# The War Between Mice and Elephants

Liang Guo
Ibrahim Matta
Computer Science Department
Boston University

# Presented by: Chris Gianfrancesco and Rick Skowyra

# Overview

#### Introduction

- Analyzing Short TCP Flow Performance
- Proposed Scheme
- Simulation
- Discussion
- Conclusions

# **Mice and Elephants**

- Elephants: Long TCP connections
  - File downloads
  - Large portion of traffic
  - Small portion of connections (users)
- Mice: Short TCP connections
  - Web browsing
  - Small portion of traffic
  - Large portion of connections
  - Decreased performance when network utilization is high

# **TCP** Issues

- Conservative startup
  - Minimal initial sending window
  - Large ITO before data can be gathered for RTO
- Congestion hurts short flows
  - Any packet loss likely results in timeout
  - Long flows can benefit from fast retransmit
- Because of these factors, long TCP flows handle network congestion better than short flows

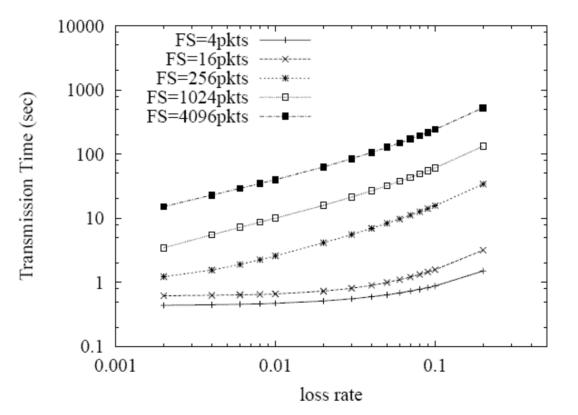
# Proposal

- TCP protocol and current queueing policies do nothing to help the performance of short flows
- Implement a Diffserv architecture
  - Short flows are given preferential treatment
- Hypothesis: Short flows can be given additional resources to complete faster, with a minimal impact on the performance of long flows

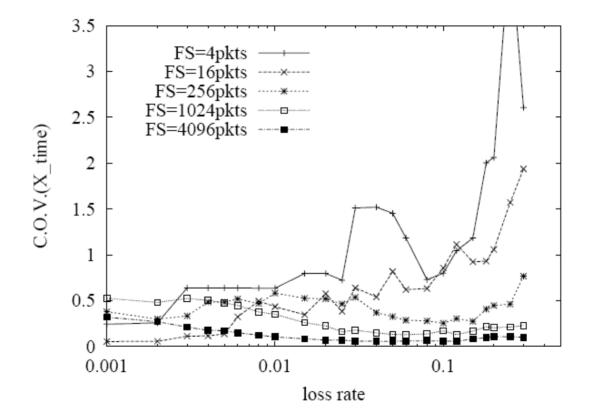
# **Diffserv and RIO**

### Differentiated Services

- Offer preferential treatment to a certain class of traffic that is more important
- In this case, use Diffserv to improve performance of short TCP flows, while trying to minimize impact on long flows


### • RIO: RED with In and Out

- Packets have a bit to mark them as "in" or "out"
- RED algorithm with different parameters for in and out packets


# Overview

- Introduction
- Analyzing Short TCP Flow Performance
- Proposed Scheme
- Simulation
- Discussion
- Conclusions

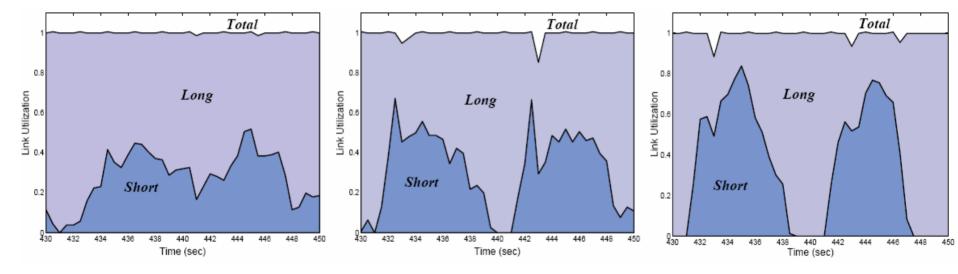
- To determine how best to help short TCP flows, first find what the major factors of poor short flow performance are
- Main contributor is loss rate: as described before, loss of packets in a short flow impacts performance much more than in a long flow



(a) Average Transmission Time



(b) Coefficient of Variation


- Conclusions: As loss rate increases, both transmission time and variability of transmission time for short flows greatly increase
- Packet loss for short TCP flows must be controlled in order to provide more reliable and faster service, with higher fairness relative to long flows

### **Preferential Treatment: Simulation**

- Use ns simulator to test the effect of a queueing strategy with preferential treatment
- Two sets of TCP-Newreno flows competing for a congested 1.25Mbps link:
  - Short (100 packet) flow x 10

- Long (10000 packet) flow x 10
- Observe network characteristics with Drop Tail, RED, and RIO-PS
  - RIO-PS: RIO with Preferential treatment to Short flows

### **Simulation Results**

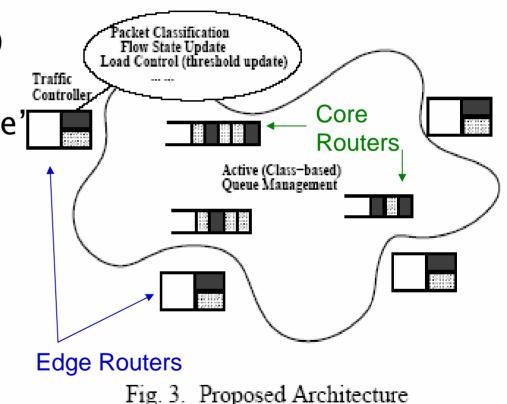


# **Simulation Results**

- Conclusions: Preferential treatment can be given without hurting network goodput
- RIO-PS can offer better performance for short TCP flows at a congested link

| Link B/W | Flows | DropTail | RED    | RIO-PS |
|----------|-------|----------|--------|--------|
| 1.25Mbps | All   | 153479   | 154269 | 154486 |
|          | Short | 40973    | 49897  | 49945  |
|          | Long  | 112506   | 104372 | 104541 |
| 1.5Mbps  | All   | 185650   | 184315 | 183154 |
|          | Short | 43854    | 49990  | 49990  |
|          | Long  | 141796   | 134325 | 133164 |

#### TABLE I


NETWORK GOODPUT UNDER DIFFERENT SCHEMES

# Overview

- Introduction
- Analyzing Short TCP Flow Performance
- Proposed Scheme
- Simulation
- Discussion
- Conclusions

# **Proposed Architecture**

- Based on Diffserv (Differential Services)
- Routers in a network are classified as 'edge' or 'core'
  - Per-flow operations performed only on edges
  - Per-class operations performed in the core

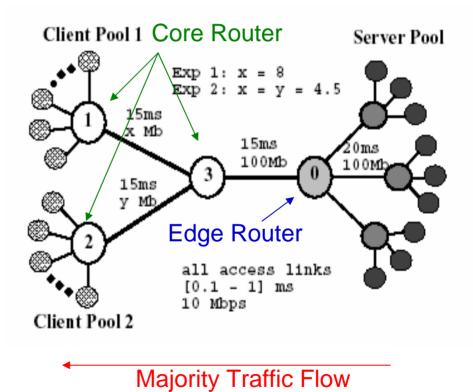


# **Edge Routers**

- Determine and label whether a packet belongs to a long or short flow
- Threshold-based approximation
  - Lt Number of packets beyond which a flow is considered long
    - Dynamic
- Parameters
  - T<sub>u</sub> Time units until a flow is considered terminated
  - SLR Ratio of active (short) flows to long flows
  - Tc Intervals between updates of Lt

All flows initially labeled as short

# **Core Routers**


#### Implemented with RIO queues

- Only one queue per router
  - No packet reordering

- Preferential treatment given to short flows
  - Drop probability for short-flow packets is not affected by arrival of long-flow packets
  - Drop probability for long-flow packets is affected by arrival of short-flow packets

# Simulation

- Web-like TCP flows
- HTTP 1.0
- Clients request a webpage, servers respond
- Load within 90% of bottleneck link capacity



# Web Traffic Configuration

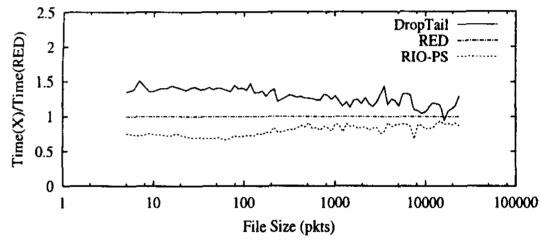
| Name     | inter-page  | objs/page | inter-obj   | obj size       |
|----------|-------------|-----------|-------------|----------------|
| Expl     | Exponential | Uniform   | Exponential | Bounded Pareto |
| client 1 | mean 9.5    | min 2     | mean 0.05   | [4,200000]     |
|          |             | max 7     |             | shape 1.2      |
| Exp2     | Exponential | Uniform   | Exponential | Bounded Pareto |
| client 1 | mean 9.5    | min 2     | mean 0.05   | [4,500]        |
|          |             | max 7     |             | shape 1.2      |
| client 2 | Exponential | Uniform   | Exponential | Bounded Pareto |
|          | mean 192    | min 1     | mean 1.5    | [400,200000]   |
|          |             | max 3     |             | shape 1.2      |

- Randomly selected clients surf web pages of different sizes from randomly selected web sites.
  - Web pages may have multiple objects
  - Each object requires a new connection

### **Simulation Parameters**

| Description                  | Value                                    |  |  |
|------------------------------|------------------------------------------|--|--|
| Packet Size                  | 500 bytes                                |  |  |
| Maximum Window               | 128 packets                              |  |  |
| TCP version                  | Newreno                                  |  |  |
| TCP timeout Granularity      | 0.1 seconds                              |  |  |
| Initial Retransmission Timer | 3.0 seconds                              |  |  |
| B/W delay product            | $\approx 200 \text{ pkts}(\text{Exp1})$  |  |  |
| (BDP)                        | $\approx$ 120 pkts (Exp2)                |  |  |
| Bottleneck                   | DropTail: 1.5× BDP                       |  |  |
| Buffer Size (B)              | RED/RIO-PS: 2.5×BDP                      |  |  |
| Q. Parameters                | $(min_{th}, max_{th}, P_{max}, w_q)$     |  |  |
| RED                          | (0.15B, 0.5B, 1/10, 1/512)               |  |  |
| RIO-PS short                 | (0.15B, 0.35B, 1/20, 1/512)              |  |  |
| RIO-PS long                  | (0.15B, 0.5B, 1/10, 1/512)               |  |  |
| RED & RIO-PS                 | ecn_ on, wait_ on, gentle_ on            |  |  |
| Edge Router                  | $SLR = 3, T_u = 1 \ sec, T_c = 10 \ sec$ |  |  |
| Foreground Traffic           |                                          |  |  |
| (Src, Dest)                  | (Server Pool, Client Pool)               |  |  |
| Long Connection Size         | 1000 packets                             |  |  |
| Short Connection Size        | 10 packets                               |  |  |

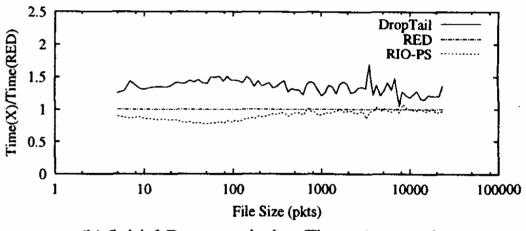
# Overview


- Introduction
- Analyzing Short TCP Flow Performance
- Proposed Scheme
- Simulation
- Discussion
- Conclusions

# **Experiment 1: Single Client Set**

- Only one client pool used
- Strategies:
  - Drop-Tail
  - RED (ECN)
  - RIO-PS
- 4000sec
  - 2000sec start-up
- Initial Time-Out value controversy

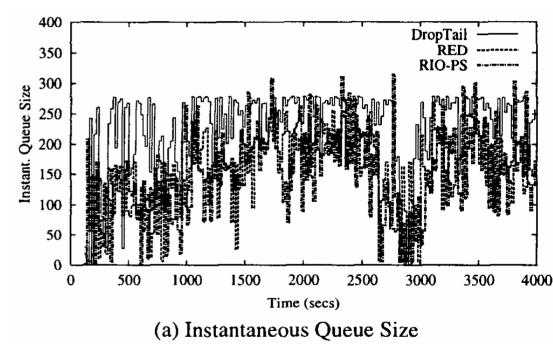
### Experiment 1: Single Client Set Performance versus RED


- ITO = 3
  - May be conservative
- ► RIO-PS
  - For short/medium flows there is a 25%-30% improvement
- Drop-Tail
  - Usually worse than RED



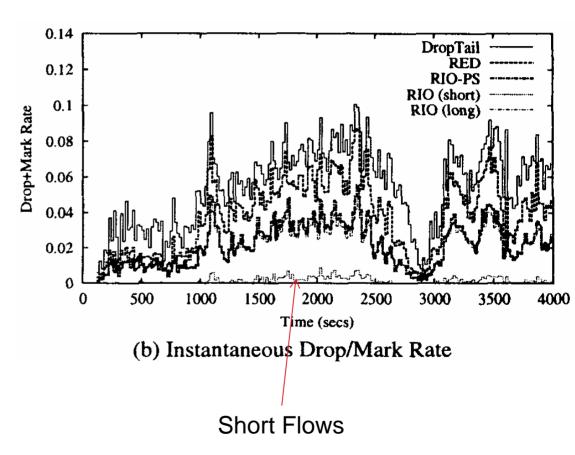
(a) Initial Retransmission Timer 3 seconds

### Experiment 1: Single Client Set Performance versus RED


- ► ITO = 1
  - May be aggressive
- RIO-PS
  - For short flows there is still a 10%-15% improvement
  - Medium flows still perform well
- Drop-Tail
  - Still worse than RED



(b) Initial Retransmission Timer 1 second


### Experiment 1: Single Client Set Instantaneous Queue Size

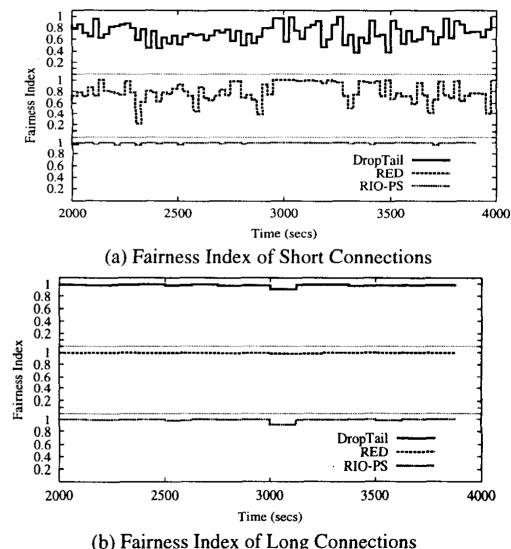
- 20-second 'instants'
- Drop-Tail is the clear loser
- RED and RIO-PS do not display a clear trend
- Overlapping dotted lines are a poor decision



### Experiment 1: Single Client Set Drop/Mark Rate

- 20-second 'instants'
- Drop-Tail drops packets
- RED/RIO-PS mark packets
- Short flows clearly preferred
- In general, RIO– PS outperforms RED

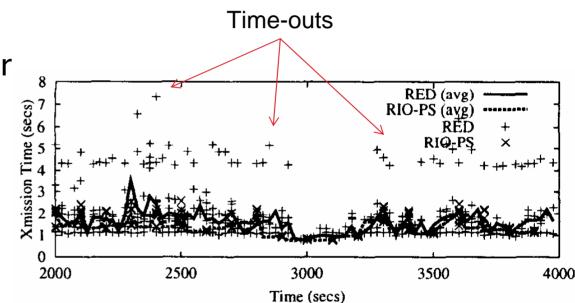



### Experiment 1: Single Client Set Foreground Traffic

- IO Short TCP connections injected every 25 seconds
- IO Long TCP Flows injected every 125 seconds

Web requests still occurring in background

### Experiment 1: Single Client Set Connection Fairness


- Jain's Fairness
- No cross-class comparison
- RIO-PS provides near-perfect fairness between short connections
- No substantial effect on long connections

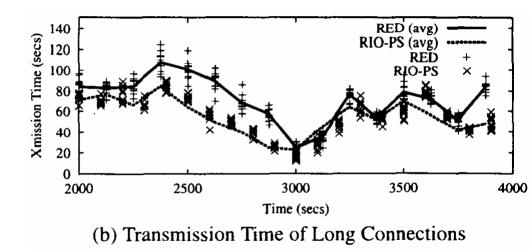


#### Experiment 1: Single Client Set Short Connection Individual Transmission Times

#### ► RIO-PS

- Experiences dramatically fewer time-outs
- Better overall transmission times
- RED
  - Vulnerable to SYN/SYN-ACK drops




### Experiment 1: Single Client Set Long Connection Individual Transmission Times

### ► RIO-PS

- Noticeably lower transmission times
  - Short flows finishing earlier

### RED

 More aggressive marking



### Experiment 1: Single Client Set Summary of Goodput

- Drop–Tail clear loser
  - Dropped packets lower goodput, marked packets do not

| Scheme          | DropTail | RED     | RIO-PS  |
|-----------------|----------|---------|---------|
| Expl (ITO=3sec) | 4207841  | 4264890 | 4255711 |
| Expl (ITO=1sec) | 4234309  | 4254291 | 4244158 |

 Authors claim RIO-PS increases fairness and does not lower goodput
Ambiguous

TABLE IV

NETWORK GOODPUT OVER THE LAST 2000 SECONDS

### Experiment 2: Unbalanced Requests

- Traffic separated
  - Small files sent on one route, long files in another
- RIO-PS basically reduced to RED, but favoring initial Lt packets of all connections
  - Fewer SYN/SYN–ACK Timeouts

# Overview

- Introduction
- Analyzing Short TCP Flow Performance
- Proposed Scheme
- Simulation
- Discussion
- Conclusions

# Discussion

- Simulation Comments
  - Dumbbell and Dancehall
  - Does not consider varying propagation delays
  - One-way traffic
- Queue Management Policy
  - No guaranteed Quality of Service
- Deployment Issues
  - More scalable than purely stateful solutions

# Discussion (cont)

- Flow Classification
  - Initial packets of all flows protected
- Controller Design
  - More experimentation needed to find optimal parameter settings
- Malicious Users
  - Long flows can be deliberately broken up to emulate short flows
  - Dynamic SLR helps defend against this

# Overview

- Introduction
- Analyzing Short TCP Flow Performance
- Proposed Scheme
- Simulation
- Discussion
- Conclusions

# Conclusions

- Short flow response time and fairness improved
- Long flows also improved, or at least not harmed
- Overall goodput improved due to less retransmissions
- Flexible and scalable architecture

# **Our Conclusions**

- Experimentation not very thorough
- Only TCP traffic considered
- Did not optimally tune RED parameters
- Fairness charts do not consider overall fairness
- Did not compare RIO-PS performance to other Fair Queueing schemes
- Foreground traffic uses unrealistically low number of flows