
Understanding the Power of Pull-
based Streaming

Protocol: Can We Do Better?

Meng ZHANG, Qian ZHANG, Lifeng
SUN and Shiqiang YANG

In IEEE Journal on Selected Areas in Communications, special
issue on Advances in Peer-to-Peer Streaming Systems, Vol.

25, No. 8, December 2007

Presented by Rabin Karki

Background
Evolution of Internet streaming technology

2

Naïve Unicast Approach

IP Multicast (1987)

Content Distribution Networks (1998)

Application Layer Multicast (1999)

P2P Internet Video Streaming/Broadcast (2003)

Background
P2P Traffic really matters

31999: Napster, first widely used p2p-application

Background
P2P is more than just file download

4

• 1999: Napster

• 2000: Gnutella, eDonkey

• 2001: Kazaa

• 2002: eMule, BitTorrent

• 2003: Skype

• 2004: Coolstreaming, PPLive, GridMedia

• 2005: TVKoo, TVAnts, PPStream, SopCast…

• 2007: Joost, Babelgum, Xunlei kankan

Application Types:
File download, Telephony, Streaming, Gaming

Introduction

• Many P2P systems employ pull-based
streaming protocol.

– Each node independently selects neighbors to
form unstructured overlay network.

– Every node periodically notifies its neighbors
about the packets it has.

– Neighboring nodes request for packets using
those notifications.

• Why pull-based?

– Simple yet robust.
5

Introduction contd…

• Issue: maximizing throughput of the P2P
overlay

• Traditional ‘tree-based’ protocol have poor
utilization.

• Other works have been done but assume that
the bandwidth capacity is known in advance.

6

Pull-based streaming

• A nice characteristic of pull-based protocol has
not been paid enough attention

– The simplest pull-based protocol is nearly optimal

– in terms of bandwidth utilization and system
throughput.

– with appropriate protocol design and parameter
settings.

7

Pull-based streaming

• A nice characteristic of pull-based protocol has
not been paid enough attention

– The simplest pull-based protocol is nearly optimal.

– in terms of bandwidth utilization and system
throughput.

– with appropriate protocol design and parameter
settings.

– without any intelligent scheduling and proactive
bandwidth measurement.

8

Pull-based streaming

• The near-optimality is achieved at the cost of
tradeoff between control overhead and delay.

9

Delay

C
o

n
tr

o
l o

ve
rh

e
ad

Depends on how frequently
the notifications are sent.

• To break the tradeoff, authors propose pull-
push hybrid system.

– Considers pull-based protocol as highly efficient
bandwidth-aware multicast routing approach.

– And push down the packets along the tree formed
by pull-based protocol.

• The hybrid system achieves near optimal
throughput with lower delay, smaller
overhead – with less server bandwidth.

10

Before we begin…

Notations
• τ = request interval at which the node asks its neighbors for

packets.
• W = request window size, in secs.
• B = buffer size (>W, usually 1 min).
• Tw = waiting timeout (rtt+τ+tw).
• tw = additional waiting time to prevent duplicate requests.
• r = packetized streaming rate (including IP, UDP, RTP

headers) (309 kbps in the paper).
• R = raw streaming rate (300 kbps in the paper).
• l = packet size (1290 B, including 40 B header).
• ui = upload capacity of sender i, in kbps.
• bi = actual bandwidth consumed of sender i, in kbps.

11

Pull-based method: Protocol

Overlay construction

• Nodes first contact Rendezvous Point (RP) to
join a streaming session.

• Then each node randomly finds some other
nodes to form an unstructured overlay
network.

12

Pull-based method: Protocol

13

All the nodes self-organize into a random graph.

root

1 2 3

54

Pull-based method: Protocol

• Video stream is divided into fixed length packets called
streaming packets marked by sequence numbers.

• Each node has a sliding window containing all the packets it is
interested in currently.

14

root

1 2 3

54

1 2 4 1 2 3

2 31 2

Pull-based method: Protocol

• Each node periodically sends buffer map packets to
notify all its neighbors about the packets it has in its
buffer.

15

root

1 2 3

54

1 2 4 1 2 3

2 31 2

I have 1,2 I have 2,3

I have 1,2, 4 I have 1,2, 3

Pull-based method: Protocol

• Now the head of the request window of Node 2 becomes 4, and it
asks for packets in its request window from its neighbors.

• If multiple nodes have the same packet, it will be requested from
one of its neighbors randomly with the same probability.

16

root

1 2 3

54

1 2 4 1 2 3

2 31 2

Request 1 Request 2

Request 4 Request 3

Pull-based method: Protocol

• If the packet doesn’t arrive within Tw of the request and it is
still in the request window, it will be requested again.

17

root

1 2 3

54

1 2 4 1 2 3

2 31 2

1 2 4
Gimme 3

Pull-based method: Protocol

Using UDP for streaming packets transmission
• Can use relatively small timeout to conclude if a packet

is dropped.
• If TCP is used, packets spend a lot of time in sending

buffer if sending rate is higher than the upload rate.
• The sender will send all the requested packets within τ

at CBR.
• Dropped packets won’t be retransmitted until a new

request for the same packet is received.
• So, if a packet arrives, it will do so within rtt + τ.

– To account for jitter, additional tw is added to Tw.

18

Pull-based method: Evaluation by
simulation – Setup
• Simulators run on the simulator written by Meng

ZHANG (first author).
• On two 4-CPU 8 GB machines.
• No queue management in routers.
• Default number of nodes = 10,000.
• Default neighbor count = 15.
• Default request window = 20 secs.
• Upload capacity of source node = 2Mbps.
• Nodes with 3 types of connections: upload/download –

1mbps/3mbps, 384kbps/1.5mbps and
128kbps/768kbps

19

Pull-based method: Evaluation by
simulation – Metrics used

• Capacity supply ratio =
(n = total number of nodes)

• So necessary condition to support P2P streaming
system is capacity supply ratio ≥ 1.

• Maximum throughput is achieved when every node
in a system of capacity supply ratio = 1, can get the
entire stream.

20

)1(*/)(
1




nRu
n

i

i

Table I: Different capacity supply ratios by adjusting the fraction of different peer types

Pull-based method: Evaluation by
simulation – Metrics used

• Average deliverable rate and average delivery
ratio: deliverable rate of a node is the streaming
rate received (excluding duplicate packets and
control packets, including streaming packet
headers). The packets have to arrive before
playback deadline to be counted in. delivery ratio
of a node is its deliverable rate/packetized
streaming rate sent out from the source node.

• Coming up… the derivations of these two metrics.

21

Pull-based method: Evaluation by
simulation – Metrics used
• Latest 10 second samples of a node (received by it and

sent to it by the source) are called sampled deliverable
rate and sampled delivery ratio, respectively.

• Average of those two, of all the nodes at a particular
time, are called average sampled – deliverable rate
and delivery ratio – of that session, respectively.

• When system reaches steady state, average of all the
average sampled deliverable rate and delivery ratio of
the session throughout the whole session are called
average deliverable rate and average delivery ratio.

• Those two are the terms we set out to define in the
first place and will be used later in evaluations.

22

Pull-based method: Evaluation by
simulation – Metrics used
• Average upload rate: the upload rate of a node is the rate

at which it successfully uploads packets(including
streaming and control packets). The average upload rate of
the whole session is calculated as before.

23

Pull-based method: Evaluation by
simulation – Metrics used
• Average upload rate: the upload rate of a node is the rate

at which it successfully uploads packets(including
streaming and control packets). The average upload rate of
the whole session is calculated as before.

• Packet arrival delay: difference between time at which it
arrives at the node and at which it was sent out from the
source.

24

Pull-based method: Evaluation by
simulation – Metrics used
• Average upload rate: the upload rate of a node is the rate

at which it successfully uploads packets(including
streaming and control packets). The average upload rate of
the whole session is calculated as before.

• Packet arrival delay: difference between time at which it
arrives at the node and at which it was sent out from the
source.

• Control packet rate: rate at which control packets (buffer
map, request, member table, connection setup, heart-beat
packets etc.) are sent.

25

Pull-based method: Evaluation by
simulation – Metrics used
• α-playback delay: minimum buffered time when delivery

ratio reaches α is α-playback time. α-playback delay is the
delay between time at which the packet is sent out from
the server and α-playback time of that packet. (α = 0.99)

• Packet arrival delay: difference between time at which it
arrives at the node and at which it was sent out from the
source.

• Control packet rate: rate at which control packets (buffer
map, request, member table, connection setup, heart-beat
packets etc.) are sent.

26

Pull-based method: Evaluation by
simulation – Simulation results

27

Packetized streaming rate

When capacity supply ratio ≥ 1.15,
average deliverable rate reaches
nearly best deliverable rate.

When capacity supply ratio < 1.15,
average upload rate is very close to
the average upload capacity, which
means the capacity is almost fully
utilized.

Pull-based method: Evaluation by
simulation – Simulation results

28

When capacity supply ratio ≥ 1.15
and request interval = [200, 800],
average delivery ratio is close to 1.
And smaller request interval gives
the better delivery ratio. (because we
can afford to irritate source nodes by
pinging as often as we can)

When capacity supply ratio < 1.15,
delivery ratio gets worse when the
request interval is very small (<400
ms)

Pull-based method: Evaluation by
simulation – Simulation results

29

Delivery ratio ≈ 1, when request
window size reaches 20 sec and
request interval < 1 sec.

For the same window size, smaller
request interval gives better delivery
ratio .

Capacity supply ratio is fixed at 1.2

Pull-based method: Evaluation by
simulation – Simulation results

30

When capacity supply ratio = 1.2 and
neighbor count exceeds 60, average
deliverable rate drops below
packetized streaming rate, but the
upload capacity is almost fully
utilized.
But when capacity supply ratio = 1.3,
deliverable rate remains optimal
even when neighbor count reaches
80.

Pull-based method: Evaluation by
simulation – Simulation results

31

This graph is self-explanatory.

Pull-based method: Evaluation by
simulation – Simulation results

32

Almost all the peers have playback
delay over 16 secs. Smaller request
intervals seem to decrease the delay,
but they produce more control
packets, as we saw before.

Capacity supply ratio is fixed at 1.2

Pull-based method: Evaluation by
simulation – Simulation results

• All the simulations so far were done on static
environment (i.e. users do not join or leave
during the session).

• When using traces from dynamic environment
(real-deployed P2P streaming system:
GridMedia), authors found results were pretty
similar to what we saw in the simulations.

33

Pull-based method: Evaluation on
PlanetLab

34

Capacity supply ratio is fixed at 1.2

•Number of nodes = 409.
•Each node can have up to 15
neighbors.
•Request interval = 500 ms.
•Source node upload capacity =
2Mbps.

•Delivery ratio is above 0.99 most of
the time.
•Playback delay is around 13 secs
(smaller than that in simulation).

Pull-push hybrid method

• We saw that pull-based protocol is nearly
optimal in terms of capacity utilization.

• Push-pull hybrid method tries to improve the
pull-based protocol by pushing the streaming
packets down the tree formed by the pull
technique.

35

Pull-push hybrid method: Protocol

• Overlay construction is done as before.

36

1. Partition stream evenly into n sub streams.

Pull-push hybrid method: Protocol

37

2. Group every continuous n packets into a packet group.

1. Partition stream evenly into n sub streams.

Pull-push hybrid method: Protocol

38

3. Cluster every continuous g packet groups into a packet
party.

1. Partition stream evenly into n sub streams.
2. Group every continuous n packets into a packet group.

Pull-push hybrid method: Protocol

39

4. Each packet group in a party is numbered from 0 to g-
1, so packet group no = floor(s/n) mod g.

1. Partition stream evenly into n sub streams.
2. Group every continuous n packets into a packet group.
3. Cluster every continuous g packet groups into a packet party.

Pull-push hybrid method: Protocol

• When a peer joins, it asks neighbors to send
the buffer maps periodically (unlike pull-based
method, buffer maps are requested explicitly).

• Then it pulls the required packet according to
the buffer maps.

• Once a packet in packet group 0 of one packet
party is requested successfully, peer will send
a sub stream subscription to let it push the
rest of the packets in the same sub stream.

40

Pull-push hybrid method: Protocol

41

95%

D
e

liv
er

y
R

at
io

0%

Pushed packets

Stop requesting for buffer maps
Start requesting for buffer maps

Note: figure is only approximate.

•When over 95% packets are pushed, the node will stop requesting
for buffer maps.
•When delivery ratio drops below 95%, start requesting again.
•Pushed but lost packets are “pulled” after a timeout.

Pull-push hybrid method : Evaluation
by simulation – Metrics

Following additional metrics are used in pull
push hybrid method evaluation:

• Redundancy and redundancy packet rate:
Redundancy = duplicate streaming
packets/total traffic. Redundancy packet rate
is rate of duplicated streaming packets.

• Push fraction: pushed streaming packets/total
streaming packets

42

Pull-push hybrid method : Evaluation
by simulation – Results

43

Pull-push is also nearly optimal in
terms of bandwidth utilization.
Deliverable rate reaches optimum
at capacity supply ratio of 1.10,
which was 1.15 in pull-based
method.

Pull-push hybrid method : Evaluation
by simulation – Results

44

Playback delays are considerably
smaller in push-pull method.

Pull-push hybrid method : Evaluation
by simulation – Results

45

The overhead of push-pull hybrid
method is much smaller than that
of pull-based method.

Push-pull hybrid method: Evaluation
on PlanetLab
• Configuration is the same as before.

46

Push-pull hybrid method: Deployment

• Pull-push hybrid deployed in GridMedia,
adopted by CCTV to live broadcast since Jan
2005.

• Supported up to 224,453 concurrent users,
which is ~270x more users than client-server
based system. (Sounds good!)

47

Limitations

• Both the protocols are not contribution-
aware.

• Generate heavy core-ISP and cross-ISP traffic
due to random peer selection.

• Server upload bandwidth required is not low
enough for a typical home user to broadcast a
video.

• What happens when a node is behind
Firewall/NAT?

48

Personal opinions

+ Detailed experimentations and result sets.

- Poor grammar (examples: …how to only use…, …when it

is finally arrived…, …protocols has…, …it may joins again. etc.)

49

Acknowledgements

• Some figures and slides taken from M. Zhang’s
PhD defense slides.

• Some images taken from Google/Bing
searches.

50

Thank you!

51

