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Abstract.  In typical assessment student are not given feedback, as it is harder 

to predict student knowledge if it is changing during testing. Intelligent 

Tutoring systems, that offer assistance while the student is participating, offer a 

clear benefit of assisting students, but how well can they assess students?  What 

is the trade off in terms of assessment accuracy if we allow student to be 

assisted on an exam. In a prior study, we showed the assistance with 

assessments quality to be equal. In this work, we introduce a more sophisticated 

method by which we can ensemble together multiple models based upon 

clustering students.  We show that in fact, the assessment quality as determined 

by the assistance data is a better estimator of student knowledge. The 

implications of this study suggest that by using computer tutors for assessment, 

we can save much instructional time that is currently used for just assessment.  
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1   Introduction 

Feng et al.[1] reported the counter-intuitive result that data from an intelligent 

tutoring system could better predict state test scores if it considered the extra 

measures collected while providing the students with feedback and help. These 

measures included metrics such as number of hints that students needed to solve a 

problem correctly and the time it took them to solve. That paper [1] was judged as 

best article of the year at User Modeling and User-Adapted Interaction and was cited 

in the National Educational Technology plan. It mentions a weakness of the paper 

concerning the fact that time was never held constant. Feng et al. go one step ahead 

and controlled for time in following work [2]. In that paper, students did half the 

number of problems in a dynamic test setting (where help was administered by the 

tutor) as opposed to the static condition (where students received no help) and 

reported better predictions on the state test by the dynamic condition, but the 

difference was not statistically reliable. This present work starts from Feng et al. [2] 

and investigates if the dynamic assessment data can be better utilized to increase 

prediction accuracy over the static condition. We use a newly introduced method that 

clusters students, creates a mixture of experts and then ensembles the predictions 

made by each cluster model to achieve a reliable improvement. 



2   Literature Review  

The Bayesian knowledge tracing model [3] and its variants [4] [5] have become the 

mainstay in the Intelligent Tutoring System (ITS) community to track student 

knowledge. This knowledge estimate is used for calibrating the amount of training 

students require for skill mastery. One of the most important aspects of such modeling 

is to ensure that performance on a tutoring system is transferred to actual post tests. If 

this is not the case, then that implies over-training within the tutoring system. In fact, 

it is reasonable to say that one of the most important measures of success of a tutoring 

system is its ability to predict student performance on a post-test. Since such a transfer 

is dependent on the quality of assessment, a tension exists between focusing on 

quality of assessment and quality of student assistance. 

Traditionally, performance on a post-test is predicted by using practice tests. 

Practice tests based on past questions from specific state tests can give a crude 

estimate of how well the student might perform in the actual state test. Improving this 

estimate would be highly beneficial for educators and students. For improving such 

assessment, dynamic assessment [6] has long been advocated as an effective method. 

Dynamic assessment is an interactive approach to student assessment that is based on 

how much help a student requires during a practice test. Campione et al. [7] compared 

the traditional testing paradigm, in which the students are not given any help, with a 

dynamic testing paradigm in which students are given graduated hints for questions 

that they answer incorrectly. They tried to measure learning gains for both the 

paradigms from pre-test to post-test and suggested that such dynamic testing could be 

done effectively with computers. Such assessment makes intuitive sense as standard 

practice tests simply measure the percent of questions that a student gets correct. This 

might not give a good estimate of a student’s knowledge limitations. If a student gets 

a question wrong, it might not necessarily imply absence of knowledge pertaining to 

the question. It is likely that the student has some knowledge related to the question 

but not enough to get it correct. It is thus desirable to have a fine grained measure of 

the knowledge limitations of the student during assessment. Such a measure might be 

obtained by monitoring the amount of help the student needs to get to a correct 

response from an incorrect response. ITS provide the tools for doing dynamic 

assessment more effectively as they adapt while interacting with individual students 

and make it easier to provide interventions and measure their effect. Fuchs et al. [9] 

studied dynamic assessment focusing on unique information, such as how responsive 

a user is to intervention. Feng et al. [1][2] used extensive information collected by the 

ASSISTments tutor [13] to show that the dynamic assessment gives a relatively better 

prediction as compared to static assessment. This work effectively showed that 

dynamic assessment led to better predictions on the post test. This was done by fitting 

a linear regression model on the dynamic assessment features and making predictions 

on the MCAS test scores.  

They concluded that while dynamic assessment gave good assessment of students, 

the MCAS predictions made using those features lead to only a marginally 

statistically significant improvement as compared to the static condition. In this paper 

we explored the dynamic assessment data to see if we could make significantly better 

predictions on the MCAS test score. A significant result would further validate the 

use of ITS as a replacement to static assessments.   



2   Data 

The dataset that we considered was the same as used by Feng et al.[2]. It comes from 

the 2004-05 school year, the first full year when ASSISTments was used in two 

schools in Massachusetts. ASSISTments is an e-learning and e-assessing research 

platform [10] developed at Worcester Polytechnic Institute. Complete data for the 

2004-05 year was obtained for 628 students. The data contained the dynamic 

interaction measures of the students and the final grades obtained in the state test 

(MCAS) taken in 2005. The dynamic measures were aggregated as students used the 

tutor. 

2.1   Metrics 

The following metrics were developed for dynamic testing by Feng et al. [2] and were 

used in these experiments. They try to incorporate a variety of features that 

summarize a student’s performance in the system. The features were as follows: 1) 

the student’s percent correct on the main problems 2) number of problems done 3) 

percent correct on the help questions 4) average time spent per item 5) average 

number of attempts per item and 6) average numbers of hints per item. Out of these, 

only the first was as a static metric and was used to predict the MCAS score in the 

static condition. The other five and a dynamic version of student’s percent correct on 

the main problems were used to make predictions in the dynamic condition.  

The predictions were made on the MCAS scores. The MCAS or the Massachusetts 

Comprehensive Assessment System is a state administered test. It produces tests for 

English, Mathematics, Science and Social Studies for grades 3 to 10. The data set we 

explore is from an 8
th
 grade mathematics test. 

3   Methodology 

The data was split into randomly selected disjoint 70% train and 30% test sets. Feng 

et al.[2] fit a stepwise linear regression model using the dynamic assessment features 

on the training set to make a prediction on the MCAS scores on the test set. They 

reported an improvement in prediction accuracy with a marginal statistical 

significance relative to the predictions made only using data from the static condition. 

Fitting in a single linear regression model for the entire student data might be a bad 

idea for two reasons. First, the relationship between the independent variables 

(dynamic assessment features) and the dependent variables (MCAS test scores) might 

not be a linear one. If so, training a linear model would have high bias for the data and 

no matter how much data is used to train the model, there would always be a high 

prediction error. The second conceivable source of error is related to the first. A 

student population would have students with varying knowledge levels, thus requiring 

different amounts of assistance. Thus it might be a bad idea to fit the entire population 

in a single model. Students often fall into groups having similar knowledge levels, 

assistance requirements, etc. It is thus worth attempting to fit different models for 



different groups of students. It, however, must be noted that while such groups could 

be identified using clustering, the groups obtained may not be easily interpretable. 

3.1   Clustering 

The previous section mentions that it might not be a good idea to fit in a single model 

for the entire student population and that there might exist groups of students having 

similar knowledge levels and nature of responses to interventions. A natural method 

to find such patterns in the data is by clustering. If data was generated by a finite set 

of distinct processes, then clustering methods are maximum likelihood methods to 

identify such underlying processes and separating them. The idea in this work is to fit 

in a linear regression model for each such group in the training set. The prediction for 

the MCAS score for each student from the test set would thus involve two steps: 

identification of the cluster to which the student from the test set belongs and then 

using the model for that cluster to make the prediction of the MCAS score for the 

student. 

We used K-means clustering for the identification of K groups. The initialization 

of cluster centroids was done randomly and the clusters were identified by using 

Euclidean distance. K-means finds out the best separated clusters by trying to 

minimize a distortion function.  The distortion function is a non-convex function and 

thus implies that K-means is susceptible to getting stuck in local optima. This means 

that when K-means is run with random cluster centroids; we might not reach the best 

solution possible. To reduce the chances of getting a sub-optimal clustering we 

restarted K-means 200 times with random initialization. 

 
Fig.1. Schematic illustrating the steps for obtaining a prediction model (PMK). There would be 

one such prediction model for each value of K chosen (1 to K would give K prediction models).   

 

For each cluster identified we trained a separate linear regression model (Fig. 1). We 

call such a linear regression model (for each cluster) a cluster model. For data 

separated into K clusters there would be K cluster models. All of these K cluster 

models taken together make predictions on the entire test set. These K cluster models 



together can be thought to form a more complex model. We call such a model a 

prediction model i.e. PMK, with the subscript K identifying the number of cluster 

models in the prediction model. Feng et al. [2] used the prediction model PM1, since 

only a single linear regression model was fit over the entire data-set. The value of K 

can be varied from 1 to K to obtain K prediction models. For example: if K = 1, 2 and 

3, there would be three prediction models - PM1 having a single cluster model (K=1), 

PM2 having two different cluster models (K=2) and PM3, that is the prediction model 

with three different cluster models (K=3). It is noteworthy that the cluster models in 

different prediction models would be different.  

If K prediction models are constructed from the data, there would be a set of K 

different predictions on the test data. These predictions are compared with those 

obtained on PM1, i.e. a linear regression model fit over the entire data-set to see if 

there is an improvement in prediction accuracy. An improvement would indicate a 

strong result that dynamic assessment indeed gives a much better assessment of 

student learning.  

3.2   Ensemble Learning 

Section 3.1 described how, by using K as a controllable parameter, we can obtain a 

set of K prediction models and K corresponding predictions. The training data is first 

clustered by K-means and K clusters are obtained. For each of the clusters we fit a 

linear regression model, which we called the cluster model. The cluster models 

together are referred to as a prediction model. This prediction model makes a 

prediction on the entire test set. But since K is a free parameter, for each value of K 

we get a different prediction model and a different set of predictions. For example 

when K=2, the prediction model will have two cluster models. When K=7, the 

prediction model will have 7 cluster models. Thus, by means of clustering, we 

generate a number of prediction models. 

 While we are interested in looking at how each prediction model performs. It 

would also be interesting to look at ways in which the K predictions can be combined 

together to give a single prediction. Such a combination of predictors leads to 

ensembling. Ensemble methods have seen a rapid growth in the past decade in the 

machine learning community [12][13][14].  

An ensemble is a group of predictors each of which gives an estimate of a target 

variable. Ensembling is a way to combine these predictions with the hope that the 

generalization error of the combination is lesser than each of the individual predictors. 

The success of ensembling lies in the ability to exploit diversity in the individual 

predictors. That is, if the individual predictors exhibit different patterns of 

generalization, then the strengths of each of the predictors can be combined to form a 

single stronger predictor. Dietterich [12] suggests three comprehensive reasons why 

ensembles perform better than the individual predictors. Much research in ensembling 

has gone into finding methods that encourage diversity in the predictors.  



3.2.1   Methodology for Combining the Predictions 

We have a set of K predictors. The most obvious way of combining them is by some 

type of averaging. The combination could also be done using Random Forests [15], 

but they have not been explored in this work as we are extending work that simply 

used linear regression. We explored two methods for combining these predictors.  

1. Uniform Averaging:  This is the simplest method for combining predictions. The 

K predictions obtained (as discussed in section 3.1) are simply averaged to get a 

combined prediction. In addition to averaging all predictions we could also choose to 

average just a subset of the predictions together.   

2. Weighted averaging: In uniform averaging, each predictor is given the same 

weight. However, it is possible that the predictions made by some model are more 

important than the predictions made by another model. Thus, it is reasonable to 

combine the models by means of a weighted average. Such weighted averaging could 

be done by means of a linear regression.  Since we did not find an improvement with 

weighted averaging, the methodology and results are not discussed in detail. 

4   Results 

4.1   Prediction Models 

The data was first clustered with K taken from 2 to 7. Clustering beyond 7 clusters 

was problematic as it returned empty clusters. Hence the experiments were restricted 

to a maximum of K=7 for this dataset. The prediction on the MCAS was made first by 

using PM1. Then, K was varied from 2 to 7 and a set of six more predictions on the 

MCAS were obtained (all dynamic features were used). The Mean Absolute 

Difference (MAD) and the Root Mean Square Errors (RMSE) of the MCAS in the 

test set were found. This section summarizes these results. It also compares the results 

with the static condition. 

 
Table 1. Prediction errors by different prediction models 

Model MAD p-value 

(with PM1) 

p-value 

(with static) 

RMSE 

Static  10.4900 0.0180 - 12.7161 

PM1 9.6170 - 0.0180 11.5135 

PM2 9.3530 0.1255 0.0036 11.4286 

PM3 9.3522 0.2005 0.0074 11.4377 

PM4 9.3005 0.1975 0.0062 11.5243 

PM5 9.3667 0.3375 0.0067 11.7291 

PM6 9.3518 0.2347 0.0052 11.5100 

PM7 9.4818 0.6138 0.0134 11.6762 

 

Almost all Prediction Models (Table 1) showed a statistically significant 

improvement in prediction as compared to the static condition demonstrating greater 



assessment power using the dynamic condition. However, though there is an 

improvement in the error as compared to the Prediction Model 1, the improvement is 

not statistically significant, as was previously found to be the case [1]. 

4.2   Averaging Predictions 

As reported in section 4.1 the prediction models do not show a statistically significant 

improvement in prediction accuracy of the MCAS score relative to the PM1. As 

discussed in section 3.2, combining them might lead to improved predictions. This 

section reports these results. 
 

Table 2. Prediction errors by different prediction models averaged. The subscripts refer 
to the models whose predictions were used in averaging. 

Model MAD p-value 

(with PM1) 

p-value 

(with static) 

RMSE 

Static  10.4900 0.0180 - 12.7161 

PM1 9.6170 - 0.0180 11.5135 

PM1 to 4 9.2375 0.0192 0.0013 11.3042 

PM1 to 5 9.2286 0.0251 0.0012 11.3405 

PM1 to 6 9.2268 0.0260 0.0012 11.3412 

PM1 to 7 9.2398 0.0365 0.0013 11.3511 

PM2 to 4 9.2604 0.0526 0.0022 11.3379 

PM2 to 5 9.2406 0.0540 0.0018 11.3818 

PM2 to 6 9.2348 0.0475 0.0016 11.3753 

PM2 to 7 9.2507 0.0630 0.0017 11.3830 

 

Averaging across prediction models clearly improves predictions as compared to the 

prediction models taken alone (Table 2). The improvement is not just in the error but 

also in terms of statistical significance and thus improves the results reported in 4.1. 

These results validate the idea that clustering helps in predictions. These results show 

how the dynamic assessment prediction accuracy can be further improved. 

4   Contributions 

This paper makes one clear contribution. This is the first paper we know of that 

clearly demonstrates that not only can an Intelligent Tutoring System allow students 

to learn while being assessed but also indicates a significant gain in assessment 

accuracy. This is important, as many classrooms take away time from instruction to 

administer tests.  If we can provide such a technology it would save instruction time 

and give better assessment and would thus be highly beneficial to students and 

instructors. The second contribution of this paper is the application of clustering 

student data and ensembling predictions that we are introducing to the field in a KDD 

paper [16]. In that paper we applied this approach to a number of datasets from the 



UC Irvine Machine Learning repository and reported a prediction improvement in all 

datasets.   
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