XORs in the air: Practical Wireless
Network Coding

Sachin Katti, Hariharan Rahul, Wenjun Hu, Dina
Katabi, Muriel Medard, Jon Crowcroft

SIGCOMM ‘06

Presented by
Thangam Seenivasan

Problem

Increase the throughput of dense
wireless networks

Network Coding

Current Approach

Requires 4 transmission

COPE Approach

Alice
Relay
_______________________>
ég%?%‘g?g A Sommmmmmmmme
& y .
AXORB | | : A XOR B
A XORB
A ;
XOR
A XORB
_ Requires 3 transmission

Increased throughput

COPE Approach

Exploits shared nature of wireless medium
— Every node snoops on all packets
— A node stores all heard packets for a limited time

Tell neighbors which packets it has heard
Perform opportunistic coding

— XOR multiple packets and transmit them as single
packet

Decode the encoded packet using stored
packets

A+B

Scenario

Requires 3 transmission

A+B

Outline

Design

Cope Gains

Making it work
Implementation details
Experimental results

Overview

* Opportunistic listening
* Opportunistic coding
e Learning neighbor state

Opportunistic listening

* Exploit broadcast nature of wireless
— Set nodes in promiscuous mode
— Opportunities to overhear packets

e Store the overheard packets
— Limited time period (T = 0.5s)

* Broadcast reception reports to tell neighbors
which packets it has stored

— Annotate with data packets
— If no data packets, send reception reports periodically

Opportunistic coding

What packets to code together to maximize
throughput?

10

Opportunistic coding

C’s Packet Pool Packets in - Nayt Hop
B's Queue
P4||P1
Pl — A
B’s Output Queue @ P2 C
P[P [p2 |P_1_”
g —
P4 —» D

(®) ®

P4 P3| l’3’| P1

A’s Packet Pool D’s Packet Pool

Opportunistic coding

C’s Packet Pool Packets in - Nayt Hop
B's Queue
P4|[P1
Plf —— A

B’s Output Queue @ P2l — C
P4 P3P |P_|1_‘

@ — C

T

P4 |P3) P3|[P1

A’s Packet Pool D’s Packet Pool P 1 + P2

Bad Coding — C can decode but A can’t

Opportunistic coding

C’s Packet Pool Packets in - Nayt Hop
B's Queue
P4||P1
Pl — A
B’s Output Queue @ P2 C

P4P3|P2|P_1_” =

TH
(®) ®

P4 |P3) P3|[P1

A’s Packet Pool D’s Packet Pool P 1 + P3

Better Coding — Both A and C can decode

Opportunistic coding

C’s Packet Pool Packets in - Nayt Hop
B's Queue
P4|[P1
Plf —— A

B’s Output Queue @ P2l — C
P4 P3P |P_|1_‘

@ — C

T

P4| P3| P3|[P1

A’s Packet Pool D’s Packet Pool P]. + P3 + P4

Best Coding — Nodes A, C, D can decode

Opportunistic coding

 Maximize the number of native packets
delivered in a single transmission

 While ensuring that each intended next hop
has enough information to decode its native
packet

15

Opportunistic coding

To transmit n packets: p,,, p

N

To n next hops: ry, ..., r

N

A node can XOR the n packets together only if
each next hop r; has all n-1 packets p; for j!=i

Choose the largest n that satisfies the above rule

16

Learning Neighbor State

How does a node know what packets its
neighbors have?

* Send reception reports

* During congestion, reports may get lost in
collisions or may arrive late

17

Learning Neighbor State

* Wireless routing protocols compute delivery

probability between every pair of nodes and
broadcast them

— E.g.: ETX

* Using these weights,

— Estimate the probability that a particular neighbor
has a packet

Outline

Design

Cope Gains

Making it work
Implementation details
Experimental results

COPE Gains

* Coding Gain
* Coding + MAC Gain

Coding Gain

Number of transmissions required
by non-coding approach

Coding Gain =

Minimum number of
transmissions used by COPE

Alice & Bob experiment — Coding gain=4/3=1.33

Coding Gain

Coding gain =4/3 =1.33

Coding gain=8/5=1.6

22

Coding + MAC Gain

* MAC divides the bandwidth equally between the 3

contending nodes
* The router needs to transmit twice as many packets

* Hence router is a bottleneck
— Half the packets are dropped as routers queue

23

Coding + MAC Gain

Router

1
\4

* COPE — XOR pairs of packets
— router drains packets twice as fast

Coding + MAC gain =2

24

Coding + MAC Gain

* For topologies with single bottleneck

Draining rate with COPE

Coding + MAC Gain =
Draining rate without COPE

->
- :
- i
- v
-
.-'. ____________
‘- I * "
Ldl L
- 4
- :
P :
& 3
A 4

Coding + MAC gain = 2 Coding + MAC gain = 4

25

Coding + MAC Gain

* |n the presence of opportunistic listening,
COPE’s maximum Coding + MAC gain is
unbounded.

Outline

Design

Cope Gains

Making it work
Implementation details
Experimental results

27

Making it work

Packet Coding Algorithm

Packet Decoding

Pseudo-broadcast

Hop-by-hop ACKs and Retransmissions

Preventing TCP packet reordering

Packet Coding Algorithm

Never delaying packets
— Does not wait for additional codable packets to arrive

Preference to XOR packets of similar lengths
— Pad zeros if different lengths

Maintain two virtual queues per neighbor
— One for small, one for large packets

Dequeue the packet at the head of the FIFO

— Look only at the head of the virtual queues

Each neighbor has a high probability of
decoding the packet — Threshold probability

Packet Coding Algorithm

1 Coding Procedure

Pick packet p at the head of the output queue.
Natives = {p}
‘Je:ﬂhopa — {nexthop(p)}
if size(p) > 100 bytes then
which_queue =1
else
which_queue =0
end if
for Neighbori = 1 to M do
Pick packet p;. the head of virtual queue Q(i, which_queue)
if ¥n € Nexthops U{i}. Pr[n can decode p & p;] > G then
P=pDpi _
Natives = Natives U{p; }
Nexthops = Nexthops U{i}
end if
end for
which_queue = !'which_queue
for Neighbori = 1 to M do
Pick packet p;. the head of virtual queue QO(i. which_queue)
if ¥n € Nexthops U{i}. Pr[n can decode p & ps] > G then
P =pDpi _
Natives = Natives U{p; }
Nexthops = Nexthops U{i}
end if
end for
return p

Packet Decoding

e Each node maintains a Packet Pool

— Packets it received or sent out

* Packets are stored in a hash table keyed on
packet id

* Encoded packet with n packets
— XOR with n — 1 packets from packet pool

Pseudo-broadcast

* Broadcast
— No ACKs
— No retransmissions
— Poor reliability and lack of back-off

* Unicast
— ACKed as soon as received
— Sender back-off exponentially if no ACKs
— Retransmissions
— More Reliable

Pseudo-broadcast

 Pseudo-broadcast

— Unicast packet to one of its recipients

— That node ACKs and hence the transmission is
reliable

— Since others listen in promiscuous mode they
receive the packet as well

— An XOR header is added after the link-layer
header listing all next hops

* Each node checks the XOR header if it is a recipient and
processes the packet

Hop-by-hop ACKs and Retransmissions

* Encoded packets require all next hops to ack

the receipt of the associated native packet

— Only one node ACKs (pseudo-broadcast)
— There is still a probability of loss to other next hops
— Hence, each node ACKs the reception of native packet

— If not-acked, retransmitted, potentially encoded with other
packets

— Overhead - highly inefficient

Hop-by-hop ACKs and Retransmissions

* Asynchronous ACKs and Retransmissions
— Cumulatively ACK every T, seconds

— If a packet is not ACKed in T, seconds,
retransmitted

— Piggy-back ACKs in COPE header of data packets

— If no data packets, send periodic control packets
(same packets as reception reports)

Preventing TCP Packet Reordering

* Asynchronous ACKs can cause packet
reordering

— TCP can take this as a sign of congestion

* Ordering agent
— Ensures TCP packets are delivered in order
— Maintains packet buffer

Outline

Design

Cope Gains

Making it work
Implementation details
Experimental results

37

Packets XOR-ed
together

Reception
Reports

ACK Block

+

v

",

Packet Format

ENCODED_NUM

PKT_ID NEXTHOP

REPORT_NUM

SRC_IP |LAST_PKT| Bit Map

MAC Header

COPE Header

ACK_NUM

Routing Header
(Optional; depends on protocol)

LOCAL_PKT_SEQ_NUM

NEIGHBOR|LAST_ACK| Ack Map

|P Header

38

Control flow - Sender

Can send

l

Dequene head of
Output Queue

!

Encode if
possible
yes

Encoded? - |.

retransmissions

|

[Schedule]
no

[Add reception reports |

L 4

‘ Add acks to header]

L 4

[To wireless device]

39

Control flow - Receiver

Enguene in
Output Quene

Tk I}I

o e [Deliver
~—Am] destnation? == lL]

Add to Packet Poal |

|
[Decode and schedule acks

Tyes
T

< Decodable™™>

.-"ff - h"““—- "
Fncodeir> 4
S~

|

e no

< Am I nexthop? = Add to Packet Pool
-+

Extract Reception Reports
Update Neighbor's State

!

Extract acks meant for me
Update refransmissicn events

t

Packet
arrival

40

Outline

Design

Cope Gains

Making it work
Implementation details
Experimental results

41

Testbed

e 20 nodes
— Path between nodes are 1 to 6 hops in length
— 802.11a with a bit-rate of 6Mb/s

e Software
— Linux and click toolkit
— User daemon and exposes a new interface

— Applications use this interface
* No modification to application is necessary

e Traffic model
— udpgen to generate UDP traffic
— ttcp to generate TCP traffic
— Poisson arrivals, Pareto file size distribution

Metrics

 Network throughput

— Total end-to-end throughput (sum of throughput
of all flows in a network)

* Throughput gain

— The ratio of measured throughput with and
without COPE

— Calculate from two consecutive experiments, with
coding turned on and off

43

Cumulative Fraction

Long-lived TCP flows

| 1] . . .
5 5
08 2 08 2 038
g 8
06 £ 06 £ 08
2 2
04 £ o4 2 04
2 2
02 E o2 § o2
] [
0 0 0
1 11 12 13 14 15 1 1.1 12 13 14 15 12 13 14 15 16 17
Throughput Gain Throughput Gain Throughput Gain
(a) TCP gain in the Alice-and-Bob topology (b) TCP gain in the X-topology {¢) TCP gain in the cross topology

Close to 1.33 Close to 1.33 Closeto 1.6

* Close to coding gain
— TCP backs-off due to congestion control
— To match the draining rate at the bottleneck

44

Long-lived UDP flows

1 1 1

§ 5
=] —
g o3 £ 08
B i
= 08 L 06
= =
T 04 5 04
E E
5 02 5 oz
L]
0 0

L
= =]
=] oW
Cumulative fract

12 14 16 18 2 22 12 14 16 18 2 22 1 2 3 4 5 6
Throughput Gain Throughput Gain Throughput Gain
{(a) UDP gain in the Alice-and-Bob topology (b) UDP gain in the X-topology (¢) UDP gain in the cross topology

* Close to Coding + MAC gain
— XOR headers add small overhead (5-8%)
— The difference is also due to imperfect overhearing

45

Ad-hoc network - TCP

* TCP flows
— Arrive according to Poisson process
— Pick sender and receiver randomly
— Transfer files (size - Pareto distribution)

* Does not show any significant improvement
— TCP’s reaction to collision-related losses
— Hidden terminals

Ad-hoc network - TCP

0.5 'Luss 'rate u'.;ith TC'F' : @ 2 A\.r'erage'(]ueu'e Sizé at I:lc;l:tlene;.".l-t :
]
04 1 bS] £ I
2 03 \ e e
% =5 - .
s — 5 1 -
w02 T o "
B — = ;f'fﬁ
— T 0.5 4
0.1 1 @
=y
4 i 8 10 12 14 16 1] 2 4 i a8 0 12 14 16

Mo. of MAC retries

Mo. of MAC retries

e Even with 15 MAC retries, 14% loss

— Due to hidden terminals

* Bottleneck never see enough traffic to make
use of coding
— Few coding opportunities

TCP with no hidden terminals

TCP Goodput in Mb/s

1.8 1

1.6 -

1.4 1

1.2 1

0.8 1

0.6

With COPE
Without COPE - - - 1y S -

1 15 2 25
Offered load in Mb/s

38% improvement in TCP goodput

48

Network Throughput in Mb/s

Ad-hoc network - UDP

With COPE ——
Without COPE - - -

2 4 6 8 10 12 14 16 18 20 22
Offered load in Mb/s

3-4x improvement in throughput

49

Fercentage

100

[=
e
L

[|
 —
L

ol
o |

Fed
-

0

Ad-hoc network - UDP

Packets coded due to Guessing I

Offered Load (Mb/s)

4

Percentage

On an average 3 packet are coded together

Ad-hoc network - UDP

60

30 1
40 1
30 1
20
10 A

Coded packets e=mmmm

No. of packets coded together

51

Mesh network

1.8
1.7 1
1.6 1
1.5
1.4 1
1.3 1
1.2
1.1 1

14

Throughput Gain

Throughput Gain

0.9 ; .
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Ratio of uplink to downlink traffic

COPE throughput gain relies on coding

opportunities

— Depends on diversity of packets in the queue of the
bottleneck node

Throughput (Mb/s)

3.2

2.8 1
A
24
22 -

1.8

Fairness

Throughput(Mb/s) s
1 2 3 4 5
Ratio of distances of edge nodes from the relay

More fair — more
opportunities to
code

Fraction

08 ;
06 -
04 ;
0.2 ;

“ | | Fairlness inde:lc - -
. Fraction of coded packets e |
1 2 3 4 5 B

Ratio of distances of edge nodes from the relay

53

Conclusion

Network coding to improve the throughput of
wireless networks

COPE -Implementation of first system
architecture for wireless network coding

COPE improves the UDP throughput by 3-4x

5% to 70% throughput improvement in mesh
networks depending on downlink-uplink ratio

Thank You
Questions?

