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Abstract— The ability for robots to engage in interactive
behavior with a broad range of people is critical for future
development of social robotic applications. In this paper, we
propose the use of online games as a means of generating
large-scale data corpora for human-robot interaction research
in order to create robust and diverse interaction models. We
describe a data collection approach based on a multiplayer
game that was used to collect movement, action and dialog data
from hundreds of online users. We then study how these records
of human-human interaction collected in a virtual world can be
used to generate contextually correct social and task-oriented
behaviors for a robot collaborating with a human in a similar
real-world environment. We evaluate the resulting behavior
model using a physical robot in the Boston Museum of Science,
and show that the robot successfully performs the collaborative
task and that its behavior is strongly influenced by patterns in
the crowdsourced dataset.

I. INTRODUCTION

Robots require a broad range of interaction skills in order
to work effectively alongside humans. They must have the
ability to detect and recognize the actions and intentions of a
person, to produce functionally valid and situationally appro-
priate actions, and to engage in social interactions through
physical cues and dialog. A number of robotic platforms
capable of these types of interactions have been developed
for different applications, including museum guidance [1],
reception desk assistance [2] and elder care [3].

Research on action and dialog generation has also been
conducted in the gaming community in the context of
character development for role-playing games [4], [5]. All
of the above approaches present successful solutions for
their respective applications based on carefully hand-crafted
models for action and dialog generation. The typical result
for this type of development process is a system that is
capable of natural and engaging interaction for some range
of topics, but only for those that were predetermined by the
programmers.

Data-driven techniques present an alternate solution to
hand-crafted models. These approaches utilize datasets of
hundreds of example behaviors, often from a multitude of
different users, to generate appropriate responses to input.
Successful data-driven techniques have been demonstrated
in a number of interactive applications, such as dialog
management [6], [7].
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The question we explore in this paper is whether data-
driven approaches can be developed for interactive robotic
systems. Can robot behaviors be crowdsourced to produce
natural, engaging and functionally appropriate actions and
dialog based on data from hundreds of people? Ideally, such
an approach would benefit from the “power of the masses”,
producing a more general result by incorporating examples
from many users.

The challenge for crowdsourcing human-robot interaction
is to develop a method for gathering interaction data on
a large scale. One solution is to utilize the Wizard-of-Oz
technique in which data is recorded as a robot is puppeteered
through the task by a human subject. The significant draw-
backs of this approach are that it is limited by the time
required to recruit subjects, the number of physical robots
that can be used to collect data at the same time, and the cost
of maintaining these robots. The outcome of these factors is
that Wizard-of-Oz techniques are typically limited to only
several dozen participants.

In this paper, we propose the use of online games as a
means of generating large-scale data corpora for human-
robot interaction research. We present a data collection
approach based on an online multiplayer game that was used
to collect data from hundreds of users. We then present a
data-driven policy generation technique utilizing Case-Based
Reasoning (CBR) [8], [9] that emphasizes high-level memory
learning and incorporates a large corpus of online, virtual
interactions into a general task-oriented behavior model.
We apply this model to a physical robot interacting with
visitors at the Boston Museum of Science, and show that
the robot successfully performs the collaborative task and
that its behavior is strongly influenced by patterns in the
crowdsourced dataset.

II. RELATED WORK

Our work is inspired by the Restaurant Game project [10],
[11], in which data collected from thousands of players in
an online game is used to create an automated data-driven
behavior and dialog authoring system. The Restaurant Game
is a minimal investment multiplayer online (MIMO) game
that enables users to log in to a virtual environment and take
the role of one of two characters, a customer or a waiter,
at a restaurant. Players are randomly paired with another
online player and can interact freely with each other and
objects in the environment. In addition to standard game
controls, the users can maintain dialog with each other, and
other simulated characters, by typing freeform text. Logs
of over 5,000 games were used by the authors to analyze



this interactive human behavior and acquire contextualized
models of language and behavior for collaborative activities.

The use of games as a data mining technique has been
shown to be highly successful in a number of applications.
The term “Games With A Purpose”, or GWAP, was coined by
Luis von Ahn to describe games that address computational
problems [12]. The idea behind this approach is to make
work fun by turning a scientific task into a game, thereby
harnessing the computational power of internet users.

The idea of data-driven dialog systems has also been
around for a long time, and there are a number of successful
applications outside of gaming and robotics. For example,
Reiser and Lemon present an automated system for infor-
mation seeking dialogs, such a speech-driven navigation and
track selection system for an MP3 player [13]. Another
example of human-driven computation is the Open Mind
Initiative, a worldwide research endeavor for developing
intelligent software by leveraging human skills to train
computers [14]. This approach is based on a network of
volunteers that participate by providing answers to questions
that computers can not yet answer, for example describing
the content of an image.

Our work differs from all of the above approaches in
that data collection is performed in a fundamentally different
domain than the one in which it is applied. Furthermore, the
goal of this work is to interleave spoken dialog and physical
actions observed in humans into collaborative task-oriented
robot behaviors.

III. APPROACH

The goal of our research is to study how records of
human-human interaction collected in a virtual world can be
used to generate natural and robust human-robot interactive
behavior in similar real-world environments. In this section
we first present a description of the data collection process
and the resulting data set. We then present our data-driven
approach for autonomous behavior generation utilizing Case-
Based Reasoning, followed by a description of the real-
world domain and user study. We designed the virtual and
real-world domains as a collaborative search and retrieval
task that can be generalized to many applications. The task
has no strictly assigned social roles, however, the domain is
designed to encourage collaborative behaviors such as action
synchronization, sequencing and dialog.

A. Crowdsourcing Interaction using an Online Game

The purpose of the virtual world is to model a real-world
environment in which a physical robot would perform a task
with a human. Mars Escape is a two-player online game in
which two randomly-paired players take on the roles of a
human astronaut and a robot on Mars. The object retrieval
task is incorporated into the back-story of the game, in which
players are told that the oxygen generator on their remote
research station has failed. In order to successfully complete
the mission, the pair must locate and salvage five items and
return to the spaceship before oxygen supplies run out. The

Fig. 1. A screenshot of the Mars Escape game showing the action menu
and dialog between the players.

list of required items is presented in a side-bar inventory
screen. The players have 10 minutes to complete the mission.

During the game, the players are able to navigate in
the environment, manipulate objects using six predetermined
actions (pick up, put down, look at, go to, use, analyze) and
communicate with each other through in-game text-based
chat (Fig. 1). All player actions and dialog are recorded
by the game server. The game terminates when the players
choose to exit, or when the game clock runs out.

We designed the domain such that the retrieval of each of
the five items required a different type of collaboration in
order to study a diverse set of behaviors. Table I presents
a list of the five inventory items. For each item, the table
includes a summary of how the object can be retrieved and
a description of the class of problems the object represents.
The object locations and avatar capabilities were designed to
balance the role of both players, and to ensure that teamwork
and communication were necessary to perform the complete
mission successfully.

Following the completion of the game, players were asked
to complete a survey evaluating their gaming experience and
the performance of their partner. The survey contained the
following eight questions and users were asked to rate their
responses on a 5-point Likert scale from “strongly disagree”
(1) to “strongly agree” (5):

1) My overall game experience was enjoyable.
2) The other player’s performance was an important con-

tribution to the success of the team.
3) The human-robot team did well on the task.
4) The actions of the other player were rational.
5) The other player communicated in a clear manner.
6) The other player performed well as part of the team.
7) The other player’s behavior was predictable.
8) The other player was controlled by a human.

B. Interaction Dataset

During the first three months of the release of the game
we captured data from 558 two-player games. Of these,
approximately 700 player logs were retained for analysis
after excluding logs in which a player exited the game
prematurely by quitting the application and not filling out



Item Game Context Generalization

Research Journal Located on top of a stack of boxes. Reachable only by the astronaut. A task that can be performed by only one of the
players.

Captured Alien Located on a raised platform. Reachable by either player after lowering
a platform using wall mounted controls. A task that can be performed by either player.

Canister Located on top of toxic barrels. Reachable by either player, but the
astronaut loses 10 points for coming in contact with chemicals.

A task for which one player is better suited than the
other.

Memory Chip Appears when both players stand on a weight sensor at the same time.
Reachable by either player. A task that requires action synchronization.

Sample Box

One of 100 identical boxes located on a high shelf. The astronaut can
pick up and look at each box individually to locate the correct one.
The robot can identify the exact box, but can not reach the box due
to its height. Optimal solution is for the robot to scan the boxes and
tell the astronaut the sample’s exact location.

A task that requires coupled actions and dialog.

TABLE I
DESCRIPTION OF THE FIVE OBJECTS PLAYERS MUST OBTAIN TO SUCCESSFULLY COMPLETE THE GAME.

the survey. The following is an example transcript showing
an interaction in which the astronaut (A) and the robot (R)
retrieve the alien.

A: “hi”
R: “hey”
R: “i’ll get the yellow can”
A: “ok, i’ll get the book”
<astronaut picks up book>
<robot picks up canister>
<astronaut places book in container>

A: “lets do the weight sensor next”
<astronaut enters weight sensor>
<robot places book in container>

R: “ok”
<robot enters weight sensor>

The retrieval of different items provided different degrees
of challenge to the players, leading to some objects being
commonly retrieved before others. The majority of players
first picked up those items that were in clearly visible
locations and could be retrieved individually (i.e. the canister
and the journal), delaying the retrieval of collaborative items.
In later sections we discuss how these temporal patterns
impact the behavior of the robot in real-world experiments.

Somewhat unexpectedly, we found that only 57% of player
pairs successfully collected all five items in the duration of
the game (86% collected three or more). Of the five items, in
75% of games the last item to be retrieved was the sample
box, the item that required the greatest degree of collabo-
ration and communication between players. Furthermore, of
the games in which players collected 4 items and missed only
one, 89% were missing the sample box. As a result of these
behavioral patterns, the distribution of crowdsourced data is
not uniform across the entire range of player behaviors. In
our analysis of real-world interactions, we show how this
bias affects the robot’s behavior.

C. Data Processing

Our goal is to leverage the corpus of interaction data
describing the movements, actions and spoken dialog of
players in the virtual world, to generate contextually correct
social and task-oriented robot behaviors in the real world. We
are particularly interested in exploring the degree to which
data gathered in the virtual world can be directly leveraged
in the real world through data-driven techniques. To study

this question we chose a memory-based approach to behavior
generation utilizing Case-Based Reasoning [8], [9].

Case-Based Reasoning utilizes a library of past experi-
ences (cases) to solve new problems by finding a similar
past cases and reusing them in the new situation. CBR
has been successfully applied to autonomous robot control
in many applications, including indoor navigation [15] and
autonomous robot soccer [16]. In this work, we use the
interaction corpus collected in the online game to create a
case library and apply CBR retrieval to generate autonomous
robot behavior in the real world. Our case library contains
only examples recorded in the virtual world. Techniques for
augmenting this dataset with new examples from the physical
world are an interesting topic for future research.

We represent each case in our dataset using the following
13 features: the previous robot action, the previous astro-
naut action, the previous robot spoken phrase, the previous
astronaut spoken phrase, object held by astronaut, object
held by robot, and the area location (e.g., center, near shelf,
near toxins, etc.) of the astronaut, robot, journal, alien, chip,
canister and sample box. This information enables us to track
the most recent events, in terms of agent actions and dialog,
while also maintaining a coarse history of past events based
on current object locations (each state vector represents a
snapshot in time that describes which items have already
been retrieved). Note that continuous navigation of characters
across the domain is represented using the discrete go to
commands between pre-defined discrete regions of the space
in order to reduce number of cases and to generalize across
similar actions.

Based on the representation described above, our dataset
resulted in 82,479 cases. For case storage and retrieval we
utilized the open source FreeCBR software package [17].
During case retrieval, the current state of the robot is encoded
using the feature vector and compared to the library of
recorded cases. Similarity between the query and cases in the
library is calculated based on a weighted sum of differences
between features. We selected the weight for each feature
based on the accuracy of the measure of that feature. For
example, the weighting for all object locations was high
because we were able to track this information with high
accuracy, whereas a low weight value was used to compare
speech data due to noise in the speech recognition system.



D. User Study using a Physical Robot

One of the central motivations for this research is that
crowdsourcing human-robot interaction will enable the de-
velopment of interaction models that are diverse and robust,
capable of natural interaction with people of different ages
and technical backgrounds. To test this theory we performed
a user study by recreating the virtual Mars Escape environ-
ment in the real world at the Boston Museum of Science.
Museum visitors were recruited one at a time to perform
the task in collaboration with our autonomous MDS robot
Nexi (Fig. 2(a)). The MDS robot platform combines a mobile
base with a socially expressive face and two dexterous
hands that provide the capability to grasp and lift objects.
The robot is equipped with a biologically-inspired vision
system that supports animate vision for shared attention
to visually communicate the robot’s intentions to human
observers. Auditory inputs support a microphone array for
sound localization, as well as a dedicated channel for speech
recognition via a wearable microphone.

Due to the complexity of the search and retrieval task,
a high precision offboard Vicon MX camera system was
used to supplement the robot’s onboard sensors. The Vicon
system was used to track the position of the robot, human,
and objects in the environment in real time using lightweight
reflective markers attached to object surfaces. This tracking
system enabled the robot to have the degree of environmental
awareness that is comparable to that of a human.

The physical setup of the space closely modeled the game
environment. It contained five mission objects, in similar
placements to their in-game counterparts, including a tall
shelf to keep the journal out of the robot’s reach; a raised
platform that could be lowered to access the alien; toxic
barrels near which the human user was warned to step away;
a box that would automatically open to reveal a chip when
both players stepped onto the scale; a shelf unit containing
several dozen small numbered boxes, one of which contained
a sample; and a number of other props, such as empty
crates and tools. Figure 2(b) shows the robot reaching for the
button that activates the moving platform while the human

(a) (b)

Fig. 2. (a) The MDS robot platform. (b) The robot an a participant
performing the study at the Boston Museum of Science.

participant retrieves the journal from the shelf.
A total of 18 participants were recruited to perform the

study, 11 male and 7 female, with ages ranging from 13 to
35. None of the participants had previously played the Mars
Escape game online. The study environment was curtained
off from the rest of the museum, preventing participants from
observing others performing the task. As a result, participants
had neither familiarity with the robot nor knowledge of the
space layout and object locations before beginning the study.

Before the start of the experiment participants were given
basic instructions and were informed that the robot could
understand speech, move around, pick up objects and use
its sensors to locate organic lifeforms. Upon entering the
study area, participants were greeted by the robot using the
following standard greeting: “Hello. Lets find the five items
on our list”. After the greeting, the robot began autonomous
action selection using the CBR algorithm. We chose to use
a standard greeting after observing several preliminary trials
in which the robot immediately began autonomous behaviors
related to the task without a greeting. This led to confusion
with some study participants who were expecting a response
to their appearance in the room and were uncertain about
whether the study had started. Note that while our dataset
contains some greetings and introductions between players,
many players did not engage in this behavior in the virtual
world, and as a result the robot may not do so either. The
use of a standard greeting eliminated this uncertainty for the
study participants.

For each participant, the study continued until either
the team retrieved all five objects, the robot failed (e.g.,
low battery), or the study participant requested to stop the
session (none of the participants requested to stop). Data
from incomplete trials was discarded. Following the study,
participants were asked to fill out the same questionnaire as
in Section III-A.

Of the 18 participants, 16 successfully completed the
study1. The behavior of participants toward the robot and the
task varied greatly. Some users acted independently, freely
explored the space, quickly found all objects and tried to
help the robot with its parts of the task. A similar number of
users took a passive role, expected the robot to take charge
and to provide all the answers. As a result of not exploring
the space, passive users often had a hard time finding some
of the items. Note that unlike the online game, the study
only ended once all five objects were retrieved. If a user had
trouble finding an item but did not request to end the study, a
behind the scenes robot operator would briefly override the
autonomous behavior selection mechanism of the robot to
provide extra guidance to the person.

Unsurprisingly, locating the sample box proved the biggest
challenge for the human-robot teams, resulting in a number
of operator interventions. A common interaction would be for
the robot to approach the shelf of boxes while the human was
paying attention elsewhere. The robot would scan the shelf,
announce the location of the box containing the sample, then

1A sample video is available at http://www.vimeo.com/24546560



continue on to other tasks with the assumption that the user
would pick up the box (the robot is unable to retrieve the
box in both the online and real-world versions of the task).
While approximately half of the participants appropriately
responded by picking up the sample box item, others either
did not pay attention to the message or simply observed the
robot and did not take initiative to move toward the shelf. In
these cases, if the sample box was not retrieved after some
time, the remote operator would manually re-direct the robot
back to the shelf to repeat its instructions. Other overrides
included error-recovery, such as asking the person to help
pick up an object that the robot had tried to pick up but
dropped. On average, 7 overrides were performed during the
course of a trial, accounting for approximately 36% of the
total number of robot actions.

IV. COMPARISON AND DISCUSSION

In this section we compare the behavior of real-world
human-robot teams to human-human interactions in the
virtual world, and examine the survey responses of partic-
ipants following both types of studies. We are particularly
interested in examining how the broad patterns of behavior
observed in online games, with respect to the order in which
users retrieved objects and the relative difficulty of locating
different objects, translates into the real world where human
users will have different perceptual abilities than their avatar.

Figure 3 presents histograms showing the distribution of
times at which items were collected by participants in the
online and real-world tasks. The x-axis shows the elapsed
time in the trial in seconds. We note several interesting
patterns in the data. The online data shows a clear distinction
between the sample box item (labeled “Box”) and the rest
of the items. The sample box distribution comes tempo-
rally much later, and we clearly observe that fewer players
successfully retrieved that item. The chip, the other item
that required collaboration between players, also shows a
distribution skewed further along the timeline than the easily
accessible canister, journal and alien.

Comparing data from the online study (Figure 3(a)) and
the museum (Figure 3(b)) we observe similar distributions
in the data for all five items, with several noteworthy
differences. The time between the beginning of the study
and the retrieval of the first object is longer in the real-world
scenario. This can be attributed to the participants taking
time to evaluate the surroundings and observe the robot.
Additionally, the time at which the canister is picked up
tends to occur later in the experiment. This is a result of the
fact that in the real world, the robot’s pickup action requires
approximately 60 seconds to complete, whereas in the online
game this action was instantaneous. The overall run time for
the online and real-world conditions was similar.

Critically, this data highlights the fact that many of the
same high level behavior patterns are present in both the
virtual and real-world applications of this task. While some
of this effect is likely due to the structure of the domain itself,
such as the placement of visible objects, we hypothesize that
the robot’s action selection choices also play a significant

(a) Online Game

(b) Museum of Science

Fig. 3. A comparison of the distribution of times at which items were
collected by the players.

role. For example, had the robot chosen always to locate the
sample box before retrieving the canister, the distribution of
the data would be very different. Further studies are needed
to verify this hypothesis, and to test to what degree the action
selection of the robot influences the behavior of the human.

Figure 4 presents a comparison of the survey results from
both the online and museum study conditions. We observe
that the majority of players in both conditions enjoyed taking
part in the study and felt that the robot contributed to the
success of the team, performed well at the task and behaved
rationally.

The greatest differences in the survey responses are ob-
served with respect to communication (question 5, (e)),
predictability (question 7, (g)), and whether the robot was
controlled by a human (question 8, (h)). Participants wanted
better communication with the robot, with one participant
writing in the comment section of the survey: “It should
have asked me how it could help/tell me what it was capable
of/knew”. The perceived predictability of the robot was
significantly lower than that of its online counterparts. We
hypothesize that this is due to the nature of the Case-Based
Reasoning algorithm that retrieves actions one at a time and
maintains little hysteresis about past actions, resulting in a
behaviors that may switching between different activities at
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Fig. 4. Comparison of the results of the 8 survey questions between the online (blue, left) and museum (green, right) conditions. Histograms show
percentage of responders identifying with each point on the Likert scale: strongly disagree (SD), disagree (D), neutral (N), agree (A), and strongly agree
(SA). Questions 1-8 correspond to figures (a)-(h), respectively.

random. In future work, we will examine other algorithms
that will generate behaviors based on longer sequences of
actions. Finally, potentially as a result of the communication
and predictability factors, most users correctly believed that
the robot was indeed not controlled by a human. Inter-
estingly, a significant portion of online players were also
uncertain as to whether their teammate was human or not.

V. CONCLUSION

The ability for robots to engage in interactive behavior
with a broad range of people is critical for future devel-
opment of social robotic applications. In this paper, we
presented a novel approach to generating task-specific social
behaviors based on crowdsourcing human-robot interaction
in virtual worlds. We described a data collection approach
based on an online multiplayer game that was used to collect
data from hundreds of users. We then leveraged the corpus of
interaction data that described the movements, actions and
spoken dialog of players in the virtual world, to generate
contextually correct social and task-oriented behaviors for
a robot operating in a real-world environment. We showed
that very similar patterns of behavior are observed in both
the online and real-world task.

This is the first study that we are aware of examining large-
scale online crowdsourcing for human-robot interaction. The
comparison of questionnaire answers across both the online
and real-world conditions shows that participants enjoyed
taking part in the interaction and rated the robot similarly
to human partners in several critical measures. This work
sets a baseline for what can be achieved through direct data-
driven methods, and suggests many interesting directions
for future research in this area. Ultimately, we believe that
crowdsourcing in virtual worlds has the potential to become
a powerful tool in human-robot interaction research.
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