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Problem

Increase the throughput of dense 
wireless networks

Network Coding
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Current Approach
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COPE Approach
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COPE Approach

• Exploits shared nature of wireless medium

– Every node snoops on all packets

– A node stores all heard packets for a limited time

• Tell neighbors which packets it has heard

• Perform opportunistic coding

– XOR multiple packets and transmit them as single 
packet

• Decode the encoded packet using stored 
packets
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Scenario
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Outline

• Design 

• Cope Gains

• Making it work

• Implementation details

• Experimental results
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Overview

• Opportunistic  listening

• Opportunistic coding

• Learning neighbor state
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Opportunistic listening

• Exploit broadcast nature of wireless

– Set nodes in promiscuous mode

– Opportunities to overhear packets

• Store the overheard packets

– Limited time period (T = 0.5s)

• Broadcast reception reports to tell neighbors 
which packets it has stored

– Annotate with data packets

– If no data packets, send reception reports periodically
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Opportunistic coding

What packets to code together to maximize 
throughput?
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Opportunistic coding

11



Opportunistic coding

P1 + P2

Bad Coding – C can decode but A can’t
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Opportunistic coding

P1 + P3

Better Coding – Both A and C can decode
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Opportunistic coding

P1 + P3 + P4

Best Coding – Nodes A, C, D can decode
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Opportunistic coding

• Maximize the number of native packets 
delivered in a single transmission

• While ensuring that each intended next hop 
has enough information to decode its native 
packet
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Opportunistic coding

To transmit n packets: p1, …., pn

To n next hops: r1, …., rn

A node can XOR the n packets together only if
each next hop ri has all n-1 packets pj for j!=i

Choose the largest n that satisfies the above rule
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Learning Neighbor State

How does a node know what packets its 
neighbors have?

• Send reception reports

• During congestion, reports may get lost in 
collisions or may arrive late
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Learning Neighbor State

• Wireless routing protocols compute delivery 
probability between every pair of nodes and 
broadcast them

– E.g.: ETX

• Using these weights, 

– Estimate the probability that a particular neighbor  
has a packet 
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Outline

• Design 

• Cope Gains

• Making it work

• Implementation details

• Experimental results
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COPE Gains

• Coding Gain

• Coding + MAC Gain
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Coding Gain

Number of transmissions required 
by non-coding approach

Minimum number of 
transmissions used by COPE

Coding Gain  = 

Alice & Bob experiment    – Coding gain = 4/3 = 1.33
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Coding Gain

Coding gain = 4/3 = 1.33 Coding gain = 8/5 = 1.6
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Coding + MAC Gain
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• MAC divides the bandwidth equally between the 3 
contending nodes

• The router needs to transmit twice as many packets

• Hence router is a bottleneck

– Half the packets are dropped as routers queue
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Coding + MAC Gain

Alice BobRouter

A
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• COPE – XOR pairs of packets

– router drains packets twice as fast

A + B

Coding + MAC gain = 2
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Coding + MAC Gain

• For topologies with single bottleneck

Draining rate with COPE

Draining rate without COPE
Coding + MAC Gain  = 

Coding + MAC gain = 2 Coding + MAC gain = 4
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Coding + MAC Gain

• In the presence of opportunistic listening, 
COPE’s maximum Coding + MAC gain is 
unbounded.

N -> ∞
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Outline

• Design 

• Cope Gains

• Making it work

• Implementation details

• Experimental results

27



Making it work

• Packet Coding Algorithm

• Packet Decoding

• Pseudo-broadcast

• Hop-by-hop ACKs and Retransmissions

• Preventing TCP packet reordering
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Packet Coding Algorithm

• Never delaying packets
– Does not wait for additional codable packets to arrive

• Preference to XOR packets of similar lengths
– Pad zeros if different lengths

• Maintain two virtual queues per neighbor
– One for small, one for large packets

• Dequeue the packet at the head of the FIFO
– Look only at the head of the virtual queues

• Each neighbor has a high probability of 
decoding the packet – Threshold probability

29



Packet Coding Algorithm
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Packet Decoding

• Each node maintains a Packet Pool

– Packets it received or sent out

• Packets are stored in a hash table keyed on 
packet id

• Encoded packet with n packets

– XOR with n – 1 packets from packet pool
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Pseudo-broadcast

• Broadcast

– No ACKs

– No retransmissions

– Poor reliability and lack of back-off

• Unicast

– ACKed as soon as received

– Sender back-off exponentially if no ACKs

– Retransmissions

– More Reliable
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Pseudo-broadcast

• Pseudo-broadcast

– Unicast packet to one of its recipients

– That node ACKs and hence the transmission is 
reliable

– Since others listen in promiscuous mode they 
receive the packet as well

– An XOR header is added after the link-layer 
header listing all next hops

• Each node checks the XOR header if it is a recipient and 
processes the packet
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Hop-by-hop ACKs and Retransmissions

• Encoded packets require all next hops to ack
the receipt of the associated native packet
– Only one node ACKs (pseudo-broadcast)

– There is still a probability of loss to other next hops

– Hence, each node ACKs the reception of native packet

– If not-acked, retransmitted, potentially encoded with other 
packets

– Overhead - highly inefficient 
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Hop-by-hop ACKs and Retransmissions

• Asynchronous ACKs and Retransmissions

– Cumulatively ACK every Ta seconds

– If a packet is not ACKed in Ta seconds, 
retransmitted 

– Piggy-back ACKs in COPE header of data packets

– If no data packets, send periodic control packets 
(same packets as reception reports)
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Preventing TCP Packet Reordering

• Asynchronous ACKs can cause packet 
reordering

– TCP can take this as a sign of congestion

• Ordering agent

– Ensures TCP packets are delivered in order

– Maintains packet buffer
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Outline

• Design 

• Cope Gains

• Making it work

• Implementation details

• Experimental results
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Packet Format
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Control flow - Sender
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Control flow - Receiver
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Testbed

• 20 nodes
– Path between nodes are 1 to 6 hops in length
– 802.11a with a bit-rate of 6Mb/s

• Software
– Linux and click toolkit
– User daemon and exposes a new interface
– Applications use this interface

• No modification to application is necessary

• Traffic model
– udpgen to generate UDP traffic
– ttcp to generate TCP traffic
– Poisson arrivals, Pareto file size distribution
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Metrics

• Network throughput

– Total end-to-end throughput (sum of throughput 
of all flows in a network)

• Throughput gain

– The ratio of measured throughput with and 
without COPE

– Calculate from two consecutive experiments, with 
coding turned on and off
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Long-lived TCP flows

Close to 1.33 Close to 1.33 Close to 1.6

• Close to coding gain
– TCP backs-off due to congestion control

– To match the draining rate at the bottleneck
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Long-lived UDP flows

1.7 1.65 3.5

• Close to Coding + MAC gain
– XOR headers add small overhead (5-8%)

– The difference is also due to imperfect overhearing
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Ad-hoc network - TCP

• TCP flows

– Arrive according to Poisson process

– Pick sender and receiver randomly

– Transfer files (size - Pareto distribution)

• Does not show any significant improvement

– TCP’s reaction to collision-related losses

– Hidden terminals
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Ad-hoc network - TCP

• Even with 15 MAC retries, 14% loss

– Due to hidden terminals

• Bottleneck never see enough traffic to make 
use of coding

– Few coding opportunities
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TCP with no hidden terminals

38% improvement in TCP goodput
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Ad-hoc network - UDP

3-4x improvement in throughput
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Ad-hoc network - UDP
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Ad-hoc network - UDP

On an average 3 packet are coded together
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Mesh network

• COPE throughput gain relies on coding 
opportunities
– Depends on diversity of packets in the queue of the 

bottleneck node
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Fairness

More fair – more 
opportunities to 
code
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Conclusion

• Network coding to improve the throughput of 
wireless networks

• COPE -Implementation of first system 
architecture for wireless network coding 

• COPE improves the UDP throughput by 3-4x

• 5% to 70% throughput improvement in mesh 
networks depending on downlink-uplink ratio
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Thank You
Questions?
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