Energy-Efficient Communication Protocol for Wireless Microsensor Networks

Wendi Rabiner Heinzelman Anatha Chandrasakan Hari Balakrishnan

Massachusetts Institute of Technology

Presented by Rick Skowyra

Overview

- Introduction
- Radio Model
- **. Existing Protocols**
 - Direct Transmission
 - Minimum Transmission Energy
 - Static Clustering
- · LEACH
- Performance Comparison
- Conclusions

- LEACH (Low-Energy Adaptive Clustering Hierarchy) is a routing protocol for wireless sensor networks in which:
 - The base station (sink) is fixed
 - Sensor nodes are homogenous
- LEACH conserves energy through:
 - Aggregation
 - Adaptive Clustering

Radio Model

- Designed around acceptable E_b/N_0
- $E_{e/ec}$ = 50nJ/bit
 - Energy dissipation for transmit and receive
- $\varepsilon_{amp} = 100 \text{pJ/bit/m}^2$
 - Energy dissipation for transmit amplifier
- k = Packet size
- d = Distance

Existing Routing Protocols

- LEACH is compared against three other routing protocols:
 - Direct-Transmission
 - Single-hop
 - Minimum-Transmission Energy
 - Multi-hop
 - Static Clustering
 - Multi-hop

Direct-Transmission

- Each sensor node transmits directly to the sink, regardless of distance
- Most efficient when there is a small coverage area and/or high receive cost

Sensor Status after 180 rounds with 0.5J/node

Minimum Transmission Energy (MTE)

- Traffic is routed through intermediate nodes
 - Node chosen by transmit amplifier cost
 - Receive cost often ignored
- Most efficient when the average transmission distance is large and *E_{elec}* is low

Sensor Status after 180 rounds with 0.5J/node

7

MTE vs Direct-Transmission

When is Direct-Transmission Better?

For MTE, a node at distance *nr* requires *n* transmits of distance *r*, and *n*-1 receives

$$\frac{E_{direct}}{\varepsilon_{amp}} < \frac{E_{MTE}}{r^2 n} \text{ when:} \\ \frac{E_{elec}}{\varepsilon_{amp}} > \frac{r^2 n}{2}$$

- High radio operation costs favor direct-transmission
- Low transmit amplifier costs (i.e. distance to the sink) favor direct transmission
- Small inter-node distances favor MTE

MTE vs. Direct-Transmission (cont)

- 100-node random network
- 2000 bit packets
- $\varepsilon_{amp} = 100 \text{pJ/bit/m2}$

Static Clustering

- Indirect upstream traffic routing
- Cluster members
 transmit to a cluster
 head
 - TDMA
- Cluster head transmits
 to the sink
 - Not energy-limited
- Does not apply to homogenous environments

LEACH

- Adaptive Clustering

 Distributed
- Randomized Rotation
 - Biased to balance energy loss
- Heads perform compression
 - Also aggregation
- In-cluster TDMA

LEACH: Adaptive Clustering

- Periodic independent self-election
 - Probabilistic
- CSMA MAC used to advertise
- Nodes select advertisement with strongest signal strength
- Dynamic TDMA cycles

LEACH: Adaptive Clustering

- Number of clusters
 determined *a priori*
 - Compression cost of 5nj/bit/2000-bit message
- "Factor of 7 reduction in energy dissipation"
 - Assumes compression is cheap relative to transmission
 - Overhead costs ignored

LEACH: Randomized Rotation

- Cluster heads elected every round
 - Recent cluster heads disqualified
 - Optimal number not guaranteed
- Residual energy not considered
- Assumes energy uniformity
 - Impossible with significant network diameters

• P = Desired cluster head percentage
• r = Current Round
• G = Set of nodes which have not been cluster heads in 1/P rounds
$$T(n) = \begin{cases} \frac{P}{1 - P * (r \mod \frac{1}{P})} & \text{if } n \in G \\ 1 - P * (r \mod \frac{1}{P}) & 0 \\ 0 & \text{otherwise} \end{cases}$$

LEACH: Operation

- Periodic process
- . Three phases per round:
 - Advertisement
 - Election and membership
 - Setup
 - Schedule creation
 - Steady-State
 - Data transmission

LEACH: Advertisement

- Cluster head self-election
 - Status advertised broadcast to nearby nodes
- Non-cluster heads must listen to the medium
 - Choose membership based on signal strength
 - RSSI
 - E_b/N₀

- Nodes broadcast membership status

 CSMA
- Cluster heads must listen to the medium
- . TDMA schedule created
 - Dynamic number of time slices

LEACH: Data Transmission

- Nodes sleep until time slice
- Cluster heads must listen to each slice
- Cluster heads aggregate/compress and transmit once per cycle
- Phase continues until the end of the round
 - Time determined a priori

LEACH: Interference Avoidance

- TDMA intra-cluster
- CDMA inter-cluster
 - Spreading codes determined randomly
 - Non-overlapping modulation may be NP-Complete
 - Broadcast during advertisement phase

LEACH: Hierarchical Clustering

- Not currently implemented
- *n* tiers of clusters of cluster heads
- Efficient when network diameters are large

Performance: Parameters

- MATLAB Simulator
- 100-node random network
- *E*_{e/ec} = 50nj/bit
- $\varepsilon_{amp} = 100 \text{pJ/bit/m2}$
- . *k* = 2000 bits

Performance: Network Diameter

- LEACH vs. Direct
 Transmission
 - 7x-8x energy reduction
- . LEACH vs. MTE
 - 4x-8x energy reduction

Performance: Energy and Diameter

MTE vs. Direct Transmission

- LEACH performs in most conditions
- At low diameters and energy costs, performance gains negligible
 Not always same for costs
 Comparable to MTE for some configurations

Performance: System Lifetime

- Setup costs ignored
- 0.5J of energy/node
- LEACH more than doubles network lifetime
- Static clusters fail as soon as the cluster head fails
 - Can be rapid

Performance: System Lifetime

- Experiments repeated for different maximum energy levels
- · LEACH gains:
 - 8x life expectancy for first node
 - 3x life expectancy for last node

	Energy	Protocol	Round first	Round last
	(J/node)		node dies	node dies
		Direct	55	117
	0.25	MTE	5	221
		Static Clustering	41	67
		LEACH	394	665
		Direct	109	234
	0.5	MTE	8	429
1		Static Clustering	80	110
		LEACH	932	1312
		Direct	217	468
,	1	MTE	15	843
		Static Clustering	106	240
		LEACH	1848	2608

Performance: Coverage

· LEACH

- Energy distributed evenly
- All nodes serve as cluster heads eventually
- Deaths randomly distributed

· MTE

- Nodes near the sink die first
- Direct Transmission
 - Nodes on the edge die first

Conclusions

. LEACH is completely distributed

- No centralized control system
- . LEACH outperforms:
 - Direct-Transmission in most cases
 - MTE in many cases
 - Static clustering in effectively all cases
- LEACH can reduce communication costs by up to 8x
- LEACH keeps the first node alive for up to 8x longer and the last node by up to 3x longer

- Extend ns to simulate LEACH, MTE, and Direct Transmission
- Include energy levels in self-election
- Implement hierarchical clustering

Areas for Improvement

- LEACH assumes all cluster heads pay the same energy cost
 - Death model incorrect
- Compression may not be as cheap as claimed
 - Unclear how much savings are from compression assumptions and how much from adaptive clustering
- Optimal number of cluster heads must be determined in simulation, before implementation
- Round durations never specified or explained

