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Abstract. Intelligent tutors have become increasingly accurate at detecting whether a student knows a skill, or 
knowledge component (KC), at a given time. However, current student models do not tell us exactly at which 
point a KC is learned. In this paper, we present a machine-learned model that assesses the probability that a 

student learned a KC at a specific problem step (instead of at the next or previous problem step). We use this 
model to analyze which KCs are learned gradually, and which are learned in “eureka” moments. We also discuss 
potential ways that this model could be used to improve the effectiveness of cognitive mastery learning. 
 

 
Keywords. Educational Data Mining, Bayesian Knowledge Tracing, Student Modeling, Intelligent Tutoring 
Systems 
 

 

INTRODUCTION 
 

In recent years, educational data mining and knowledge engineering methods have led to 
increasingly precise models of students’ knowledge as they use intelligent tutoring systems (ITS). 
Student modeling has a rich history within the fields of ITS and artificial intelligence in education 
more broadly (cf. Goldstein, 1979; Burton, 1982; Sleeman, 1982). Educational data mining/machine 
learning methods begun to play a role in student modeling fairly early, including work to automate the 
process of discovering models of students’ procedures (e.g. Sleeman, Langley, & Mitchell, 1982; 
Langley & Ohlsson, 1984) and work to understand the roots of student errors (e.g. VanLehn, 1990). 
By the mid-1990s, model-fitting procedures based on student performance data had become a standard 
part of the student models used in intelligent tutoring systems (cf. Corbett & Anderson, 1995; Martin 
& VanLehn, 1995; Shute, 1995). These models were reasonably accurate at inferring the probability 
that a student knew a specific skill or concept (constructs recently referred to as knowledge 
components, abbreviated KC – cf. Koedinger & Corbett, 2006) and whether a student possessed or 
lacked specific incorrect “bug rules”. Student knowledge was inferred by these models using the 
student’s pattern of correct responses and non-correct responses (e.g. errors and hint requests) up until 
the current time, typically through a procedure where an estimate of the student’s knowledge is 
updated after each response. 

In recent years, researchers have attempted to extend student knowledge modeling to predict 
student knowledge more precisely based on information beyond just correctness. For instance, Beck et 



al. (2008) developed a model that assessed the probability of learning at a given moment differently if 
a student requested help than if they made an error – While this provided useful information about 
help’s utility, the resultant model did not have significantly improved predictive power. Johns and 
Woolf (2006) studied the possibility that knowledge modeling could be made more accurate by 
modeling gaming the system at the same time. Baker, Corbett, & Aleven (2008) extended Bayesian 
Knowledge Tracing with contextualized estimation of the probability that the student guessed or 
slipped, leading to better prediction of future correctness. More recent work has suggested that the 
exact framework from Baker et al.’s research in 2008 leads to poorer prediction of post-test scores, but 
that information on contextual slip can be used in other fashions to predict post-test scores more 
precisely than existing methods (Baker et al., 2010). Pardos and Heffernan (2010) extended Bayesian 
Knowledge Tracing with improved estimation of student knowledge priors based on initial 
performance, showing statistically significantly better prediction of within-tutor performance. Other 
knowledge tracing frameworks have attempted to model performance on problems or problem steps 
that involve multiple skills at the same time (cf. Pavlik & Anderson, 2009; Pardos, Beck, Ruiz, & 
Heffernan, 2008), and have focused on predicting a student’s speed of response in addition to just 
correctness (cf. Pavlik & Anderson, 2008). 

Creating more precise models of student learning has several benefits. First of all, to the extent 
that student practice is assigned based on knowledge assessments (cf. Corbett & Anderson, 1995), 
more precise knowledge models will result in better tailoring of practice to individual student needs 
(cf. Cen, Koedinger, & Junker, 2007). Second, models of student knowledge have become an essential 
component in the development of models of student behavior within intelligent tutoring systems. 
Knowledge models have been employed as key components of models of many constructs, including 
models of appropriate help usage (Aleven, McLaren, Roll, & Koedinger, 2006), gaming the system 
(Baker, Corbett, Roll, & Koedinger, 2008; Walonoski & Heffernan, 2006), and off-task behavior 
(Baker, 2007; Cetintas, Si, Xin, Hord, & Zhang, 2009). More precise knowledge models can form a 
more reliable component in these analyses, and as such increase the fidelity of models of behavior.  

However, while these recent extensions to models of student knowledge have created the 
potential for more precise assessment of student knowledge at a specific time, these models do not tell 
us when the knowledge was acquired. In this paper, we will introduce a model that can infer the 
probability that a student learned a knowledge component (KC) at a specific step during the problem-
solving process. Note that this probability is not the same thing as P(T) in standard Bayesian 
Knowledge Tracing (a full explanation will be given later in this paper). Creating a model that can 
infer this probability will create the potential for new types of analyses of student learning, as well as 
making existing types of analyses easier to conduct. For example, this type of approach may allow us 
to study the differences between gradual learning, such as the strengthening of a memory association, 
governed by power/exponential improvements in accuracy and performance (Newell & Rosenbloom, 
1981; Heathcote, Brown, & Mewhort, 2000) and  “eureka” moments within learning, where a skill or 
concept is suddenly understood (cf. Lindstrom & Gulz, 2008). Both types of learning are known to 
occur (Anderson & Lebiere, 2006), but the conditions leading to sudden “eureka” moments in learning 
– for example, the moment of insight in an insight problem (Duncker, 1945; Metcalfe & Wiebe, 1987) 
– are still incompletely known (Bowden et al., 2005). It has been argued that the traditional paradigm 
for studying insight, focused on laboratory experiments using highly difficult problems thought to 
require a single insight for success, is insufficient to fully understand insight (Bowden et al., 2005). 
This has led to finer-grained research on insight using EEG and FMRIs (Bowden et al., 2005; Kounios 
et al., 2008). With the extremely large data sets now available for intelligent tutors (Koedinger et al., 



2010), and a metric that can assess whether learning is steady or sudden, it may be possible to expand 
insight research further, to learn about the conditions that are associated with “eureka” moments 
during in-vivo learning of complex academic skills and concepts over long periods of time.   

In addition, studying the relationship between behavior and immediate learning will be facilitated 
by having a concrete numerical measure of immediate learning. Prior methods for studying these 
relationships have required either looking only at the single next performance opportunity (cf. Cocea, 
Hershkovitz, & Baker, 2009), a fairly coarse learning measure, or have required interpreting the 
difference between model parameters in Bayesian Knowledge Tracing (cf. Beck et al., 2008), a non-
trivial statistical task. For the same reasons, studying which items are most effective (and in which 
order they are most effective) (cf. Beck & Mostow, 2008; Pardos & Heffernan, 2009; Pardos, Dailey, 
& Heffernan, 2010) will be facilitated with the addition of a concrete numerical measure of immediate 
learning. Creating models of the moment of learning may even enable distinctions between behaviors 
associated with immediate learning and behaviors associated with learning later on, and enable 
identification of the antecedents of later learning.  For example, perhaps some types of help lead to 
immediate better learning but others aid by preparing the student for future learning (cf. Bransford & 
Schwartz, 1999) so that differences in performance can only be seen after additional practice has 
occurred. 

In the following sections, we will present an approach for labeling data in terms of student 
immediate learning, a machine-learned model of student immediate learning (and indicators of 
goodness of fit), and an example of the type of “discovery with models” analysis that this type of 
model enables. In that analysis, we will investigate whether learning is differentially “spiky” between 
different KCs, with learning occurring abruptly for some KCs and more gradually for other KCs. 
 

DATA 
 

Before discussing the procedure used to model the moment of learning, we will discuss the data 
used within this paper’s analyses. Data was obtained from two Intelligent Tutoring Systems: The 
Middle School Cognitive Tutor (Koedinger, 2002) from Carnegie Mellon University and the 
ASSISTment Tutoring System (Razzaq et al., 2005) from the Worcester Polytechnic Institute (We 
refer to the Middle School Tutor by its original name, since this was the version studied in this paper; 
An updated version of this tutor is now distributed commercially by Carnegie Learning, Inc. as Bridge 
to Algebra). 

Within each environment, each student works independently, completing Mathematics problems 
online. Both systems teach and then assess students’ proficiency with a variety of knowledge 
components. The Cognitive Tutor’s content is motivated by state-mandated Mathematics curricular 
standards within the United States, organized into lessons by curricular themes. The ASSISTment 
system provides a centralized certification system where content is vetted by domain experts at WPI 
and promoted to teachers within the system. The inspiration for the themes of those problem sets 
began out of questions found in a state Mathematics exam, the Massachusetts Comprehensive 
Assessment System (Razzaq et al., 2005).  Today, ASSISTments focuses primarily on allowing 
teachers to selectively assign daily content to build knowledge component proficiency. 

To encourage learning, both tutors have multiple means of supporting learners encountering 
difficulties with specific knowledge components, such as choosing the X axis variable for a graph, or 
computing the volume of a cube. Both environments include buggy messages, which is tailored 
feedback for when a common misconception can be detected within student behavior. Each system 



supports multi-level on-demand hints to students. One difference is that problem-solving steps are 
always reified within the Middle School Cognitive Tutor, whereas these steps are only reified with 
ASSISTments if the student makes an error or requests help. In the following sections, we will discuss 
these systems in greater detail, along with the population that used each of these systems within the 
data sets obtained for the research in this paper. 
 

The Cognitive Tutor 
 

Cognitive Tutors (Koedinger & Corbett, 2006) break down each Mathematics problem into the 
steps used to solve it in order to reify student thinking and provide feedback on each step of the 
problem-solving process. Cognitive Tutors assess student knowledge using Bayesian Knowledge 
Tracing (Corbett & Anderson, 1995), which uses the student’s performance history within the system 
to calculate a running estimate of the probability that the student is proficient at particular knowledge 
components. Given these probabilities, the system implements cognitive mastery learning (Corbett, 
2001), which is a tutor style that gives students practice on a knowledge component until the student 
has demonstrated mastery of that skill or concept. Cognitive Tutors give tailored feedback when a 
student’s answer is indicative of a known misconception, and offer multi-level on-demand hints to 
students, which start at a conceptual level and become increasingly specific until the student is given 
the answer (as in Figure 1).   

The analyses presented in this paper are conducted on data from 232 students’ use of a Cognitive 
Tutor curriculum for middle school mathematics (Koedinger, 2002), during the 2002-2003 school 
year. All of the students were enrolled in mathematics classes in one middle school in the Pittsburgh 
suburbs that used Cognitive Tutors two days a week as part of its regular mathematics curriculum, 
year round. None of the classes were composed predominantly of gifted or special needs students. The 
students were in the 6th, 7th, and 8th grades (approximately 12-14 years old), but all used the same 
curriculum (it was an advanced curriculum for 6th graders, and a remedial curriculum for 8th graders). 

Each of these students worked through a subset of 35 different lessons within the Cognitive Tutor 
curriculum, covering a diverse selection of material from the middle school mathematics curriculum. 
Middle school mathematics, in the United States, generally consists of a diverse collection of topics, 
and these students’ work was representative of that diversity, including lessons on combinatorics, 
decimals, diagrams, 3D geometry, fraction division, function generation and solving, graph 
interpretation, probability, and proportional reasoning. These students made 581,785 transactions 
(either entering an answer or requesting a hint) on 171,987 problem steps covering 253 knowledge 
 

 



Fig 1. A student reads a bottom-out hint within the Middle School Cognitive Tutor.  
 

components. 290,698 additional transactions were not included in either these totals or in our analyses, 
because they were not labeled with KCs, information needed to apply Bayesian Knowledge Tracing. 
 

ASSISTments 

 
The other ITS studied in this paper is the ASSISTment tutoring system (Razzaq et al., 2005). 

ASSISTment is used to assess student proficiency, for homework assignments (Mendicino, Razzaq, & 
Heffernan, 2009), and for preparation for standardized exams (Koedinger, McLaughlin, & Heffernan, 
in press). Within this paper, we analyze data drawn from students using the Mastery Learning feature 
of ASSISTments, where a student repeatedly receives problems focusing on a specific knowledge 
component until the student demonstrates mastery. Within ASSISTments’ mastery learning, 
proficiency is assessed in a very different manner than in Cognitive Tutors. ASSISTments allows 
teachers to set a threshold for the number of problems a student must correctly answer in a row in 
order to be considered proficient at that knowledge component. That threshold is termed the Mastery 
Limit. Though this approach is very likely to assess mastery less accurately than Bayesian Knowledge 
Tracing, it is preferred by some teachers as being easier to understand and control. Within this  

 

 



Figure 2. A student reading a hint for the first level of scaffolding in the ASSISTment tutoring system. 
 

particular study, problem sets had a Mastery Limit of either 3 or 5. In order to prevent exhaustion and 
wasted time, students were allowed to attempt no more than 10 problems pertaining to a specific 
knowledge component each day. When that number was exceeded, the student was locked out of the 
problem set until the next day. 

As with Cognitive Tutors, ASSISTments provide feedback on incorrect answers and multi-level 
hints that terminate with bottom-out hints. The ASSISTment system also offers scaffolding, which 
breaks down the current problem into simpler steps, in order to reify the thinking needed to solve the 
problem. The intention is to make visible the specific part of the student’s thought process that is 
incorrect. Each step of the scaffolding is a problem unto itself, capable of containing multi-level hints, 
and each requiring a new answer. The last step of scaffolding always requires the student to again 
attempt the original question.  

The analyses presented in this paper are conducted on data from 4187 students’ use of 
mathematics ASSISTments between December 2008 and March 2010. This sample was primarily 
composed of students in Massachusetts, but included substantial proportions of students from other 
parts of the USA, including Virginia and South Carolina. The sample was primarily composed of high 
school students, although some middle school students were also included. These students completed 
Mastery Learning problem sets involving 53 knowledge components, across a range of areas of 
mathematics, including algebra, probability, number sense with fractions and decimals, geometry, and 
graph interpretation. The patterns of usage varied considerably between the many schools involved in 
this data set. These students made 413,428 transactions (either entering an answer or requesting a hint) 
on 179,144 problems. 

 

DETECTING THE MOMENT OF LEARNING 
 

Within this section, we present a model that predicts the probability that a student has learned a 
specific knowledge component at a specific problem step. We refer to this probability as P(J), short 
for “Just Learned”. This model is developed using a procedure structurally similar to Baker, Corbett, 
& Aleven’s (2008) contextualization of the guess and slip parameters of Bayesian Knowledge 
Tracing, using a two-step process. Considerably greater detail on this procedure will be given in the 
following sections, but we give a brief summary here.  

First, training labels of the probability that a student learned a KC at a specific problem step are 
generated. The development of these labels is based on the overall idea that learning is indicated by 
when a student does not know a skill at one point and then starts performing correctly afterwards. 
These training labels are generated using a combination of predictions of current student knowledge 
from standard Bayesian Knowledge Tracing and data on future correctness, integrated using Bayes’ 
Theorem. This process generates training labels of the probability that a student learned a KC at a 
specific problem step. In essence, we use evidence from both the past and future to assess the 
probability that learning occurred at a specific time.  

Using these labels, a model is trained. This model uses a broad feature set, but includes absolutely 
no data from the future. The result is a model that can be used either at run-time or retrospectively, to 
assess the probability that a KC is learned at each practice opportunity. We present results for this 
process on two distinct data sets, from a Cognitive Tutor and Math ASSISTments.  
 



 

 

Labeling Process 

 
The first step of our process is to label each problem step N in the data set with the probability 

that the student learned the KC at that time, to serve as inputs for machine learning. Determining 
exactly when a student is thinking about a specific problem step is a non-trivial task, as students often 
continue thinking about a step even after entering a correct answer (e.g. Shih, Koedinger, & Scheines, 
2008). Our specific working definition of “learning at step N” is learning the KC between the instant 
after the student enters their first answer for step N, and the instant that the student enters their first 
answer for step N+1. In doing so, we likely include some amount of time when the student is thinking 
about the next step and omit some amount of time when the student is thinking about the current step 
(specifically, time before the first answer on the current step). It is impossible under current methods 
to avoid some bias; we choose to bias in this direction because we believe that learning processes such 
as self-explanation are more likely to occur after an answer (whether correct or incorrect) or help 
request, than before the student answers a step for the first time (at which point the student usually 
does not know for certain if their answer and process is correct).  

We label step N using information about the probability the student knew the KC before 
answering on step N (from Bayesian Knowledge Tracing) and information on performance on the two 
following steps (N+1, N+2). Using data from future actions gives information about the true 
probability that the student learned the KC during the actions at step N. For instance, if the student 
probably did not know the KC at step N (according to Bayesian Knowledge Tracing), but the first 
attempts at steps N+1 and N+2 are correct, it is relatively likely that the student learned the KC at step 
N. Correspondingly, if the first attempts to answer steps N+1 and N+2 are incorrect, it is relatively 
unlikely that the student learned the KC at step N. 

We assess the probability that the student learned the KC at step N, given information about the 
actions at steps N+1 and N+2 (which we term A+1+2), as: 

 
P(J) = P(~Ln ^ T | A+1+2 ) 

 
Note that this probability is assessed as P(~Ln ^ T), the probability that the student did not know 

the KC and learned it, rather than P(T). Within Bayesian Knowledge Tracing, the semantic meaning of 
P(T) is actually P(T | ~Ln): P(T) is the probability that the KC will be learned, if it has not yet been 
learned. P(T)’s semantics, while highly relevant for some research questions (cf. Beck et al., 2008; 
Koedinger, 2002), are not an indicator of the probability that a KC was learned at a specific moment. 
This is because the probability that a student learned a KC at a specific step can be no higher than the 
probability that they do not currently know it. P(T), however, can have any value between 0 and 1 at 
any time. For low values of P(Ln), P(T) will approximate the probability that the student just learned 
the KC. However, for high values of P(Ln), P(T) can take on extremely high values even though the 
probability that the KC was learned at that moment is very low.  

We can find P(J)’s value with a function using Bayes’ Rule: 
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The base probability P(~Ln ^ T) can be computed fairly simply, using the student’s current value 
for P(~Ln) from Bayesian Knowledge Tracing, and the Bayesian Knowledge Tracing model’s value of 
P(T) for the current KC: 
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The probability of the actions at time N+1 and N+2, P(A+1+2), is computed as a function of the 

probability of the actions given each possible case (the KC was already known, P(Ln), the KC was 
unknown but was just learned, P(~Ln ^ T), or the KC was unknown and was not learned, P(~Ln ^ 
~T)), and the contingent probabilities of each of these cases. 
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The probability of the actions at time N+1 and N+2, in each of these three cases, is a function of 

the Bayesian Knowledge Tracing model’s probabilities for guessing (G), slipping (S), and learning the 
KC (T). In order to calculate the probability of each possible case of estimated student knowledge, we 
must consider all four potential scenarios of performance at actions N+1 and N+2. In the formulas 
below, correct answers are written C and non-correct answers (e.g. errors or help requests) are written 
~C – The possible scenarios are: correct/correct (C, C); correct/wrong (C, ~C); wrong/correct (~C, 
C); and wrong/wrong (~C, ~C): 
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Once each action is labeled with estimates of the probability P(J) that the student learned the KC 

at that time, we use these labels to create machine-learned models that can accurately predict P(J) at 
run-time. The original labels of P(J) were developed using future knowledge, but the machine-learned 
models predict P(J) using only data about the action itself (no future data). 

 

Features 

 
In order to predict the training labels of P(J) created in the previous step, we distill a set of 

features that can be used as predictors. These features are quantitative (or binary) descriptors of key 
aspects of each problem step that have a reasonable potential to be statistically associated with the 
construct of interest, whether learning occurred at a specific moment. These features are then used 
within machine learning (discussed in the next section). 

For each problem step, we used a set of features describing the first action on problem step N. In 
the case of the Cognitive Tutor, the list consisted of 23 features previously distilled to use in the 
development of contextual models of guessing and slipping (cf. Baker, Corbett, & Aleven, 2008). 
These features had in turn been used in prior work to develop automated detectors of off-task behavior 



(Baker, 2007) and gaming the system (Baker et al., 2008). In the case of ASSISTments, a similar but 
non-identical list of 22 features was distilled (differing primarily due to the different features and 
organization of problems in Math ASSISTments). The actual features selected for incorporation into 
the final models is given in Tables 1 and 2. The list of features inputted into the machine learning 
algorithm was: 

 

• Assessments of correctness: 
o Percent of all past problems that were wrong on this KC. 
o Total number of past problems that were wrong on this KC. 
o Number of last 5 problems that were wrong. 
o Number of last 8 problems that were wrong. 

• Measurements of time: 
o Time taken (SD faster/slower than average across all students). 
o Time taken in last 3 actions (SD off average) 
o Time taken in last 5 actions (SD off average) 
o Total time spent on this KC across all problems 
o Time since the current KC was last seen. 

• Data on hint usage: 
o First response is a help request. 
o Bottom-out hint is used. 
o Number of last 8 problems that used the bottom-out hint. 
o Second to last hint is used (ASSISTments only) – indicates a hint that gives 

considerable detail but is not quite bottom-out 
o Number of last 5 problems that included a help request. 
o Number of last 8 problems that included a help request. 

• Data on scaffolding usage (ASSISTments only): 
o Problem ends with scaffolding. 
o Problem ends with automatic scaffolding. 
o The problem is scaffolding of a prior problem. 
o Total scaffolding opportunities for this KC in the past. 

• Other measurements: 
o Total problems attempted in the tutor so far. 
o Total practice opportunities on this KC so far. 
o Response is chosen from a list of answers (Multiple choice, etc). 
o Response is filled in (No list of answers available). 
o Working during school hours (between 7:00 am and 3:00 pm) (ASSISTments 

only). 
 
It may seem counter-intuitive to use a feature set that was designed originally to capture off-task 

behavior and gaming for detecting the moment of learning, but this approach has advantages; in 
particular, if it leads to a model with reasonable goodness of fit, then this suggests that developing a 
successful detector of the moment of learning does not require an extensive new process of feature 



engineering. Feature engineering and extraction can often be one of the most time-consuming aspects 
of educational data mining and data mining in general (for instance, devising what the features should 
be, and selecting the cut-offs used in features such as ‘the number of the last 5 problems that included 
a help request’). Bypassing this time-consuming step increases the feasibility of creating models of 
this nature. Discussion of potential additional features, and further feature engineering we have 
conducted for this model, is described in detail in the discussion section. In addition to these features, 
we also included two additional features that were used in prior models of gaming the system and off-
task behavior. These features are the probability that the student knew the KC before the first attempt 
on action N, P(Ln-1), and the probability that the student knew the KC after the first attempt on action 
N, P(Ln). There are some arguments against including these features, as P(~Ln) is part of the construct 
being predicted, P(~Ln ^ T). However, the goal of this model is to determine the probability of 
learning, moment-by-moment, and the students’ current and previous knowledge levels, as assessed by 
Bayesian Knowledge Tracing, are useful information towards this goal. In addition, other parameters 
in the model will be more interpretable if these features are included.  Without these terms, it would be 
difficult to determine if a parameter was predicting T or ~Ln. With these terms, we can have greater 
confidence that parameters are predictive of learning (not just whether the KC was previously 
unknown) because Ln is already accounted for in the model. However, in accordance with potential 
validity concerns stemming from including P(Ln-1) and P(Ln) in the model, we will also present 
goodness-of-fit statistics from models not including these features. 

 

Machine Learning 

 
Given the labels and the model features for each student action within the tutor, we conducted 

linear regression within RapidMiner (Mierswa et al., 2006) to develop models that predict P(J). This 
resulted in a set of numerical predictions of P(J), one for each problem step that a student completed. 
In each case, M5’ feature selection (Hall, 2000) was used to determine which features were 
incorporated into the models. Linear regression with M5’ feature selection creates regression trees, a 
tree of linear regression models, and then conducts linear regression on the set of features used in the 
tree. Although this approach might seem somewhat non-straightforward, compared to simpler 
approaches such as stepwise regression, it has been shown to lead to better model performance than 
several other feature selection algorithms (Hall, 2000) and is now the default setting for linear 
regression in several data mining packages, including both RapidMiner (Mierswa et al., 2006) and 
Weka (Witten & Frank, 2005).  The machine learned models generated for each system (including all 
features in the final models) are listed below in Table 1 and Table 2. 

To validate the generalizability of our models, we checked our results with 6-fold cross-
validation, at the student level (e.g. detectors are trained on five groups of students and tested on a 
sixth group of students). By cross-validating at this level, we increase confidence that detectors will be 
accurate for new groups of students.  

The goodness of the models was validated using the Pearson correlation coefficient between the 
training labels of P(J) for each step, and the values predicted for P(J) for the same step by the 
machine-learned models. As both set of values are quantitative, and there is a one-to-one mapping 
between training labels and predicted values, linear correlation is a reasonable metric.   
 

RESULTS 
 



Overall, the models produced through machine learning were successful at predicting P(J). The 
full model, trained on the full set of features, achieved good correlation between the training labels 
and model predictions, for each tutoring system. For the Cognitive Tutor data, the model achieved a 
correlation of 0.446 to the labels, within 6-fold student-level cross-validation. Similarly, the model for 
ASSISTments data achieved a correlation coefficient of 0.397.  

The two models are shown below in Tables 1 and 2. As with any multiple-parameter linear 
regression model (and most other model frameworks as well), interpretability of the meaning of any 
individual parameter is not entirely straightforward. This is because every parameter must be 
considered in the context of all of the other parameters – often a feature’s sign can flip based on the 
other parameters in the model. Hence, significant caution should be taken before attempting to 
interpret specific parameters as-is. It is worth noting that approaches that attempt to isolate specific 
single features (cf. Beck et al., 2008) are significantly more interpretable than the internal aspects of a 
multiple parameter regression model such as this one. It is also worth remembering that these features 
apply to the first action of problem step N whereas the labels pertain to the student’s learning between 
the first action of problem step N and the first action of problem step N+1. Hence, the features of this 
model can be interpreted more as representing the immediate antecedents of the moment of learning 
than as representing the moment of learning itself – though they do accurately predict the moment of 
learning. 

Although correlation was acceptable, one curious aspect of this model is that it tended to 
underestimate values of P(J), particularly those that were relatively high in the original labels (e.g. 
>0.02). The difference between the model values of P(J) and the original label is highly correlated to 
the original label, with a correlation of 0.95 in the Cognitive Tutor and 0.87 in ASSISTments. While 
these values remained higher than the rest of the data (hence the model’s reasonable correlation to the 
labels), they were lower, in absolute terms, than the original labels. This problem could be addressed 
by weighting the (rarer) high values more heavily during model-fitting, although this approach would 
likely reduce overall correlation. Another possible solution would be to fit the data using a logarithmic 
(or other) function that scales upwards more effectively than a linear function; as will be seen later, the 
differences between maximum and minimum spikiness are large enough that non-linear regression 
may be more appropriate than our current approach. Nevertheless, within the current model it is likely 
to be more straightforward to interpret differences in P(J) than absolute values.  

As discussed earlier, one potential concern with these models is that they incorporate Ln-1 and Ln 
while ~Ln is used in the training labels. As discussed above, we do not consider this a primary 
concern, as our main goal is to fit the learning part of the equation (rather than the “already-learned” 
part); but to validate that our models are not simply predicting ~Ln, we re-fit the models without Ln-1 
and Ln.  When models were fit for the Cognitive Tutor and ASSISTments that excluded Ln and Ln-1, 
these models achieved lower cross-validated correlations than the full models, respectively 0.438 and 
0.301. We can compute the statistical significance of the difference in correlation (between the full 
and restricted models) in a way that accounts for the non-independence between students, by 
computing a test of the significance of the difference between two correlation coefficients for 
correlated samples (cf. Ferguson, 1971) for each student, and then aggregating across students using 
Stouffer’s Z (Rosenthal & Rosnow, 1991).  According to this test, the difference between the two 
models is highly statistically significant, both for the Cognitive Tutor data, Z=116.51, p<0.0001, and 
for the ASSISTments data, Z = 66.34, p<0.001. 

 
 
 



 
 

Table 1. The machine learned model of the probability of learning at a specific moment for the Cognitive Tutor. 
In the unusual case where output values fall outside the range {0,1}, they are bounded to 0 or 1. The model is 
expressed as a regression equation, with each feature’s non-unitized parameter coefficient (weight) given. 

Computing the value of the equation gives the predicted value of P(J). 

Feature P(J) = 

Answer is correct - 0.0023 

Answer is incorrect + 0.0023 

Action is a help request - 0.00391 

Response is a string + 0.01213 

Response is a number + 0.01139 

Time taken (SD faster (-) / slower (+) than avg. across all students) + 0.00018 

Time taken in last 3 actions (SD off avg. across all students) + 0.000077 

Total number of times student has gotten this KC wrong total - 0.000073 

Number of times student requested help on this KC, divided by number of 
problems 

- 0.00711 

Number of times student made errors on this KC, divided by number of 

problems 

+ 0.0013 

Total time taken on this KC so far (across all problems), in seconds + 0.0000047 

Number of last 5 actions which involved same interface element - 0.00081 

Number of last 8 actions that involved a help request + 0.00137 

Number of last 5 actions that were wrong + 0.00080 

At least 3 of last 5 actions involved same interface element & were wrong - 0.037 

Number of opportunities student has already had to use current KC - 0.0000075 

The probability the student knew the KC, after the current action (Ln)  - 0.053 

The probability the student knew the KC, before the current action (Ln-1) + 0.00424 

Constant Term + 0.039 

 
Table 2. The machine learned model of the probability of learning at a specific moment for the ASSISTments 
system. In the unusual case where output values fall outside the range {0,1}, they are bounded to 0 or 1. The 
model is expressed as a regression equation, with each feature’s non-unitized parameter coefficient (weight) 

given. Computing the value of the equation gives the predicted value of P(J). 

Feature P(J) = 

Answer is correct - 0.0429 

Action is a hint request - 0.0216 

Current problem is original (Not scaffolding of another) + 0.0078 

Response is input by the user (Not just selected from a list of multiple choice) + 0.0058 

Time taken to complete the current problem + 0.0215 

Time taken in last 3 actions (SD off avg. across all students) + 0.1866 

Total number of times student has gotten this KC wrong total - 0.0798 

Total time taken on this KC so far (across all problems), in seconds - 0.0346 

Number of last 5 actions that involved a help request - 0.0953 

Number of last 8 actions that were wrong - 0.0401 

Percentage of past problems that the student has gotten wrong + 0.0184 

Amount of time that has passed since this KC was last seen - 0.0399 

Whether or not the problem was completed during school hours (M-F 8:00-3:00) - 0.0038 

Total number of problems the student has attempted altogether in the system + 0.0078 



The probability the student knew the KC, before the current action (Ln-1) - 0.0605 

Constant term + 0.0957 

 
One interesting aspect of this model (and the original labels) is that the overall chance of learning 

a KC on any single step is relatively low within the two tutors. However, there are specific 
circumstances where learning is higher. Within both systems, many of these circumstances correlate to 
time spent, and the student’s degree of persistence in attempting to respond. In addition, in both 
systems, there is a positive correlation associated with an incorrect answer, potentially suggesting that 
students learn by making errors and then considering why the answer was incorrect. Within the 
Cognitive Tutor, larger numbers of past errors appear to predict more current learning than larger 
numbers of past help requests, for instance. This result appears at a surface level to be in contrast to 
the findings from (Beck, Chang, Mostow, & Corbett, 2008), but is potentially explained by the 
difference between learning from requesting help once – the grain-size studied in (Beck, Chang, 
Mostow, & Corbett, 2008) – and learning from requesting the same help sequence many times across 
problems. It may be that learning from errors (cf. VanLehn, Siler, & Murray, et al., 2003) is facilitated 
by making more errors, but that learning from help does not benefit from reading the same help 
multiple times. Another possible explanation for this difference is that the help studied in (Beck et al., 
2008) was much briefer than the multi-step problem-solving hints used in Cognitive Tutors and 
ASSISTments. 
 

STUDYING THE SPIKINESS OF STUDENT LEARNING 
 

A key way that the model presented here can be scientifically useful is through its predictions, as 
components in other analyses. Machine-learned models of gaming the system, off-task behavior, and 
contextual slip have proven useful as components in many other analyses (cf. Baker, 2007; Cocea et 
al., 2009; Walonoski & Heffernan, 2006). Models of the moment of student learning may turn out to 
be equally useful.  

One research area that models of the moment of student learning may shed light on is the 
differences between gradual learning (such as strengthening of a memory association) and learning 
given to “eureka” moments, where a KC is understood suddenly (cf. Lindstrom, 2008). Predictions of 
momentary learning for a specific student and KC can be plotted, and graphs which are “spiky” (e.g.  

 

 
Fig. 3. An example of a single student’s performance on a specific KC. “Entering a common multiple” (left) 

results in a “spiky” graph, indicating eureka learning. “Identifying the converted value in the problem statement 



of a scaling problem” (right) results in a relatively smooth graph, indicating more gradual learning. The X axis 
shows how many problem steps have involved the current KC, and the Y axis shows values of P(J). 

which have sudden peaks of learning) can be distinguished from flatter graphs, which indicate more 
gradual learning. Examples of students’ experiencing gradual learning and eureka learning are shown 
in Figure 3.  The degree to which learning involves a eureka moment can be quantified through a 
measure of “spikiness”, defined as the maximum value of P(J) for a student/KC pair, divided by the 
average value of P(J) for that same student/KC pair. This measure of spikiness is bounded between 1 
(minimum spikiness) and positive infinity (maximum spikiness). Below we will detail the analysis of 
spikiness in the data from both the Cognitive Tutor and ASSISTments, first at the KC level and then at 
the student level. 

As a quick note, it is worth mentioning that the graph on the left in Figure 3 shows two spikes, 
rather than just one spike. This pattern was fairly common in both data sets. Investigating this 
phenomenon is out of the scope of the current paper, but understanding why some spiky graphs have 
two spikes, and others have just one, will be an interesting and potentially fruitful area for future 
investigation.  
 

Spikiness by Knowledge Component 
 

Spikiness may be influenced by the number of opportunities to practice a KC, as more 
opportunities may (by random variation) increase the potential maximum value of P(J). Therefore, to 
compare spikiness between KCs, we only consider KCs practiced at least 6 times, and only consider 
the first 20 opportunities to use that KC. 

Within our data from the Cognitive Tutor, spikiness values range for KCs between {1.12, 
113.52}, M=8.55, SD=14.62. For ASSISTments, we found a range of {1.62, 12.45}, M=3.65, 
SD=1.79. As can be seen in figure 4, the most frequently occurring spikiness values in the Cognitive 
Tutor range from 1.25-1.75, somewhat lower than the modal range in ASSISTments, 2.75-4.75. It 
appears that the Cognitive Tutor spikiness values have a longer tail than the ASSISTments data, 
perhaps even with a second mode. This may imply that there are two groups of knowledge 
components in the Cognitive Tutor, a low-spikiness group and a high-spikiness group. There is some 
evidence for this possibility. The Cognitive Tutor tracks a larger number of knowledge components 
than ASSISTments, potentially including trivially easy tasks. The knowledge component with 
maximum spikiness of 113.52 is “ENTER-CORRECT-ANSWER-INTO-BOX”. However, this KC’s 
high maximum spikiness appears to be due to rare outlier performance. This KC was attempted 1488 
times, with 1485 occurrences being correct responses (99.997%); essentially perfect performance for 
almost every student. Hence learning was almost zero for this skill in the tutor, making it possible for 
rare blips – specifically, initial slips followed by perfect performance – to lead to artifactually high 
estimates of P(J) in rare cases. Metrics such as the maximum are vulnerable to rare blips of this 
nature. By contrast, the KC with maximum spikiness in ASSISTments was “ordering integers”, a 
genuine cognitive KC, which was attempted 2648 times with 2403 occurrences being correct 
(90.74%). Hence, it appears that some of the high spikiness seen in Cognitive Tutors comes from very 
easy KCs. A comparison of the spikiness of KCs between the two tutoring systems is presented below 
in figure 4. 

It will be a valuable area of future work to analyze the factors leading some knowledge 
components to have high spikiness, while others have low spikiness. We leave a complete analysis of 
the factors leading to differences in spikiness for future work, as this is likely to be a substantial 



question for future inquiry. However, as a preliminary statement, it appears that compound (possibly 
incompletely differentiated) KCs are less prone to spikes. For instance, the spikiest KC in 
ASSISTments is the straightforward skill of ordering integers, whereas the least spiky skill is algebraic 
solving. Algebraic solving may involve operations with both integers and real numbers or various 
algebraic properties. The second spikiest KC in ASSISTments is computing the perimeter of a 
polygon. Polygons come in many shapes and sizes, measured in different ways. The gradual learning 
that a non-spiky graph represents is potentially showing continual gains in cognitive understanding of 
the many sub-KCs that the current problem includes. On the other hand, ordering integers is a much 
finer-grained KC, and we can frequently see “eureka” style learning for students. This pattern is seen 
in both of the two tutors. Thus, we hypothesize that P(J) can be especially useful for finer-grain KC 
models. Another factor worth noting is that algebraic solving, as well as perimeter of a polygon, have 
the shared characteristic of having many prerequisite KCs. If prerequisites are clear, then tutors could 
potentially be biased by using P(J) to induce spikes for each sub-KC to eventually obtain mastery of 
the primary KC. As noted, it will be a valuable area of future study to see whether these two factors 
are generally predictive of differences in KC spikiness and what other factors predict spikiness. 

 
 

 
Fig. 4. Frequency of KC spikiness levels in the two tutors (Cognitive Tutor on the left, ASSISTments on the 
right). The x-axis is the range of spikiness (displayed with logarithmic scale) and the y-axis is the percent 

frequency of each bin. 

 
 

Spikiness by Student 

 
Within our data from the cognitive tutor, spikiness values range for students between {2.22, 

21.81}, M=6.81, SD=3.09, considerably less spikiness (on the whole) than the differences in spikiness 
seen between KCs. For ASSISTments, we found that spikiness values range between {1.12, 15.423}, 
M=3.09, SD=1.49, which is a slightly larger range than was seen for skills in ASSISTments. 
Interestingly, the student spikiness ranges are much more similar between the Cognitive Tutor data 
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and the ASSISTments set than the KC spikiness ranges, suggesting that the tutors may have been more 
different from each other than the students who used them.  

 
Fig 5. One student’s performance on a single KC in the ASSISTment System. The x-axis denotes the number of 

opportunities to practice the KC. 
 

Interestingly, however, a student’s spikiness is a good predictor of their final knowledge; the 
correlation between a student’s average final P(Ln) and their average spikiness is a very high 0.71 in 
the Cognitive Tutor data, which is statistically significantly different than chance, F(1,228)=230.19, 
p<0.0001. In ASSISTments, the correlation is 0.50, which is also statistically significantly different 
than chance, F(1,4187)=1397.71, p<0.0001. These results suggest that learning spikes may be an early 
predictor of whether a student is going to achieve successful learning of the material in a tutor, as can 
be seen in figure 5. As can be seen, there is a spike for both the P(J) training labels and P(J) model at 
the second action, before the sequence of correct actions (3rd action, 4th action, 5th action) that lead to 
the higher P(Ln) values seen afterwards. It is worth noting that this spike is seen in both the P(J) 
training labels and P(J) model, although the model has lower peak values than the training labels (as 
discussed earlier) – point 2 for the model is still approximately double in magnitude as point 1 and 
point 3. 

Besides potentially being an early predictor of eventually learning material, spikiness analysis can 
help to reveal possible ways an ITS can improve on its methodology of assessing mastery. From figure 
5, we can see that the student reaches what would be considered mastery in a purely Bayesian 
Knowledge Tracing style ITS, but ASSISTments continues the student onward. This limitation can be 
addressed by adding Bayesian Knowledge-Tracing into ASSISTments. However, while Bayesian 
Knowledge Tracing with well-fit parameter values can reduce over-practice (Cen, Koedinger, & 
Junker, 2007), current implementations of Bayesian Knowledge Tracing still often need a significant 
amount of data to conclude that a student has achieved mastery. For instance, note that the spike in 
P(J) in figure 5 occurred several actions before Ln reached a mastery level (and is seen in both the 
training set and the model, though in a more visually obvious fashion in the training set). Our 
hypothesis is that P(J) can be used to make earlier predictions of mastery, to reduce the chance of 
over-practice further. However, using P(J) in this fashion creates a risk of under-practice. For one 
thing, though spikes predict eventual learning, this does not imply for certain that the learning is 
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complete at the time of the spike (for instance, the student may have learned the knowledge 
component but need more practice in order to maintain long-term memory). In addition, even 
immediately after a spike, P(J) does not drop down to 0 (as can be seen in figure 5). Therefore, more 
work will be needed to figure out how much additional practice is needed, after a spike, for student 
learning to be maintained.   
 

DISCUSSION AND CONCLUSIONS 
 

In this paper, we have presented first models of P(J), the probability that a student learned a 
specific KC on a specific opportunity to practice and learn that KC. This paper does so in the context 
of two intelligent tutoring systems, the Cognitive Tutor and ASSISTments. Though this model builds 
off of past attempts to contextualize student modeling (e.g. Baker, Corbett, & Aleven, 2008) and to 
study the impact of different events on learning (e.g. Beck et al., 2008; Pardos & Heffernan, 2009), 
this model is distinct from prior models of student learning, focusing on assessing the likelihood of 
learning on individual problem steps. We show that the model achieves acceptable correlation to the 
labels of this construct. In addition, we also find that the model’s assessments of P(J) can be used to 
distill a secondary measure, the “spikiness” of learning, defined as the maximum momentary learning, 
divided by the average momentary learning. We find that a student’s spikiness is a good predictor of 
their final knowledge in both Cognitive Tutors and ASSISTments. This finding suggests that P(J) 
represents a genuine measure of learning which can be studied further to shed light on the process of 
learning within intelligent tutoring systems.  
 

Potential Ways to Improve the Model 
 

Though the model proposed in this paper has been successful at predicting its training labels, and 
in turn at producing a distilled measure which can predict students’ final knowledge, there are several 
ways that this model can be improved and refined. 

First, it may be possible to improve the quality of the model’s training labels. The approach 
proposed in this paper is only one way to infer the moment of learning. To give a very simple 
example, data from only two future actions was utilized in generating the training labels. It is possible 
that using data from a greater number of future actions may result in more accurate labels; 
correspondingly, it is possible that the probability of guess or slip for many problems may be 
sufficiently low that only one future action is needed, and incorporating a second future action will 
increase the noise.  

Additionally, the equations used in this paper are currently based off an unmodified form of 
Bayesian Knowledge Tracing – however, recent work in our group has shown benefits from using 
contextual models of guess and slip (e.g. Baker, Corbett, & Aleven, 2008), including improved 
prediction of post-test scores (Baker, Corbett, et al., 2010). It is possible that using contextual 
estimations of guess and slip when generating training labels may lead to higher precision – although 
there is correspondingly some risk that models of P(J) generated in this fashion may end up over-
fitting to the errors in the contextual guess and slip models.  

Other approaches to generating training labels are also possible. For instance, it may be 
reasonable to compute the derivative of each student’s learning curve. This would be impractical to do 
for correctness (which is binary, resulting in a curve that is not smooth), but could very well be 



feasible for a more quantitative measure of student performance, such as time, or assistance score 
(Feng, Heffernan, & Koedinger, 2006).  

Even when using the exact same formal approach to generating training labels, it may also be 
possible to improve P(J) accuracy by investigating other methods for calculating values of P(Ln) and 
P(Ln-1) as components for P(J) models. Currently these features are generated based on models created 
via brute force/grid search. However, other researchers have found evidence suggesting benefits for 
Expectation Maximization (cf. Gong, Beck, & Heffernan, 2010) and for contextualized estimation of 
student initial knowledge and learning rates (cf. Pardos & Heffernan, 2010). Rather than replacing the 
estimates of P(Ln) and P(Ln-1) in the existing model with estimates generated in another fashion, it is 
possible to use all of these estimates in a combined model, and determine if the different estimates of 
learning so far have unique and separate variance for predicting the moment of learning.  

One issue to consider in attempting to improve the training labels used in this model is how to 
validate that one set of training labels is better than another. One method may be to compare the 
models obtained from different training labels. For example, the approach used here led to an accurate 
prediction of a widely-used measure of final knowledge in the tutor, final P(Ln) from Bayesian 
Knowledge Tracing; therefore, two sets of training labels could be compared in terms of how well the 
resultant models predict this measure. There are likely other potential comparisons of the resultant 
models that can be conducted as well.  

Regardless of what the training labels are, it may also be possible to improve a model of P(J) by 
broadening and improving the feature set. Within this paper, we used a set of features that have been 
used for several previous problems, and were successful at fitting P(J). It seems likely that a set of 
features expressly engineered for this problem would perform even more successfully. Similarly, it 
may be possible to use estimates of other constructs, such as contextual guessing, slipping (Baker, 
Corbett, & Aleven, 2008), and gaming the system (Baker, Corbett, Roll, & Koedinger, 2008), within 
models of the moment of learning. 

In recent work, we have attempted to use an expanded feature set for P(J). The new set included 
67 features, mostly focused on behavior after the first response that was made on a problem (i.e., what 
a student does after their first action). The hypothesis was that we might learn significantly more about 
the moment of learning if we see how a student reacts after making errors and/or slipping. We ran this 
feature set with the ASSISTments data, using the same linear regression described in this paper. The 
correlation coefficient for the new model was 0.429, which is only a minor improvement over the 
0.397 that we found using the contextual guess and slip feature set. Because of the substantial 
additional effort to implement this more complex model, we have focused on the original feature set 
within this paper.  
 

Potential Future Uses of the Model 
 

The P(J) model can be used in at least two ways going forward. First, it can be used as an 
analytical tool and as part of other models, much as models predicting how much a student has learned 
have been used (e.g. Aleven et al., 2006; Baker, 2007; Baker, Corbett, Roll, & Koedinger, 2008; 
Muldner et al., 2010). Within this paper, we present an analysis using P(J) to infer that KCs have 
greater variance in spikiness than students. Studying which aspects of KCs predicts spikiness may be a 
valuable tool for further research into what types of KCs are learned gradually or through “eureka” 
experiences. In addition, given the correlation between spikiness and final knowledge, models of P(J) 
are likely to prove useful for student knowledge modeling, as contextual guess and slip have been (e.g. 



Baker, Corbett, & Aleven, 2008), and in the long term may lead to more effective adaptation by 
Intelligent Tutoring Systems. We have frequently observed multiple spikes within one student’s 
performance, which are currently an unexplained phenomenon and a topic of future research. It is 
possible that a single spike is a learning moment, and following questions are potentially over-
practice, which has been shown to lead to gaming the system (Baker et al., 2008). If that is the case, 
the valley following the first spike could be explained by gaming, and the second (or third, fourth, 
etc.) spike is an indication that the student has become engaged again. In general, exploring the 
relationship between the dynamics of learning over time, as expressed by P(J) models, and other 
constructs in learning and engagement, has the potential to be a fruitful area of future work. 

Given that we can potentially identify moments in which students learn, it may be possible to 
improve the adaptivity – and in particular the speed of adaptivity – of intelligent tutoring systems 
using these models. In particular P(J) models may be able to support work to use reinforcement 
learning to induce tutorial strategies (cf. Chi, VanLehn, & Litman, 2010). Work along these lines will 
be supported still further, if it becomes possible to not just identify learning spikes, but to identify their 
antecedents. It also may be possible to improve adaptivity just through the step of improving Bayesian 
Knowledge Tracing models themselves, using P(J). Recent work has suggested that contextualization 
of model parameters such as guess, slip, and initial knowledge can improve prediction within a 
tutoring system (Baker, Corbett, & Aleven, 2008; Pardos & Heffernan, 2010), although there is also 
evidence that contextual guess and slip models may over-fit to within-tutor performance (Baker et al., 
2010). Studying ways to integrate multiple forms of contextualization, including P(J), to improve 
knowledge prediction both within the tutor and on later tests of knowledge may therefore be an 
important area of future work. 

 In conclusion, this paper has introduced models of the moment of learning and one way to 
utilize these models to study student learning. There appears to be potential for improving these 
models’ precision and using them in a variety of ways to study learning and improve adaptation by 
learning software. Studying exactly which potential uses are the most productive will be an important 
area for future work. 
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