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Problem

Increase the throughput of dense
wireless networks

Network Coding



Current Approach

Requires 4 transmission



COPE Approach
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COPE Approach

Exploits shared nature of wireless medium
— Every node snoops on all packets
— A node stores all heard packets for a limited time

Tell neighbors which packets it has heard
Perform opportunistic coding

— XOR multiple packets and transmit them as single
packet

Decode the encoded packet using stored
packets



A+B

Scenario

Requires 3 transmission

A+B
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Overview

* Opportunistic listening
* Opportunistic coding
e Learning neighbor state



Opportunistic listening

* Exploit broadcast nature of wireless
— Set nodes in promiscuous mode
— Opportunities to overhear packets

e Store the overheard packets
— Limited time period (T = 0.5s)

* Broadcast reception reports to tell neighbors
which packets it has stored

— Annotate with data packets
— If no data packets, send reception reports periodically



Opportunistic coding

What packets to code together to maximize
throughput?
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Opportunistic coding
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Opportunistic coding

C’s Packet Pool Packets in - Nayt Hop
B's Queue
P4|[P1
Plf —— A

B’s Output Queue @ P2l — C
P4 P3P |P_|1_‘

@ — C

T

P4 |P3) P3|[P1

A’s Packet Pool D’s Packet Pool P 1 + P2

Bad Coding — C can decode but A can’t



Opportunistic coding
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Opportunistic coding
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Opportunistic coding

 Maximize the number of native packets
delivered in a single transmission

 While ensuring that each intended next hop
has enough information to decode its native
packet
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Opportunistic coding

To transmit n packets: p,, ...., p

N

To n next hops: ry, ..., r

N

A node can XOR the n packets together only if
each next hop r; has all n-1 packets p; for j!=i

Choose the largest n that satisfies the above rule
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Learning Neighbor State

How does a node know what packets its
neighbors have?

* Send reception reports

* During congestion, reports may get lost in
collisions or may arrive late
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Learning Neighbor State

* Wireless routing protocols compute delivery

probability between every pair of nodes and
broadcast them

— E.g.: ETX

* Using these weights,

— Estimate the probability that a particular neighbor
has a packet
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COPE Gains

* Coding Gain
* Coding + MAC Gain



Coding Gain

Number of transmissions required
by non-coding approach

Coding Gain =

Minimum number of
transmissions used by COPE

Alice & Bob experiment — Coding gain=4/3=1.33



Coding Gain

Coding gain =4/3 =1.33

Coding gain=8/5=1.6
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Coding + MAC Gain

* MAC divides the bandwidth equally between the 3

contending nodes
* The router needs to transmit twice as many packets

* Hence router is a bottleneck
— Half the packets are dropped as routers queue
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Coding + MAC Gain

Router

1
\4

* COPE — XOR pairs of packets
— router drains packets twice as fast

Coding + MAC gain =2
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Coding + MAC Gain

* For topologies with single bottleneck

Draining rate with COPE

Coding + MAC Gain =
Draining rate without COPE
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Coding + MAC Gain

* |n the presence of opportunistic listening,
COPE’s maximum Coding + MAC gain is
unbounded.
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Making it work

Packet Coding Algorithm

Packet Decoding

Pseudo-broadcast

Hop-by-hop ACKs and Retransmissions

Preventing TCP packet reordering



Packet Coding Algorithm

Never delaying packets
— Does not wait for additional codable packets to arrive

Preference to XOR packets of similar lengths
— Pad zeros if different lengths

Maintain two virtual queues per neighbor
— One for small, one for large packets

Dequeue the packet at the head of the FIFO

— Look only at the head of the virtual queues

Each neighbor has a high probability of
decoding the packet — Threshold probability



Packet Coding Algorithm

1 Coding Procedure

Pick packet p at the head of the output queue.
Natives = {p}
‘Je:ﬂhopa — {nexthop(p)}
if size(p) > 100 bytes then
which_queue =1
else
which_queue =0
end if
for Neighbori = 1 to M do
Pick packet p;. the head of virtual queue Q(i, which_queue)
if ¥n € Nexthops U{i}. Pr[n can decode p & p;] > G then
P=pDpi _
Natives = Natives U{p; }
Nexthops = Nexthops U{i}
end if
end for
which_queue = !'which_queue
for Neighbori = 1 to M do
Pick packet p;. the head of virtual queue QO(i. which_queue)
if ¥n € Nexthops U{i}. Pr[n can decode p & ps] > G then
P =pDpi _
Natives = Natives U{p; }
Nexthops = Nexthops U{i}
end if
end for
return p



Packet Decoding

e Each node maintains a Packet Pool

— Packets it received or sent out

* Packets are stored in a hash table keyed on
packet id

* Encoded packet with n packets
— XOR with n — 1 packets from packet pool



Pseudo-broadcast

* Broadcast
— No ACKs
— No retransmissions
— Poor reliability and lack of back-off

* Unicast
— ACKed as soon as received
— Sender back-off exponentially if no ACKs
— Retransmissions
— More Reliable



Pseudo-broadcast

 Pseudo-broadcast

— Unicast packet to one of its recipients

— That node ACKs and hence the transmission is
reliable

— Since others listen in promiscuous mode they
receive the packet as well

— An XOR header is added after the link-layer
header listing all next hops

* Each node checks the XOR header if it is a recipient and
processes the packet



Hop-by-hop ACKs and Retransmissions

* Encoded packets require all next hops to ack

the receipt of the associated native packet

— Only one node ACKs (pseudo-broadcast)
— There is still a probability of loss to other next hops
— Hence, each node ACKs the reception of native packet

— If not-acked, retransmitted, potentially encoded with other
packets

— Overhead - highly inefficient



Hop-by-hop ACKs and Retransmissions

* Asynchronous ACKs and Retransmissions
— Cumulatively ACK every T, seconds

— If a packet is not ACKed in T, seconds,
retransmitted

— Piggy-back ACKs in COPE header of data packets

— If no data packets, send periodic control packets
(same packets as reception reports)



Preventing TCP Packet Reordering

* Asynchronous ACKs can cause packet
reordering

— TCP can take this as a sign of congestion

* Ordering agent
— Ensures TCP packets are delivered in order
— Maintains packet buffer
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Packets XOR-ed
together

Reception
Reports

ACK Block

+

v

",

Packet Format

ENCODED_NUM

PKT_ID NEXTHOP

REPORT_NUM

SRC_IP |LAST_PKT| Bit Map

MAC Header

COPE Header

ACK_NUM

Routing Header
(Optional; depends on protocol)

LOCAL_PKT_SEQ_NUM

NEIGHBOR|LAST_ACK| Ack Map

|P Header
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Control flow - Sender
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Control flow - Receiver
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Testbed

e 20 nodes
— Path between nodes are 1 to 6 hops in length
— 802.11a with a bit-rate of 6Mb/s

e Software
— Linux and click toolkit
— User daemon and exposes a new interface

— Applications use this interface
* No modification to application is necessary

e Traffic model
— udpgen to generate UDP traffic
— ttcp to generate TCP traffic
— Poisson arrivals, Pareto file size distribution



Metrics

 Network throughput

— Total end-to-end throughput (sum of throughput
of all flows in a network)

* Throughput gain

— The ratio of measured throughput with and
without COPE

— Calculate from two consecutive experiments, with
coding turned on and off
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Cumulative Fraction

Long-lived TCP flows
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Close to 1.33 Close to 1.33 Closeto 1.6

* Close to coding gain
— TCP backs-off due to congestion control
— To match the draining rate at the bottleneck
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Long-lived UDP flows
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* Close to Coding + MAC gain
— XOR headers add small overhead (5-8%)
— The difference is also due to imperfect overhearing
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Ad-hoc network - TCP

* TCP flows
— Arrive according to Poisson process
— Pick sender and receiver randomly
— Transfer files (size - Pareto distribution)

* Does not show any significant improvement
— TCP’s reaction to collision-related losses
— Hidden terminals



Ad-hoc network - TCP
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Mo. of MAC retries

Mo. of MAC retries

e Even with 15 MAC retries, 14% loss

— Due to hidden terminals

* Bottleneck never see enough traffic to make
use of coding
— Few coding opportunities



TCP with no hidden terminals

TCP Goodput in Mb/s
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38% improvement in TCP goodput
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Network Throughput in Mb/s

Ad-hoc network - UDP
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3-4x improvement in throughput
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Percentage

On an average 3 packet are coded together

Ad-hoc network - UDP
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Mesh network
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Throughput Gain

Throughput Gain
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Ratio of uplink to downlink traffic

COPE throughput gain relies on coding

opportunities

— Depends on diversity of packets in the queue of the
bottleneck node



Throughput (Mb/s)
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Conclusion

Network coding to improve the throughput of
wireless networks

COPE -Implementation of first system
architecture for wireless network coding

COPE improves the UDP throughput by 3-4x

5% to 70% throughput improvement in mesh
networks depending on downlink-uplink ratio
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