshold as defined in the standard</td>
</tr>
</tbody>
</table>

* The 9 Mbps rate is excluded as it is shown useless in [19].
RTS probing mechanism

- Data frame transmitted without RTS/CTS
- If transmission failed, activate RTS/CTS exchange for next transmission. If retransmission failed, lower transmission rate
- If transmission successful, stays at same rate and send next data frame without RTS/CTS
ARF vs. RTS probing
Identifying Collision via CCA Detection

Fig. 5. Three possible cases of collision. In the second case, the collision can be detected via CCA detection.
CCA detection

• Case 1 & 3: CCA not helping
 – Because CCA cannot be sure whether collision happened
 – RTS Probing is launched later.

• Case 2: CCA helping
 – no need to activate RTS/CTS exchange.
 – Collision detected!
 – Retransmit the data.
Outline

• Introduction
• Related Work
• Preliminaries
• CARA
• Performance Evaluation
• Conclusion and Future Work
ns-2 simulation details

- 20dBm transmit power
- Static stations; 1500 octet MAC payload
- BER vs SNR curves measured in AWGN (Additive White Gaussian Noise) environment without fading.
- Set background noise to -96dBm
- Simulate indoor settings
- Use Ricean fading model for multi-path fading time-varying wireless conditions.
Results for One-to-One topology

One station continuously transmitting to another.

X : Physical distance (meters)
Y : Throughput (Mbps)

Fig. 6. Throughput comparison of our proposed rate adaptation scheme (CARA-1) against RTS/CTS, ARF, and single-rate schemes for one-to-one topology networks with various distance (r)
Results for Star Topology with varying number of contending stations

Various number of contending stations are evenly placed on a circle around AP within 10 meters.

Two reasons for ARF ill behavior:
1. Collision vs. channel errors
2. Performance anomaly

Fig. 7. Throughput comparison of our proposed rate adaptation scheme (CARA-1) against RTS/CTS and ARF for star-topology networks with various number of contending stations
Results for Line Topology with random data frame sizes and random station positions

Fig. 8. Throughput comparison of our proposed rate adaptation schemes (CARA-1 and CARA-2) against ARF for line-topology networks with various number of contending stations with randomly chosen data frame sizes and stations’ positions.
Results for random topologies with time-varying wireless channel

50 different scenarios
When 10 stations contend
Random locations
Random data size

CARA 1 > CARA 2?
CCA succeeds but failed to transmit data, delaying adaptation.
Averaged result with various contending stations
Results for random topologies with time-varying wireless channel

(a) ARF

(b) CARA-1

(c) CARA-2
Transmission rate adaptation over time

<table>
<thead>
<tr>
<th></th>
<th>ARF</th>
<th>CARA-1</th>
<th>CARA-2</th>
</tr>
</thead>
<tbody>
<tr>
<td># of tx attempts</td>
<td>1344</td>
<td>3092</td>
<td>3246</td>
</tr>
<tr>
<td># of tx successes</td>
<td>1094</td>
<td>2518</td>
<td>2643</td>
</tr>
<tr>
<td>Throughput (Mbps)</td>
<td>1.58</td>
<td>3.37</td>
<td>3.49</td>
</tr>
</tbody>
</table>

TABLE II
COMPARISON OF THREE TESTING SCHEMES FOR THE 30-SECOND SIMULATION RUN
Summary

• RTS probing is very efficient in differentiating collisions from channel errors.
 – Why CARA outperforms ARF
• CARA-2 with CCA detection outperforms CARA-1 when data transmission durations are different among contending stations.
• Collision aware rate adaptation scheme are needed due to bad performance of ARF.
Outline

• Introduction
• Related Work
• Preliminaries
• CARA
• Performance Evaluation
• Conclusion and Future Work
Conclusion

• CARA is more likely to make correct rate adaptation decisions than ARF.
• CARA requires no change to the 802.11 standard (unlike RBAR).
• CARA significantly outperforms ARF in all simulated multiple contending environments.
Future work

• Look at changes to the increase rate algorithm [CARA-RI].
• Study optimization of operational CARA parameters.
• Address possibility of hidden terminal detection [CARA-HD].
• Built a working CARA prototype using MadWIFI driver.