The War Between Mice and Elephants

Liang Guo and Ibrahim Matta Boston University ICNP 2001

> Presented by Thangam Seenivasan

Outline

- Introduction
- Analysis and Motivation
- Architecture
- Simulation Results
- Discussion
- Conclusion

TCP flows in the Internet

Is Internet fair?

- In a fair network
 - Short connections expect relatively fast service compared to long connections

• Sometimes this is not the case with Internet

Why?

TCP

Short TCP flows

1. Most short flows finish before slow start finish

- Transmission rate increases slowly
- Does not get the fair share of the bandwidth

Short TCP flows

2. Short flows have small congestion window

- Fast retransmit needs 3 dup ACKs
- Small cwnd, not enough packets to activate dup Acks
- So timeout happens
- Timeout severely degrades the performance of TCP

Short TCP flows

3. Conservative Initial Timeout (ITO)

- No sampling data available
- Conservative timeout for (SYN, SYN-ACK) and 1st data packet
- Disastrous effect on short connection performance if these packets lost

Existing and proposed solution

Slow start	Small cwnd & Packet loss	ITO & 1 st packet loss
Use large initia	window value	Reduce ITO
		Get RTT from previous records or neighbors
	Reduce the loss pro	bability these packets

Preferential treatment to short flows

- Differentiated Services Architecture
 - Classify flows into short and long flows
 - Isolate packets from short flows
 - Reduce the loss probability of these packets

With the help of

- Active Queue Management
 - RED In and Out (RIO)
 - RED with two flow classes (short and long flows)

RIO-PS

RED In and Out with preferential treatment to short flows

Outline

- Introduction
- Analysis and Motivation
- Architecture
- Simulation Results
- Discussion
- Conclusion

Sensitivity of TCP flows to loss rate

Average transmission time

For short flows, Xmission time increases drastically after certain loss rate

Variance of transmission times

Variation occurs across experiments because

- 1. When loss rate is high, TCP enters exponential back-off phase
 - Causes Significantly high variability in transmission time of each individual packet in a flow
- 2. When loss rate is low, depending on when the loss happens
 - Slow start phase aggressive retransmission
 - Congestion avoidance phase less aggressive

Variance of transmission times

COV = Standard deviation/mean

Conclusion and Motivation

- Short flows are more sensitive to increase in loss probability
- Variability of transmission time is closely related to fairness
- Important to give preferential treatment to short flows
 - Reduce the loss probability for short flows

Preferential treatment to short flows

- Simulation ns simulator
 - 10 long (10000-packet) TCP-Newreno
 - 10 short (100-packet) TCP-Newreno
 - Competing over a 1.25Mbps link
- Vary queue management policy
 - Drop tail
 - RED
 - RIO-PS
 - Reduce the loss probability of short flows

Link Utilization

Link Utilization - RIO-PS

- Short flows temporarily steal more bandwidth from long flows
- In the long run, their early completion returns an equal amount of resources to long flows

It might enhance the transmission of long flows
 Less disturbed by short flow

Network Goodput

More loaded network

RIO-PS has higher goodput

Conclusion

- Preferential treatment to short flows
 - Faster response to short flows
 - Improves the overall goodput

Outline

- Introduction
- Analysis and Motivation
- Architecture
- Simulation Results
- Discussion
- Conclusion

Diffserv Architecture

- Classifies and tags packets as Short or Long
- Maintain per flow packet count

Edge Router – Packet classification

Threshold based approach

- Maintains a counter for every flow
 Counts the number of packet per flow
- Maintain threshold L_t
 - When counter exceeds L_t tag as long flow
 - Else tag as short flow
- Flow table is updated periodically Every T_{u}
 - If no packets from a flow in T_u time units, remove entry

Edge Router – Packet classification

- Threshold *L_t* adjusted dynamically
 - Balance the number of active short and long flows

- Short-to-Long-Ratio (*SLR*)
 Configurable parameter
- Every T_c adjust L_t to achieve the target SLR

Core Router – RIO-PS

- RIO RED with In (Short) and Out (Long)
- Preferential treatment to short flows
 - Short flows
 - Packet dropping probability computed based on the average backlog of short packets only (Q_{short})
 - Long flows
 - Packet dropping probability computed based on the total average queue size (Q_{total})

RIO-PS

Two separate sets of RED parameters for each flow class

Features of RIO-PS

- Single FIFO queue is used for all packets
 Packet reordering will not happen
- Inherits all properties of RED
 - Protection of bursty flows
 - Fairness within each class of traffic
 - Detection of incipient congestion

Outline

- Introduction
- Analysis and Motivation
- Architecture
- Simulation Results
- Discussion
- Conclusion

Simulations setup

- ns-2 simulations
- Web traffic model
 - HTTP 1.0
 - Exponential inter-page arrival (mean 9.5 sec)
 - Exponential inter-object arrival (mean 0.05 sec)
 - Uniform distribution of objects per page (min 2 max 7)
 - Object size; bounded Pareto distribution (min = 4 bytes, max = 200 KB, shape = 1.2)
 - Each object retrieved using a TCP connection

Simulation topology

Network configuration

Description	Value
Packet Size	500 bytes
Maximum Window	128 packets
TCP version	Newreno
TCP timeout Granularity	0.1 seconds
Initial Retransmission Timer	3.0 seconds
B/W delay product	≈ 200 pkts (Exp1)
(BDP)	≈ 120 pkts (Exp2)
Bottleneck	DropTail: 1.5× BDP
Buffer Size (B)	RED/RIO-PS: 2.5×BDP
Q. Parameters	$(mxn_{th}, max_{th}, P_{max}, w_q)$
Q. Parameters RED	$(mxn_{th}, max_{th}, P_{max}, w_q)$ (0.15B, 0.5B, 1/10, 1/512)
Q. Parameters RED RIO-PS short	(mxn _{th} , max _{th} , P _{max} , w _q) (0.15B, 0.5B, 1/10, 1/512) (0.15B, 0.35B, 1/20, 1/512)
Q. Parameters RED RIO-PS short RIO-PS long	(mxn _{th} , max _{th} , P _{max} , w _q) (0.15B, 0.5B, 1/10, 1/512) (0.15B, 0.35B, 1/20, 1/512) (0.15B, 0.5B, 1/10, 1/512)
Q. Parameters RED RIO-PS short RIO-PS long RED & RIO-PS	(mxn _{th} , max _{th} , P _{max} , w _q) (0.15B, 0.5B, 1/10, 1/512) (0.15B, 0.35B, 1/20, 1/512) (0.15B, 0.5B, 1/10, 1/512) ecn_on, wait_on, gentle_on
Q. Parameters RED RIO-PS short RIO-PS long RED & RIO-PS Edge Router	$\begin{array}{l} (mxn_{th}, max_{th}, P_{max}, w_q) \\ (0.15B, 0.5B, 1/10, 1/512) \\ (0.15B, 0.35B, 1/20, 1/512) \\ (0.15B, 0.5B, 1/10, 1/512) \\ ecn_on, wait_on, gentle_on \\ SLR = 3, T_u = 1 \ sec_n T_c = 10 \ sec \end{array}$
Q. Parameters RED RIO-PS short RIO-PS long RED & RIO-PS Edge Router Foreground Traffic	$\begin{array}{l} (mxn_{th}, max_{th}, P_{max}, w_q) \\ (0.15B, 0.5B, 1/10, 1/512) \\ (0.15B, 0.35B, 1/20, 1/512) \\ (0.15B, 0.5B, 1/10, 1/512) \\ \text{ecn_on, wait_on, gentle_on} \\ SLR = 3, T_u = 1 \ sec_n T_c = 10 \ sec \end{array}$
Q. Parameters RED RIO-PS short RIO-PS long RED & RIO-PS Edge Router Foreground Traffic (Src, Dest)	$\begin{array}{l} (mxn_{th}, max_{th}, P_{max}, w_q) \\ (0.15B, 0.5B, 1/10, 1/512) \\ (0.15B, 0.35B, 1/20, 1/512) \\ (0.15B, 0.5B, 1/10, 1/512) \\ ecn_on, wait_on, gentle_on \\ SLR = 3, T_u = 1 \ sec_n T_c = 10 \ sec \\ \end{array}$ (Server Pool, Client Pool)
Q. Parameters RED RIO-PS short RIO-PS long RED & RIO-PS Edge Router Foreground Traffic (Src, Dest) Long Connection Size	$\begin{array}{l} (mxn_{th}, max_{th}, P_{max}, w_q) \\ (0.15B, 0.5B, 1/10, 1/512) \\ (0.15B, 0.35B, 1/20, 1/512) \\ (0.15B, 0.5B, 1/10, 1/512) \\ ecn_on, wait_on, gentle_on \\ SLR = 3, T_u = 1 \ sec_n T_c = 10 \ sec \\ \hline \\ (Server Pool, Client Pool) \\ 1000 \ packets \end{array}$

Simulations details

- The load is carefully tuned to be close to the bottleneck link capacity
- RIO parameters
 - Short TCP flows are guaranteed around 75% of the total bandwidth in times of congestion
- Experiments run 4000 seconds with a 2000 second warm-up period

Average response time relative to RED

ITO = 3 sec

Average response time relative to RED

Average response time reduced by 10-15% for short flows

Average response time reduced by 15-25% for medium sized flows $_{\mbox{\tiny 35}}$

Instantaneous Queue Size

Load in the bottleneck link has high variability over time due to the heavy-tailedness of the file size distribution

Instantaneous Drop/Mark rate

Also, Short TCP flows are not responsible for controlling congestion because of the time scale at which they operate.

Preferential treatment to short flows does not hurt the network

Study of Foreground Traffic

- Periodically inject 10 short flows (every 25 seconds) and 10 long flows (every 125 seconds) as foreground TCP connections and record the response time for i_{th} connection
- Fairness index
 - For any give set of response times (x₁, .., x_n), the fairness index is

$$\left(\sum_{i=1}^{n} x_{i}\right)^{2}$$
$$n \sum_{i=1}^{n} x_{i}^{2}$$

Fairness Index – Short Connections

Fairness Index – Long Connections

Transmission time – short connections

Transmission time – long connections

RIO-PS does not hurt long flow performance

Goodput

Scheme	DropTail	RED	RIO-PS
Exp1 (ITO=3sec)	4207841	4264890	4255711
Exp1 (ITO=1sec)	4234309	4254291	4244158
Exp2 (ITO=3sec)	4718311	4730029	4723774

RIO-PS does not hurt overall goodput

Slightly improves over DropTail

Outline

- Introduction
- Analysis and Motivation
- Architecture
- Simulation Results
- Discussion
- Conclusion

- Simulation Model
 - Dumbbell and Dancehall (one-way traffic) model
 - All TCP connections have same propagation delay
 - Complicated topologies may impact the performance
- Queue Policy
 - RIO does not provide class based guarantee
 - PI controlled RIO queue or proportional Diffserv gives better control over classified traffic

- Deployment Issues
 - Edge routers need to maintain per flow state information.
 - Edge router state maintenance and classification does not have a significant impact on the end to end performance.
 - Incrementally deployable
 - RIO-PS implemented only at bottleneck links
 - Advanced edge devices may be placed in front of busy web server cluster

- Flow Classification
 - Threshold based flow classification
 - First few packets of long TCP flow treated same as short flows
 - This mistake enhances performance
 - First few packets of the long flow are similar to short flow and vulnerable to packet losses
 - Makes the system fair to all TCP connections.

- Controller Design
 - Edge load control is a topic of further research
 - Preliminary results indicate performance is not sensitive to SLR
 - SLR depends on T_c and T_u
 - Smaller values of T_c and T_u may increase overhead
- Malicious users
 - Users can break their long transmission into small pieces to get fast service
 - This is less likely due to the overhead of fragmentation and reassembly

Outline

- Introduction
- Analysis and Motivation
- Architecture
- Simulation Results
- Discussion
- Conclusion

Conclusion

- TCP major traffic in the Internet
- Proposed Scheme is a Diffserv like architecture
 - Edge routers classifies TCP flow as long or short
 - Core routers implements RIO-PS
- Advantages
 - Short flow performance improved in terms of fairness and response time.
 - Long flow performance is also improved or minimally affected since short flows are rapidly served.
 - System overall goodput is improved
 - Flexible Architecture, can be tuned largely at edge routers

Acknowledgements

- Thanks to Professor. Bob Kinicki, Matt Hartling and Sumit Kumbhar.
- Some figures in this presentation are taken from their class presentation and modified.