Collision Aware Rate Adaptation (CARA)

Bob Kinicki
Computer Science Department
rek@cs.wpi.edu
Outline

• Introduction to Dynamic Rate Adaptation
• Related Work
 • Classification
 • ARF
 • RBAR
• CARA-1 and CARA-2
• Simulation Results
• Conclusions and Future Work
Fig. 1 CSMA/CA protocol of IEEE 802.11 MAC DCF. [N. Kim]
"Adjust transmission rate on the fly"

Fig. 2 IEEE 802.11b HR/DSSS PHY framing structure.

[N. Kim]
BER vs SNR

Figure 2. IEEE 802.11b BER vs. SNR

[Pavon]
Figure 4. IEEE 802.11b throughput vs. SNR

[Pavon]
Figure 14: Empirical DCF fairness with respect to individual throughput share as a function of offered load for 16 iPAQs in indoor office environment. [Choi]
Fig. 2. RTS/CTS exchange mechanism of IEEE 802.11
RTS/CTS Summary

- RTS/CTS can reduce collisions.
- RTS/CTS can guard against and reduce hidden terminals.
- RTS/CTS adds overhead that reduces throughput.
- **Normally, RTS/CTS is turned off!**
<table>
<thead>
<tr>
<th>Rate Adaptation Algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>AARF</td>
</tr>
<tr>
<td>CARA</td>
</tr>
<tr>
<td>Fast-LA</td>
</tr>
<tr>
<td>LD-ARF</td>
</tr>
<tr>
<td>MPDU</td>
</tr>
<tr>
<td>PER</td>
</tr>
<tr>
<td>RRAA</td>
</tr>
<tr>
<td>ARF</td>
</tr>
<tr>
<td>CROAR</td>
</tr>
<tr>
<td>HRC</td>
</tr>
<tr>
<td>MiSer</td>
</tr>
<tr>
<td>OAR</td>
</tr>
<tr>
<td>RBAR</td>
</tr>
<tr>
<td>SampleRate</td>
</tr>
<tr>
<td>AMRR</td>
</tr>
<tr>
<td>DOFRA</td>
</tr>
<tr>
<td>LA</td>
</tr>
<tr>
<td>MultiRateRetry</td>
</tr>
<tr>
<td>ONOE</td>
</tr>
<tr>
<td>RFT</td>
</tr>
<tr>
<td>SwissRA</td>
</tr>
</tbody>
</table>
Rate Adaptation Algorithms

1997 ARF
1998
1999
2000
2001 RBAR
2002 MPDU OAR PER
2003 LA MiSer SwissRA
2004 AARF AMRR HRC MultiRateRetry
2005 Fast-LA LD-ARF RFT SampleRate
2006 CARA CROAR DOFRA RRAA
2007
Rate Adaptation Algorithms

Uses recent history and probes: ARF, AARF, SampleRate
Long interval smoothing: ONOE, SampleRate
Multiple rates: MultiRateRetry, AMRR, RRAA
Uses RTS/CTS: RBAR, OAR, CROAR, CARA
Uses RSSI to approximate SNR, each node maintains 12 dynamic RSS thresholds: LA
Puts checksum on header and use NACK to signal link loss error: LD-ARF
Table lookup with thresholds: HRC, MPDU(len, rSNR, count)
Fragmentation: DOFRA, RFT
Miscellaneous: PER, MiSer, SwissRA, Fast-LA
Auto Rate Fallback (ARF)

- When two consecutive ACK frames are not received correctly, the second retry and subsequent transmissions are sent at the next lower rate and a timer is started.
- When the number of successfully received ACKs reaches 10 or the timer goes off, a probe frame is sent at the next higher rate. However, if an ACK is NOT received for this frame, the rate is lowered back and the timer is restarted.
Figure 1: Mode selection comparison between ARF and AARF.
Receiver Based Auto Rate (RBAR)

- Receivers control sender's transmission rate.
- RTS and CTS are modified to contain info on size and rate \{not 802.11 compatible\}.
- Uses analysis of RTS reception (RSSI) to estimate SNR and choice sent back to sender in CTS.
- Receiver picks rate based on apriori SNR thresholds in a lookup table.
Collision Aware Rate Adaptation (CARA)

CARA uses two methods for identifying collisions:

1. RTS probing

2. Clear Channel Assessment (CCA) detection
RTS Probing Idea:
Assume all RTS/CTS transmission failures after a successful RTS/CTS exchange must be due to channel errors.

(Note - this assumes hidden terminals are not possible.)
• Data frame transmitted without RTS/CTS.

• If the transmission fails, RTS/CTS exchange is activated for the next retransmission. If this retransmission fails {assume channel quality problem}, then the rate is lowered.

• If retransmission with RTS/CTS is successful {assume collision occurred}, stay at same rate and send next frame without RTS/CTS.
Fig. 4. Illustration of ARF and RTS-Probing timelines for a two-station network, when channel status is good enough to accommodate the highest transmission rate of the 802.11b PHY, i.e., 11 Mbps.
Clear Channel Assessment (CCA)

Fig. 5. Three possible cases of collision. In the second case, the collision can be detected via CCA detection.

[J. Kim]
CCA Collision Detection

- **Case 2**: It is a collision.
 - Transmit without increasing failure count and lowering the transmission rate. No RTS/CTS probe is needed.

- **Case 1 and Case 3**: Cannot determine that a collision has occurred.
 - Initiate RTS/CTS probe scheme.
Fig. 6. Throughput comparison of our proposed rate adaptation scheme (CARA-1) against RTS/CTS, ARF, and single-rate schemes for one-to-one topology networks with various distance (r)
NS-2 Simulation Details

- 20dBm transmit power
- Static stations; 1500 octet MAC payload
- BER vs SNR curves measured in AWGN (Additive White Gaussian Noise) environment without fading.
- Set background noise to -96dBm
- Simulate indoor settings
- Use Ricean fading model for multi-path fading time-varying wireless conditions.
Fig. 7. Throughput comparison of our proposed rate adaptation scheme (CARA-1) against RTS/CTS and ARF for star-topology networks with various number of contending stations.
Fig. 8. Throughput comparison of our proposed rate adaptation schemes (CARA-1 and CARA-2) against ARF for line-topology networks with various number of contending stations with randomly chosen data frame sizes and stations’ positions.
Figure 9a: 50 scenarios
Figure 9b
Varying contending stations

![Graph showing varying contending stations](image)
Figure 10 Adaptability Comparison

(a) ARF

(b) CARA-1

(c) CARA-2

Legend:

+ Success
□ Channel error
Δ Collision
▽ Collision detected by CCA Detection
Table II

Comparison of Three Testing Schemes for the 30-Second Simulation Run

<table>
<thead>
<tr>
<th></th>
<th>ARF</th>
<th>CARA-1</th>
<th>CARA-2</th>
</tr>
</thead>
<tbody>
<tr>
<td># of tx attempts</td>
<td>1344</td>
<td>3092</td>
<td>3246</td>
</tr>
<tr>
<td># of tx successes</td>
<td>1094</td>
<td>2518</td>
<td>2643</td>
</tr>
<tr>
<td>Throughput (Mbps)</td>
<td>1.58</td>
<td>3.37</td>
<td>3.49</td>
</tr>
</tbody>
</table>
Conclusions

- CARA is more likely to make correct rate adaptation decisions than ARF.
- CARA requires no change to the 802.11 standard (unlike RBAR).
- CARA significantly outperforms ARF in all simulated multiple contending environments.
Future Work

- Look at changes to the increase rate algorithm [CARA-RI].
- Study optimization of operational CARA parameters.
- Address possibility of hidden terminal detection [CARA-HD].
- Built a working CARA prototype using MadWIFI driver.
Multiple APs
multiple clients (heterogeneous)
Hidden Terminals

Without a hidden terminal, loss ratio ~5.5%. One hidden AP with mild sending rate (0.379 Mbps) yields:

<table>
<thead>
<tr>
<th></th>
<th>ARF</th>
<th>AARF</th>
<th>SampleRate</th>
<th>FixedRate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goodput (Mbps)</td>
<td>0.65</td>
<td>0.56</td>
<td>0.58</td>
<td>1.46</td>
</tr>
<tr>
<td>Loss Ratio</td>
<td>61%</td>
<td>60%</td>
<td>59%</td>
<td>60%</td>
</tr>
</tbody>
</table>

Table 1: Performance of different rate adaptation algorithms in the presence of hidden stations. [Wong]
Seongkwan Kim, Sunghyun Choi, Daji Qiao, and Jongseok Kim

Fig. 1. Throughput comparison in random-topology networks.
Questions?

Collision Aware Rate Adaptation (CARA)