
XORs in the air: Practical Wireless
Network Coding

Sachin Katti, Hariharan Rahul, Wenjun Hu, Dina
Katabi, Muriel Medard, Jon Crowcroft

SIGCOMM ‘06

Presented by
Thangam Seenivasan

1

Problem

Increase the throughput of dense
wireless networks

Network Coding

2

Current Approach

Alice BobRelay

A B

A

B

A

B

Requires 4 transmission

3

COPE Approach

Alice BobRelay

A B

A
B

Requires 3 transmission

A XOR B

Increased throughput

A XOR B

XOR

A XOR B

XOR

B

=

A

=

A XOR B A XOR B

4

COPE Approach

• Exploits shared nature of wireless medium

– Every node snoops on all packets

– A node stores all heard packets for a limited time

• Tell neighbors which packets it has heard

• Perform opportunistic coding

– XOR multiple packets and transmit them as single
packet

• Decode the encoded packet using stored
packets

5

Scenario

S1

D1

S2

D2

R

A B

A

A B

B

A+B

A+B A+B
B A

Requires 3 transmission 6

Outline

• Design

• Cope Gains

• Making it work

• Implementation details

• Experimental results

7

Overview

• Opportunistic listening

• Opportunistic coding

• Learning neighbor state

8

Opportunistic listening

• Exploit broadcast nature of wireless

– Set nodes in promiscuous mode

– Opportunities to overhear packets

• Store the overheard packets

– Limited time period (T = 0.5s)

• Broadcast reception reports to tell neighbors
which packets it has stored

– Annotate with data packets

– If no data packets, send reception reports periodically

9

Opportunistic coding

What packets to code together to maximize
throughput?

10

Opportunistic coding

11

Opportunistic coding

P1 + P2

Bad Coding – C can decode but A can’t
12

Opportunistic coding

P1 + P3

Better Coding – Both A and C can decode
13

Opportunistic coding

P1 + P3 + P4

Best Coding – Nodes A, C, D can decode
14

Opportunistic coding

• Maximize the number of native packets
delivered in a single transmission

• While ensuring that each intended next hop
has enough information to decode its native
packet

15

Opportunistic coding

To transmit n packets: p1, …., pn

To n next hops: r1, …., rn

A node can XOR the n packets together only if
each next hop ri has all n-1 packets pj for j!=i

Choose the largest n that satisfies the above rule

16

Learning Neighbor State

How does a node know what packets its
neighbors have?

• Send reception reports

• During congestion, reports may get lost in
collisions or may arrive late

17

Learning Neighbor State

• Wireless routing protocols compute delivery
probability between every pair of nodes and
broadcast them

– E.g.: ETX

• Using these weights,

– Estimate the probability that a particular neighbor
has a packet

18

Outline

• Design

• Cope Gains

• Making it work

• Implementation details

• Experimental results

19

COPE Gains

• Coding Gain

• Coding + MAC Gain

20

Coding Gain

Number of transmissions required
by non-coding approach

Minimum number of
transmissions used by COPE

Coding Gain =

Alice & Bob experiment – Coding gain = 4/3 = 1.33

21

Coding Gain

Coding gain = 4/3 = 1.33 Coding gain = 8/5 = 1.6

22

Coding + MAC Gain

Alice BobRouter
A

B

A

B

• MAC divides the bandwidth equally between the 3
contending nodes

• The router needs to transmit twice as many packets

• Hence router is a bottleneck

– Half the packets are dropped as routers queue

23

Coding + MAC Gain

Alice BobRouter

A

B

• COPE – XOR pairs of packets

– router drains packets twice as fast

A + B

Coding + MAC gain = 2

24

Coding + MAC Gain

• For topologies with single bottleneck

Draining rate with COPE

Draining rate without COPE
Coding + MAC Gain =

Coding + MAC gain = 2 Coding + MAC gain = 4

25

Coding + MAC Gain

• In the presence of opportunistic listening,
COPE’s maximum Coding + MAC gain is
unbounded.

N -> ∞

26

Outline

• Design

• Cope Gains

• Making it work

• Implementation details

• Experimental results

27

Making it work

• Packet Coding Algorithm

• Packet Decoding

• Pseudo-broadcast

• Hop-by-hop ACKs and Retransmissions

• Preventing TCP packet reordering

28

Packet Coding Algorithm

• Never delaying packets
– Does not wait for additional codable packets to arrive

• Preference to XOR packets of similar lengths
– Pad zeros if different lengths

• Maintain two virtual queues per neighbor
– One for small, one for large packets

• Dequeue the packet at the head of the FIFO
– Look only at the head of the virtual queues

• Each neighbor has a high probability of
decoding the packet – Threshold probability

29

Packet Coding Algorithm

30

Packet Decoding

• Each node maintains a Packet Pool

– Packets it received or sent out

• Packets are stored in a hash table keyed on
packet id

• Encoded packet with n packets

– XOR with n – 1 packets from packet pool

31

Pseudo-broadcast

• Broadcast

– No ACKs

– No retransmissions

– Poor reliability and lack of back-off

• Unicast

– ACKed as soon as received

– Sender back-off exponentially if no ACKs

– Retransmissions

– More Reliable
32

Pseudo-broadcast

• Pseudo-broadcast

– Unicast packet to one of its recipients

– That node ACKs and hence the transmission is
reliable

– Since others listen in promiscuous mode they
receive the packet as well

– An XOR header is added after the link-layer
header listing all next hops

• Each node checks the XOR header if it is a recipient and
processes the packet

33

Hop-by-hop ACKs and Retransmissions

• Encoded packets require all next hops to ack
the receipt of the associated native packet
– Only one node ACKs (pseudo-broadcast)

– There is still a probability of loss to other next hops

– Hence, each node ACKs the reception of native packet

– If not-acked, retransmitted, potentially encoded with other
packets

– Overhead - highly inefficient

34

Hop-by-hop ACKs and Retransmissions

• Asynchronous ACKs and Retransmissions

– Cumulatively ACK every Ta seconds

– If a packet is not ACKed in Ta seconds,
retransmitted

– Piggy-back ACKs in COPE header of data packets

– If no data packets, send periodic control packets
(same packets as reception reports)

35

Preventing TCP Packet Reordering

• Asynchronous ACKs can cause packet
reordering

– TCP can take this as a sign of congestion

• Ordering agent

– Ensures TCP packets are delivered in order

– Maintains packet buffer

36

Outline

• Design

• Cope Gains

• Making it work

• Implementation details

• Experimental results

37

Packet Format

38

Control flow - Sender

39

Control flow - Receiver

40

Outline

• Design

• Cope Gains

• Making it work

• Implementation details

• Experimental results

41

Testbed

• 20 nodes
– Path between nodes are 1 to 6 hops in length
– 802.11a with a bit-rate of 6Mb/s

• Software
– Linux and click toolkit
– User daemon and exposes a new interface
– Applications use this interface

• No modification to application is necessary

• Traffic model
– udpgen to generate UDP traffic
– ttcp to generate TCP traffic
– Poisson arrivals, Pareto file size distribution

42

Metrics

• Network throughput

– Total end-to-end throughput (sum of throughput
of all flows in a network)

• Throughput gain

– The ratio of measured throughput with and
without COPE

– Calculate from two consecutive experiments, with
coding turned on and off

43

Long-lived TCP flows

Close to 1.33 Close to 1.33 Close to 1.6

• Close to coding gain
– TCP backs-off due to congestion control

– To match the draining rate at the bottleneck
44

Long-lived UDP flows

1.7 1.65 3.5

• Close to Coding + MAC gain
– XOR headers add small overhead (5-8%)

– The difference is also due to imperfect overhearing
45

Ad-hoc network - TCP

• TCP flows

– Arrive according to Poisson process

– Pick sender and receiver randomly

– Transfer files (size - Pareto distribution)

• Does not show any significant improvement

– TCP’s reaction to collision-related losses

– Hidden terminals

46

Ad-hoc network - TCP

• Even with 15 MAC retries, 14% loss

– Due to hidden terminals

• Bottleneck never see enough traffic to make
use of coding

– Few coding opportunities
47

TCP with no hidden terminals

38% improvement in TCP goodput
48

Ad-hoc network - UDP

3-4x improvement in throughput
49

Ad-hoc network - UDP

50

Ad-hoc network - UDP

On an average 3 packet are coded together

51

Mesh network

• COPE throughput gain relies on coding
opportunities
– Depends on diversity of packets in the queue of the

bottleneck node
52

Fairness

More fair – more
opportunities to
code

53

Conclusion

• Network coding to improve the throughput of
wireless networks

• COPE -Implementation of first system
architecture for wireless network coding

• COPE improves the UDP throughput by 3-4x

• 5% to 70% throughput improvement in mesh
networks depending on downlink-uplink ratio

54

Thank You
Questions?

55

