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Abstract 

The current paradigm in student modeling, Knowledge 
Tracing, has continued to show the power of its simplifying 
assumption of knowledge as a binary and monotonically 
increasing construct, the value of which directly causes the 
outcome of student answers to questions. Recent efforts 
have focused on optimizing the prediction accuracy of 
responses to questions using student models. Incorporating 
individual student parameter interactions has been an 
interpretable and principled approach which has improved 
the performance of this task, as demonstrated by its 
application in the 2010 KDD Cup challenge on Educational 
Data. Performance prediction, however, can have limited 
practical utility. The greatest utility of such student models 
can be their ability to model the tutor and the attributes of 
the tutor which are causing learning. Harnessing the same 
simplifying assumption of learning used in student 
modeling, we can turn this model on its head to effectively 
tease out the tutor attributes causing learning and begin to 
optimize the tutor model to benefit the student model.  

Introduction   

The beginning of the current paradigm in student 

modeling, known as Knowledge Tracing (Corbett & 

Anderson 1995) started with Atkinson’s approach to 

modeling instruction (Atkinson & Paulson 1972). An 

adaptation of the Bayesian computations from Atkinson 

and a simplification of the more complex ACT-R cognitive 

architecture (Anderson 1993), Knowledge Tracing has firm 

roots in learning theory. However, it is its use in practice 

that has drawn the majority of attention to the model. The 

Cognitive Tutors™, used by over 500,000 students, 

annually, employ Knowledge Tracing to determine when a 

student has learned a particular skill and when to 

subsequently end practice of that skill. The real world 

adoption of the model has made it a popular yard stick for 

gauging the relative performance of new models, of which 

there have been many (Desmarais & Baker 2011). 

 There has been a focus in the literature on within-tutor 

predictive performance as the primary benchmark of 
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comparison between models (Pardos et al. 2012). This was 

also the benchmark used to rank solutions to the recent 

Knowledge Discovery and Data Mining (KDD) Cup on 

Educational Data, a high profile annual data mining 

competition organized by the Association for Computing 

Machinery (ACM). An extension to Knowledge Tracing 

which individualized model parameters per student was 

part of a solution that placed 4
th

 in the competition (Pardos 

& Heffernan, in press). While the primary application of 

Knowledge Tracing has been to infer student knowledge, 

the model can be extended to make inferences about the 

effect of various components of the tutor on learning. 

 In this paper we overview the techniques in which 

Knowledge Tracing’s Bayesian framework has been 

extended to incorporate attributes of the student to improve 

prediction. We also look at how model extensions have 

expanded to various attributes of the tutor and allowed for 

the learning effect of those attributes to be observed.  

The Bayesian Knowledge Tracing Model 

An average student can be modeled as a statistical 

processes with probability P(L0) of knowing the skill being 

practiced before instruction beings. If the student begins 

with not knowing the skill then she will likely answer the 

first problem incorrectly but can guess the correct answer 

with probability P(G). If the student begins with knowing 

the skill then she will likely answer the first problem 

correctly but can make a mistake, or slip, with probably 

P(S). A student who begins with not knowing the skill will 

learn the skill with probability P(T) between the first and 

second opportunities and between all subsequent 

opportunities until the skill is learned. These probabilities; 

P(L0), P(G), P(S) and P(T) comprise the set of parameters 

of Knowledge Tracing with which student knowledge and 

performance is modeled. This process is equivalent to that 

of a Hidden Markov Model (HMM). In an HMM, P(G) 

and P(S) are referred to as the emission parameters, while 

P(T) is the transition parameter. In the context of 

Intelligent Tutoring Systems, P(G) and P(S) are referred to 

as the performance parameters, with P(L0) and P(T) being 

the knowledge parameters. In Knowledge Tracing, the 



probability of forgetting is fixed at zero. The parameters 

P(L0) and P(T) affect the projected probability of 

knowledge over time in a similar fashion to learning curve 

analysis (Martin et al. 2005). Note that the projected 

probability of knowledge at the next opportunity to answer 

a question of the same skill,  (    ), does not involve the 

performance parameters and is calculated with the 

following formula: 

 (  |         )  (   (  |         )) ( ) 
If no response at opportunity n exists then the prior 

probability of    is used.  

 Reasoning about the value of the latent given 

observations of correct or incorrect responses is a separate 

task involving the guess and slip parameters. The closer to 

zero the guess and slip parameters, the less uncertainty 

exists about the latent of knowledge, given an observation. 

Given a high guess value, a longer sequence of correct 

responses would be necessary to have 0.95 or greater 

certainty in the skill being known (the threshold at which 

the Cognitive Tutors reach the conclusion of mastery). The 

posterior probability of knowledge, which is the updated 

probability of knowledge after observing some evidence, 

 (  |         ), is calculated by the following formula, 

given an observation of a correct answer to a question: 

 (  )(   ( ))

 (  )(   ( ))   (   (  )) ( )
 

Given an observation of an incorrect answer to a question,  
the following formula is used: 

 (  ) ( )

 (  ) ( )   (   (  ))(   ( ))
 

The initial introduction of Knowledge Tracing by Corbett 

& Anderson used Bayesian update rules to calculate the 

inference of knowledge, however; it wasn’t until 2004 that 

Reye demonstrate that these update rules could be 

completely modeled within the framework of a Dynamic 

Bayesian Network (Reye 2004). The work referred to in 

this paper uses static, unrolled Dynamic Bayesian 

Networks, which are the equivalent of a DBN for a fixed 

number of time steps.  

Parameter fitting 

Either grid-search or Expectation Maximization (EM) can 

be used to fit the parameters of the model to the data. 

Details of both methods and their predictive performance 

have been an active topic of discussion in the student 

modeling literature (Pardos et al. 2012). With the standard 

knowledge tracing parameters, grid-search runs faster but 

its runtime increases exponentially with the addition of 

parameters to the model. The runtime of EM, however, 

follows a power function with increasing numbers of 

parameters and is a widely used algorithm for fitting 

parameters of HMMs, making it a preferred choice when 

fitting the more complex, individualized models which will 

be presented in later sections. 

Identifiability 

The standard objective in training parameters of a model is 

to achieve goodness of fit to the data. The objective in 

training parameters for a model being used for cognitively 

diagnostic purposes is two-fold. With such a model, 

parameter plausibility is also an objective. With four 

parameters it is possible that the same goodness of fit to 

the data can be achieved with two entirely different sets of 

parameter solutions (Beck & Chang 2007). While this is 

not an issue for data prediction, it is problematic for 

meaningful inference of the latent of knowledge, which is 

the primary use of Knowledge Tracing in the Cognitive 

Tutors. Various mends to the problem have been employed 

such as bounding parameter values when using grid-search 

, setting the initial parameter position to plausible values 

instead of random values when using EM, and 

individualizing the prior parameter to achieve an improved 

baseline of traction for plausible parameter convergence 

(Pardos et al. 2012). 

Modeling Student Individualization 

Standard Knowledge Tracing makes the simplifying 

assumption that all students learn a skill at the same rate 

and begin practicing a skill with the same prior knowledge. 

Individualization of these parameters can break this 

simplifying assumption and has shown improvement over 

standard Knowledge Tracing in performance prediction in 

the Cognitive Tutor for Algebra (Pardos & Heffernan, in 

press) and for Genetics as well as the ASSISTments tutor’s 

non-skill building problem sets (Pardos & Heffernan 

2010), although; using prior knowledge individualization 

did not improve prediction in the ASSISTments skill-

building problem sets (Pardos et al. 2012). 

 Corbett & Anderson took a regression approach to 

individualization that trained the general set of four 

parameters learned per skill and then used a regression to 

add in a student weight for each parameter that spanned 

skills. While incorporation of individual weights resulted 

in higher correlation of predictions to a post-test, the 

weights did not improve the accuracy of the predictions of 

within-tutor student responses. We will discuss an 

individualization approach proposed by Pardos & 

Heffernan (2010) that takes a similar angle to Corbett & 

Anderson but adheres to a strictly Bayesian formulation. 

New criticism of the model will also be presented as well 

as novel suggestions for improvement. 

Student Individualization (multistep) 

The individualization model used in the KDD Cup 

competition used a multistep training process of 

individualizing the student parameters whereby a separate 

model was first trained for each student and then combined 

with a model trained for each skill (Pardos & Heffernan, in 

press). This resulted in U + S models being trained where 



U was the number of students and S was the number of 

skills.  

 The first step was to learn parameters for each student. 

In standard Knowledge Tracing, skill parameters are 

learned by training from a dataset where the rows are 

different students who have provided responses to the skill 

and the columns are the students’ answers to the skill at 

different opportunities. To train student parameters, the 

dataset was transformed to have the rows be different skills 

a particular student has provided responses to and the 

columns be the student’s responses to those skills at 

different opportunities. Figure 1 shows the difference 

between a dataset organized for skill parameter training vs. 

one organized for student parameter training. 

 

Skill Dataset (Pythagorean Theorem) 

 Op.1 Op.2 Op.3 Op.4 Op.4 

John 0 1 1 1  

Christopher 0 1 0 1 1 

Sarah 1 1 1   
 

 

Student Dataset (Christopher) 

 Responses 

 Op.1 Op.2 Op.3 Op.4 Op.4 

Addition 1 1 1   

Pythagorean 0 1 0 1 1 

Subtraction 0 1 0 1 1 
 

  

Figure 1. Example datasets prepared for training skill 

parameters (above) and student parameters (below) 

 

The result of the first step was a P(L0), P(G), P(S) and 

P(T) parameter fit for each student. The next step was to 

train per skill models that incorporated all of the student 

parameters. For simplicity of presentation here we will 

demonstrate incorporating only the individual student 

learning rate, P(T), although the technique generalizes to 

the other parameters as well.  

 Figure 2 shows a Bayesian network approach to 

incorporating the individual student learn rates, represented 

in the H node, into the skill model. In this step, P(L0), 

P(G), P(S) and P(T|H) parameters are learned per skill. 

The student parameters, P(H|Student), are fixed to the 

values learned in step 1 and are constant for each skill 

model. They are stored in a Conditional Probability Table 

(CPT) belonging to the H node, which is a binary node that 

stands for High-Learner. A student ID is included in each 

row of the skill response dataset in order to reference the 

appropriate individual student learn rate associated with 

the evidence. The individual learn parameters dictate the 

probability that the H node is true or not. Since the learning 

rate per skill is conditioned on the value of the binary H 

node, two learning rates per skill are trained; one for high-

learners,  , and one for non-high-learners,  ̅. The 

formula for calculating the probability of knowledge at the 

next opportunity,  (    )  in this model is: 

 (  |         )
 (   (  |         )) ( | ) ( |       )
 (   (  |         )) ( | ̅)(   ( |       ) 

The formulas for calculating the posterior probabilities and 

probabilities of correct answers do not differ from standard 

Knowledge Tracing. 

Figure 2. Bayesian network of the multistep model which 

incorporates the individualized student learning rates 

 

The strength of this model is that it incorporates individual 

student learn rates into the model in a way that is 

massively parallelizable at each step. The student 

parameter models can be learned completely independently 

of one another, as can the skill models, after the student 

models have completed. This is of significant benefit to 

computation time if cluster resources are available and a 

large dataset is being processed, such as the 21010 KDD 

Cup datasets, one of which had 6,000 users and 900 skills.  

 There are several weaknesses to this parallelizable two-

step approach, however. One is that the students must have 

answered a similar distribution of skills (by difficulty) in 

order for the individual student learning rates to be 

comparable to one another. For example, if an average 

learning rate student answers only skills which are easy to 

learn, she will likely receive a high individual learn rate. 

However, if a high learning rate student answers only skills 

which are difficult, she will have a learning rate lower than 

the other student but only because the two students 

completed skills of disparate difficulty. The second 

weakness is lack of normalization of the individual 

parameters when incorporated in the skill model. The 
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Student Skill Interaction for P(T)

Node states
K , Q, H = Two state (0 or 1)
Student  = Multi state (1 to N)
(Where N is the number of students in the training data)

H

P(H|Student)
(multistep method – step 2)

Model Parameters
P(L0) = Skill probability of initial knowledge
P(T|H) = Skill probability of learning given high or low 
individual student learning rate, H
P(G) = Skill probability of guess
P(S) = Skill probability of slip



effect of this is that the difference in a skill’s high-learner 

learning rate and not-high-learner learning rate can only be 

as large as the difference between the smallest and the 

largest individual student learning rate. The individual 

parameters must be normalized to allow for greater play in 

the skill learn rates. Normalizing probabilities is a concern, 

however, in the case where the trained model is applied to 

a new student with an individual learning rate that is higher 

or lower than the minimum or maximum pre-normalized 

student learning rate.  

Student Individualization (single step) 

The two issues of 1) an equal skill distribution requirement 

and 2) lack of normalization in the high-learner node, 

which exist in the multistep model, can be addressed with a 

single step individualized model. This model trains skill 

and student parameters simultaneously. This allows for 

individual student parameters to be fit in the context of all 

skill models, thus no longer requiring equal skill 

distribution among students. It also allows for the 

individual student parameters, such as the learn rates in the 

high-learner  node, to be of any magnitude between 0 and 

1 that best fit the global model, instead of being limited to 

the minimum and maximum student P(T) values. This 

serves to no longer confine the disparity between high-

learner and non-high-learner conditioned skill learn rates. 

Figure 3. Bayesian network of the single step model which 

simultaneously fits skill and student parameters 

 

This single step model, shown in Figure 3, trains skill and 

student parameters simultaneously by adding a Skill node 

to the model, which is a multinomial node with values 

ranging from 1 to M where M is the number of skills in the 

training data. The skill parameters are made conditionally 

dependent on the Skill node, allowing for P(G), P(S), 

P(T|H) and P(L0) parameters to be trained per skill, for all 

skills at once. A student ID as well as a Skill ID is included 

in the rows for the skill dataset to properly associate the 

evidence with both skill and student. The individualized 

student learn parameters in the high-learner node must be 

initialized to some values before training. This might 

appear to be an initialization and convergence problem for 

large numbers of students but this is no more a problem 

than was present in the multistep method. In both methods, 

the initial values of the student parameters can be set to the 

same value or initialized randomly within some plausible 

bound. The additional data present in this single step model 

should help constrain the parameter values and result in 

better overall model performance compared to the 

multistep method. 

 The drawback to this approach is that the model is fit not 

just in a single step but in a single training of EM. This 

means high single threaded compute time for EM 

convergence as well as high memory load, since the entire 

dataset is being fit to at once instead of a single user’s data 

or a single skill’s data at once as was the maximum load 

seen in the multistep method. One way in which to reduce 

the data size while still fitting parameters for all students 

and skills is to cluster students and or skills at some K and 

only include the response sequences, or a sampling of 

response sequences, representative of the clusters during 

training. At K equal to M or N, the result would be 

equivalent to using all data. As K decreased, so should the 

model fit but a happy medium value of K should exist such 

that the data size is tractable and performance is still above 

that of the multistep model. 

Modeling the Effects of the Tutor 

Individualization at the student level tells us something 

interesting about the student; how fast they learn, how 

much they have retained from past instruction, but learning 

something about the tutor and how it affects learning can 

be more actionable as it sheds light on ways in which to 

improve instruction to better assist and assess the student.  

Individualization of Educational Content in the Tutor 

Before the effects of the tutor on learning can be measured, 

the difficulty of individual questions, or piece of 

educational content in the tutor, must be controlled for. In 

order to accomplish this, a separate guess and slip 

parameter can be fit for each question in a skill or problem 

set. Fitting separate guess and slip parameters per question 

modulates the difficulty and also the information gain 

among the questions. As described in the introduction 

section, guess and slip values closer to zero allow for lower 

uncertainty in the inference of the latent of knowledge. 

Different guess and slip values for each question allows for 

the appropriate amount of information, about whether or 
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not a correct answer should translate to knowledge of the 

skill, to be gained from a response. A correct response and 

inference of knowledge should, by virtue of the HMM 

design, transfer to the next opportunity to answer the next 

question of the same skill. Therefore, the amount of 

information gain for each question, set through the guess 

and slip parameters, expresses the relative relation between 

performance and knowledge among the questions. The 

utility of individualization of question guess and slip is 

maximized when the order in which questions are 

presented to students is randomized for each student. 

 

 

 

 

 

 

 

Figure 4. Pythagorean theorem questions (A), (B) and (C) 

 

Consider the three Pythagorean theorem questions (A,B,C) 

in Figure 4. All three questions ask the student to find the 

hypotenuse length; (A) does so with a lake cover story, (B) 

uses a house cover story and (C) uses no cover story at all. 

They all have a button bellow the picture that provides the 

student with assistance if pressed. The first two questions 

provide help in the form of hints while the third question 

provides help in the form of step by step tutored problem 

solving, otherwise known as scaffolding. A dataset 

representing student answers to these questions might look 

like the following, in Figure 5, where the identifying letter 

IDs of the questions serve as the attribute values. 

 

Skill Dataset (Pythagorean Theorem)  

 Responses Attribute 

 Op.1 Op.2 Op.3 Op.1 Op.2 Op.3 

John 0 1 1 C A B 

Christopher 0 1 0 B A C 

Sarah 1 1 1 A B C 

Figure 5. Example dataset of student responses and 

question IDs serving as the attribute at each opportunity 

 

It could be imagined, given more data, that these questions 

vary in difficulty among one another, with question C 

being answered correctly 33% of the time, B being 

answered correctly 66% of the time, and question A being 

answered correctly 100% of the time. The model in Figure 

6 shows how question level individualization of difficulty, 

via the guess and slip parameters, has been accomplished 

in a Bayesian network (Pardos & Heffernan 2011b). 

Figure 6. Bayesian network of the Knowledge Tracing 

Item Difficulty Effect Model (KT-IDEM), showing the 

conditional dependence of P(G) and P(S) on Attribute. 

 

In this model, the question node is conditionally dependent 

on the attribute value which changes at each opportunity 

and is representing the different Pythagorean theorem 

questions from our dataset example. Applying this model 

has shown to significantly benefit skill-builder problem 

sets (randomized) in the ASSISTments Platform as well as 

linear sequence Cognitive Tutor for Algebra except for 

skills in which very small amounts of data per problem 

exist to train the individual guess and slip parameters 

(Pardos & Heffernan 2011b). When greater than 6 data 

points existed per problem on average, the KT-IDEM 

model outperformed regular KT.  

 While this example describes individualizing question 

guess and slip based on question ID, any other attribute, 

such as answer field type (multiple-choice or fill in the 

blank, for example), could take its place as an attribute.  

 Now that the difficulty (or information gain) of each 

question is controlled for, the endeavor of measuring the 

learning effect of each question can be taken on. The P(T) 

parameter in Knowledge Tracing is the probability of 

learning between each opportunity. Imagine if instead of a 

constant P(T) at every opportunity, the probability of 

learning between opportunities was dependent upon which 

Pythagorean theorem question was just viewed. Since the 

questions also provide different tutoring, a difference in 

learning could be expected between them. The application 

of this intuition is shown in the model in Figure 7 (Pardos 

& Heffernan 2011). 
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Figure 7. Bayesian network of the Item Effect Model 

showing the condition dependence of P(T) on ‘A’ at n-1. 

 

Figure 7 shows the slight modification of making the P(T), 

at opportunity n, conditionally dependent upon the attribute 

value at opportunity n-1. Using the example of the three 

questions as attribute values, this model captures the 

learning rate attributed to each question (and its tutoring). 

Relative question learning rate information can bring 

content with low learning value to the attention of content 

creators to either revise or replace. It also allows 

researchers to evaluate what aspects of the tutor are 

promoting student learning so that these aspects, such as 

effective pedagogy and content ordering, can be replicated. 

 Like the KT-IDEM model, this model is not limited to 

using question ID as the attribute values. In the question 

example, the tutorial help types of scaffold and hint could 

be the attribute values as was done in Pardos, Dailey & 

Heffernan (2012) where this model was used to evaluate 

the effectiveness of different tutorial strategies across 

different skill-builder problem sets. A learning gain 

analysis was also run on the data and the Bayesian model’s 

tutorial strategy learning rates correlated with the learning 

gains in 10 of the 11 problem- sets. Further research using 

in vivo experiment data to validate against is ongoing. 

Conclusion 

In this paper we have overviewed techniques for individual 

student and tutor parameter incorporation into the Bayesian 

Knowledge Tracing Model and summarized work of ours 

that has demonstrated some of the potential in this 

approach. The Bayesian formulation of student and tutor 

modeling appears to be an elegant one for representing 

different hypothesis of how learning may or may not be 

taking place in the tutor.  
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