
XORs in the Air:

Practical Wireless Network Coding

Sachin Katti

Hariharan Rahul

Wenjun Hu

Dina Katabi

Muriel Medard

Jon Crowcroft

Presented by:

Suvesh Pratapa

suveshp@wpi.edu



Outline

 Background

 COPE – Introduction, Overview

 Understanding COPE’s Gains

 Design Issues

 Implementation

 Experimental Results

 Discussion and Conclusion

 Comments



 Ahlswede et al. – Butterfly Example in “Network Information Flow”, 

IEEE Transactions on Information Theory, 2000

Network Coding – Background

Allowing routers to mix the bits in forwarding messages can increase 

network throughput

(Achieves multicast capacity)

This is the basis for Network Coding!



Chronology of Research

 Li et al. – Showed that linear codes are sufficient to achieve 
maximum capacity bounds (2003)

 Koetter and Medard – Polynomial time algorithms for encoding and 
decoding (2003)

 Ho et al. – Extended previous results to a randomized setting 
(2003)

 Studies on wireless network coding began in 2003 as well! (Shows 
that it was a high interest research area)

 More work on wireless network coding with multicast models 
(2004) 

 Lun et al. – Problem of minimizing communication cost in wireless 
networks can be formulated linearly (2005) – Used multicast 
model as well!

So all the previous work was theoretical and assumes multicast traffic.

 Authors introduced the idea of opportunistic coding for wireless 
environments in 2005

Why is it different?

They address the common case of unicast traffic, bursty flows and other practical issues.



Current Paper

 Explores the utility of network coding in 

improving the throughput of wireless networks.

 Authors extend the theory of their 

opportunistic coding architecture (COPE) by 

application in a practical scenario.

 Presents the first system architecture for 

wireless network coding.

 Implements the design, creating the first 

deployment of network coding in a wireless 

network.

 Studies the performance of COPE.



COPE

 What does being opportunistic mean?

Each node relies on local information to detect and exploit coding 

opportunities when they arise, so as to maximize throughput.

 COPE inserts an opportunistic coding shim 

between the IP and MAC layers.

 Enables forwarding of multiple packets in 

a single transmission.

 Based on the fact that intelligently mixing 

packets increases network throughput.



Design Principles:

◦ COPE embraces the broadcast nature of the 
wireless channel.

◦ COPE employs network coding.



Inside COPE

COPE incorporates three main techniques:

◦ Opportunistic Listening

◦ Opportunistic Coding

◦ Learning Neighbor State



Opportunistic Listening

 Nodes are equipped with omni-directional 

antennae

 COPE sets the nodes to a promiscuous 

mode.

 The nodes store the overheard packets for 

a limited period T (0.5 s)

 Each node also broadcasts reception reports 

to tell it’s neighbors which packets it has 

stored.



Opportunistic Coding

Rule:

“A node should aim to maximize the number 

of native packets delivered in a single 

transmission, while ensuring that each intended 

next-hop has enough information to decode it’s 

native packet.”



Issues:

◦ Unneeded data should not be forwarded to 

areas where there is no interested receiver, 

wasting capacity.

◦ The coding algorithm should ensure that all 

next-hops of an encoded packet can decode 

their corresponding native packets.

Rule: To transmit n packets p1 … pn to n next-hops r1 … rn, a 

node can XOR the n packets together only if each next-hop r i

has all n - 1 packets pj for j ≠ i



Learning Neighbor State

 A node cannot solely rely on reception reports, and may need to guess 
whether a neighbor has a particular packet.

 To guess intelligently, we can leverage routing computations.

The ETX metric computes the delivery probability between nodes and 
assigns each link a weight of 1/(delivery_probability)

 In the absence of deterministic information,

COPE estimates the probability that a particular neighbor has a packet, as 
the delivery probability of the link between the packet’s previous hop and 
the neighbor.

A B C
Probability that C 

has the packet = p

Delivery probability = pAC

“p increases with pAC”



Understanding COPE’s Gains

Coding Gain

◦ Defined as the ratio of no. of transmissions required 
without COPE to the no. of transmissions used by 
COPE to deliver the same set of packets.

◦ By definition, this number is greater than 1.

(4/3 for Alice-Bob Example)

◦ Theorem: In the absence of opportunistic listening, COPE’s 
maximum coding gain is 2, and it is achievable.

Coding Gain achievable = 2N/(N+1)

This value tends to 2 as N grows.



In the presence of opportunistic listening

Achievable Coding 

Gain = 1.33

Achievable Coding 

Gain = 1.6



Understanding COPE’s Gains

Coding + MAC Gain

◦ It was observed that throughput improvement using 

COPE greatly exceeded the coding gain.

◦ Since it tries to be fair, the MAC layer divides the 

bandwidth equally between contending nodes.

◦ COPE allows the bottleneck nodes to XOR pairs of 

packets and drain them quicker, increasing the 

throughput of the network.

◦ For topologies with a single bottleneck, the Coding + 

MAC Gain is the ratio if the bottleneck’s draining rate 

with COPE to it’s draining rate without COPE.



 Theorem: In the absence of opportunistic listening, 

COPE’s maximum Coding + MAC gain is 2, and it is 

achievable.

Node can XOR at most 2 packets together, and the bottleneck can drain 

at almost twice as fast, bounding the Coding + MAC Gain at 2.

 Theorem: In the presence of opportunistic listening, 

COPE’s maximum Coding + MAC gain is 

unbounded.

For N edge nodes, the 

bottleneck node XORs N 

packets together, and the 

queue drains N times faster.

The Gain is unbounded.



 Theoretical gains:

 Important to note that:

◦ The gains in practice tend to be lower due to 

non-availability of coding opportunities, packet 

header overheads, medium losses, etc.,

◦ But COPE does increase actual information 

rate of the medium far above the bit rate.



Making it Work – Design Issues

 Packet Coding Algorithm
◦ Never delay packets – COPE should not wait for 

additional codable packets to arrive.

◦ Give preference to XORing packets of similar lengths.

◦ Never code together packets headed to the same next-
hop.

◦ Search for appropriate packets to code

◦ Packet reordering – Always consider packets according to 
their order in the queue

◦ Ensure that each neighbor to whom packet is headed has a 
high probability of decoding it’s native packet.

PD = P1 x P2 x … X Pn-1

PD = Probability that the next-hop can decode it’s own native packet

Pi = Probability that it has heard packet I

(Iterate over the set of neighbors according to a random permutation)



Making it Work

Each node maintains the following data structures:

◦ Output Queue

◦ Two per-neighbor virtual queues

(For small and large packet

sizes: Threshold = 100)

◦ Hash table

(Keyed on packet-id)



Making it Work

 Packet Decoding

◦ Each node maintains a packet pool

◦ When a node receives an XORed collection 

of packets, it searches for the corresponding 

native node from it’s pool

◦ It ultimately XORs the n - 1 packets with the 

received encoded packet to retrieve it’s own 

native packet.



Making it Work

 Pseudo-Broadcast

◦ In 802.11 Unicast, packets are immediately 

acked by next-hops and there is an 

exponential back-off if an ack is not received.

◦ For 802.11 Broadcast though, since there are 

many intended receivers, it is unclear who will 

ack. So there are no retransmissions and very 

low reliability. Throughput is poor.

◦ The solution is Pseudo-Broadcast.



Making it Work

 Pseudo-Broadcast
◦ Piggybacks on 802.11 Unicast

That means it Unicasts packets meant for Broadcast.

◦ Link-layer dest field is sent to the MAC address of 
one of the intended recipients, with an XOR-header 
added afterward, listing all the next-hops. (All nodes 
hear this packet)

◦ If the recipient receives a packet with a MAC address 
different from it’s own and if it is a next-hop, it 
processes it further. Else, it stores it in a buffer.

◦ Since this is essentially Unicast, collisions are 
detected, and back-off is possible as well.

◦ This does not completely solve the reliability 
problem.



Making it Work

 Hop-by-hop ACKs and Retransmission
◦ Probability of loss
 Not receiving synchronous ACKs.

 When next-hop actually does not have enough 
information to decode it’s native packet.

◦ COPE addresses this problem using local 
retransmissions.

◦ But since there is an overhead with extra 
headers, encoded packets are acked
asynchronously.

◦ Retransmission event is scheduled

◦ Next-hop that received an encoded packet also 
schedules an ack event.



Making it Work

 Preventing TCP Reordering

◦ Asynchronous acks can cause reordering. As 

mentioned before, reordering can be confused 

by TCP as a sign of congestion.

◦ COPE maintains an ordering agent

◦ All non-TCP packets and packets whose final 

IP destinations are different from the current 

node are taken to the next level.

◦ Others are ordered! (Using TCP seq numbers)



Implementation
Packet Format



Implementation
Control Flow



Experimental Results

 Testbed
◦ 20 Node testbed that spans two floors, with offices, 

passages, etc.,

◦ Next-hops are between 1 and 6 hops in length, loss rates 
range between 0 – 30%,

◦ Experiments are run on 802.11a (Bit-rate = 6Mbps)

◦ COPE is implemented using the Click toolkit (?)

◦ Routing Protocol – Srcr (Uses Dijikstra’s shortest path 
algorithm with link weights based on the ETT metric)

◦ The hardware cards used operate in the 802.11 ad-hoc 
mode, with RTS/CTS “disabled”!

◦ udpgen for UDP traffic; ttcp for TCP traffic.

◦ The long-lived and short-lived flows have Poisson arrivals, 
with a pareto file size of shape parameter 1.17



Experimental Results

 Metrics Used

◦ Network Throughput (Total end-to-end 

throughput)

◦ Throughput Gain (with and without COPE)

 Three Scenarios

◦ COPE in gadget topologies

◦ COPE in an Ad Hoc Network

◦ COPE in a Mesh Access Network



COPE in Gadget Topologies
Study COPE’s actual throughput gain (as compared to the theoretical values) 

using various toy topologies

Here, the throughput gain corresponds to only Coding Gain.

Congestion control in TCP balances the draining rate at the bottleneck.

Long-lived TCP Flows

UDP Flows

Here, the throughput gain also corresponds to MAC + Coding Gain.

Reduction in throughput is due to XOR header overhead, imperfect overhearing and flow asymmetry.



COPE in an Ad Hoc Network

 TCP flows arrive according to a Poisson process, pick sender 
and receiver randomly, and the traffic models the Internet.

 TCP does not show significant improvement (2-3%): 
Collision related losses due to hidden terminals!

 Authors repeat experiment, with varying no. of MAC retries, 
and with RTS/CTS enabled. COPE is not applied.

 Even after 15 MAC retries, there is 14% loss, and the 
bottleneck nodes never see enough traffic. Few coding 
opportunities arise!



COPE in an Ad Hoc Network
 Authors say: “Making TCP work in collision-related environments would 

imply solving the problem; but such a solution is beyond the scope of this 
paper”

 So prove that it works in a collision-free environment!

 The nodes of the test-bed are brought together, so they are within 
carrier sense range.

COPE performs well without hidden terminals!



COPE in an Ad Hoc Network
Ok, get UDP into the picture!



COPE in an Ad Hoc Network
More Observations



 Multi-hop Wireless Networks that connect to the rest of the 
Internet via one or more gateways/access points (Traffic flow to 
and from the closest gateway)

 UDP Flows are used, and uplink/downlink traffic is adjusted.

 As the ratio of uplink traffic increases, diversity of the queues at the 
bottleneck increases, more coding opportunities arise and COPE 
performs well.

COPE in a Mesh Access Network



COPE in a Mesh Access Network

 Capture Effect: Sender with better channel captures medium for 
long intervals.

 Study the effect of capture

 Intentionally stress the links in Alice-Bob topology.

 Result: Without coding, fairness and efficiency conflict with each 
other. Using coding, these objectives are aligned.



Discussion

 Scope of COPE: Stationary Wireless Mesh Networks
◦ Memory: Only packets in flight are used for coding. The 

storage requirement should be slightly higher than the 
delay-bandwidth product.

◦ Omni-directional antenna: Opportunistic listening exploits 
the wireless broadcast property.

◦ Power requirements: COPE assumes that the nodes are 
not energy limited.

 COPE can be applied to sensor networks: Nodes can 
trade-off saved transmissions for reduced battery 
usage, rather than throughput.

 COPE can be applied to cellular relays: Create a 
multi-hop cellular backbone with relay nodes to use 
bandwidth more efficiently. (Ericsson proposed a 
design where relay XORs only duplex flows)



Conclusion

 Findings:
◦ Network Coding does have practical benefits

◦ When wireless medium is congested and traffic consists of 
many random UDP flows, COPE increases throughput by 
3 – 4 times.

◦ For UDP, COPE’s gain exceeds theoretical coding gain.

◦ For a mesh access network, throughput improvement with 
COPE ranges from 5% - 70%

◦ COPE does not work well with hidden terminals. Without 
hidden terminals, TCP’s throughput increases by an average 
of 38%

◦ Network Coding is useful for throughput improvement, 
but COPE introduces coding as a practical tool that can be 
integrated with forwarding, routing and reliable delivery.



Comments

 No experiments with mixed flows (Briefly 
mentioned)

 Other routing protocols?

 Should’ve experimented with 802.11g?

 My overall comment:

Authors’ concept of opportunism is very 
important because of the broadcast nature 
of wireless networks – COPE looks to have 
potential for the future maybe with some 
tweaks – More sophisticated codes, more 
compatibility?


