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Abstract 
Most assessments, like the math subtest of the SAT or the GRE, are unidimensional, in that they 

treat all questions on the test as sampling a single underlying knowledge component (i.e., 
concept, procedure or skill).  On the other hand, teachers want cognitively diagnostic information 
(Nichols, Chipman & Brennan, 1995) that they can use to inform their instruction. Can we have 

our cake and eat it, too?  That is can we have a good overall prediction of a high stakes test, 
while at the same time be able to tell teachers information about fine- grained knowledge 

components? In this paper we present some encouraging results about our attempt to provide a 
fine-grained model for a United States state test. In step 1, a fine-grained skill model was 

developed by having content specialists review the state test items to identify their required 
skills. In step 2, we performed statistical analyses of the model based on data collected in two 
school-years’ usage of an online tutoring system, the ASSISTment System. We show that our 

fine-grained model could improve prediction compared to other coarser-grained models, and an 
IRT-based unidimensional model. With that said we don’t know a great deal about the validity of 
each individual knowledge construct; all we report is that in total, using the finer-grained model 
we can better predict state test scores, but we don’t know which knowledge components are the 

ones that are doing a great job versus which ones are maybe not as valid as others. 
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1. Introduction 

1.1 Motivation 
There is an increased interest in building cognitive diagnostic models (e.g. Griel, Wang & Zhou, 
2008). Most large standardized tests (like the math sub-test of the Graduate Record Examination 
(GRE)) are what psychometricians call “unidimensional” in that they are analyzed as if all the 
questions are tapping a single underlying skill. It is this assumption of unidimensionality that 
makes computer adaptive testing possible for the GRE. However, cognitive scientists such as 
Anderson & Lebiere (1998), believe that students are learning individual skills, and might learn 
one skill but not another. Among the reasons that psychometricians analyze large scale tests in a 
unidimensional manner is that students’ performance on different skills are usually highly 
correlated, even if there is no necessary prerequisite relationship between these skills. Another 
reason is that students usually do a small number of items in a given setting (for instance, 39 
items for the 8th grade math Massachusetts Comprehensive Assessment System (MCAS1) test). 
Such uni-dimensional tests work pretty well at telling you which students are performing well 
but are not good at informing educators about how to help students. 

                                                 
1 The Massachusetts Comprehensive Assessment System (MCAS) test is a state-administered standardized test that 
tests students in English, math, science and social studies for grades 3 to 10. We focused on only 8th grade 
mathematics.  See http:// http://www.doe.mass.edu/mcas/ for more information about MCAS. 



The question of tagging items to learning standards is very important because schools (e.g. 
Worcester Public Schools in Worcester, Massachusetts) seek to use the MCAS assessments in a 
data-driven manner to provide regular and ongoing feedback to teachers and students on progress 
towards instructional objectives. For instance, the School Improvement Teams at each school 
review the results from the previous year to analyze which items their students performed 
particularly poorly on. However, teachers and parents also want better feedback than they 
currently receive. While the number of mathematics skills and concepts that a student needs to 
acquire is on the order of hundreds, the feedback on the MCAS to principals, teachers, parents, 
and students is broken down into only 5 mathematical reporting categories, known as “Strands.” 
And the state’s “Curriculum Framework” breaks the 5 strands into 39 individual “learning 
standards” for 8th grade math and tags each item with one of the 39 standards. The MCAS 
reporting system is representative of other states’ reporting systems.  

In 2004, a principal handed us a report, which he received from the state, and asked that we 
focus efforts on Geometry and Measurement because his students scored poorly in those areas 
(receiving 38% and 36% correct compared to over 41+% correct in the three other reporting 
categories, see Figure 1(a)). However, a detailed analysis of state tests in Texas concluded that 
such topic reporting is not reliable because items are not equated for difficulty within these areas 
(Confrey, Valenzuela, & Ortiz, 2002). Therefore, though, receivers of such reports are being told 
to be “data-driven” and use the reports to inform their instruction, the MCAS reports themselves 
are never designed to give feedback at a grain size that could be used for the purpose. A reader 
can get some intuition on why this is the case by trying item 19 from the 2003 MCAS shown in 
Figure 1(b). Then ask yourself “What makes this item difficult?”  Clearly, this item includes 
elements from four of the 5 “strands” (only missing “Data Analysis, Statistics and Probability”). 
It is Algebra, Geometry (for its use of congruence), Number Sense (for doing the arithmetic 
operations), or Measurement (for the use of perimeter).  Ignoring this obvious overlap, the state 
chose just one of the 5 strands to classify the item.  It turns out, the state classifies it as Geometry 
and among the 39 learning standards “G.2.8-understanding-and-applying-congruence-and-
similarity”, but below we will show how our methodology is creating evidence to suggest, as you 
might expect, that there is more to this problem than just Geometry. Thus, a teacher cannot trust 
that putting more effort on a particular low scoring area will indeed pay off in the next round of 
testing. As a teacher has said “It does affect reports... because then the state sends reports that 
say that your kids got this problem wrong so they’re bad in geometry – and you have no idea, 

 
Figure 1. A report showing low percent correct for Geometry and Measure and b) an MCAS item 



well you don’t know what it really is – whether it’s algebra, measurement, or geometry.” It 
would be easier for a teacher to make data-driven changes in her classroom if she had a more 
detailed analysis of her students' learning. Students’ weaknesses need to be addressed by helping 
them with concepts and skills that are neither too easy nor too hard.  

We are engaged in an effort to investigate if we can do a better job of predicting a large scale test 
by modeling individual skills in a finer grain size. Griel, Wang & Zhou (2008) presented a study 
including building a cognitive model. They proposed two directions for future research, and one 
of the directions is to increase understanding of how to specify an appropriate grain size or level 
of analysis with a cognitive diagnostic assessment. In this paper, we consider four skill models 
with different granularity, including a unidimensional model and a fine-grained model developed 
at WPI (Section 2 describes how the model was built) with 78 skills. The four models are 
structured with an increasing degree of specificity as the number of skills goes up. The measure 
of model performance is the accuracy of the predicted MCAS test score based on the assessed 
skills of the students. What we refer to as a “skill model” is referred to as “Q-Matrix” by some 
Artificial Intelligence researchers (Barnes, 2005) and psychometricians (Tatsuoka, 1990); 
Croteau, Heffernan & Koedinger (2004) called it “transfer model”; while Cen, Koedinger & 
Junker (2005), and Griel, Wang & Zhou (2008) used the term “cognitive model”. Researchers in 
educational measurement field such as Leighton & Gierl (2007, p.6) consider a cognitive model 
as a “simplified description of human problem solving on standardized educational task which 
helps to characterize the knowledge and skills students at different levels of learning have 
acquired and to facilitate the explanation and prediction of students’ performance”.  In all cases, 
a skill model is a matrix that relates questions to the skills needed to solve the problem. Such a 
model provides an interpretative framework to guide test development and psychometric 
analyses so test performance can be linked to specific cognitive inferences about the examinees. 
Given that the fine-grained model is composed of 78 skills, people might think the model would 
naturally fit the data better than the skill models that contain far less skills. Moreover, they may 
even worry that we were overfitting our data by fitting a model with so many free parameters. 
However, we were not evaluating the effectiveness of the skill models over the same online 
student data (collected by the ASSISTment system) based on which models will be constructed. 
Instead, we used totally different data (from MCAS test, the external, paper-and-pencil based 
state test) as the testing set. We evaluate our models using the 8th grade 2005 test, which we will 
refer to as the state test. Predicting students’ scores on this test will be our gauge of model 
performance. Hence, we argue that overfitting would not be a problem in our approach. 

1.2 The ASSISTment Project  
In many states there are concerns about poor student performance on new high-stakes standards 
based tests that are required by the No Child Left Behind Act (NCLB). For instance, the high-
stakes MCAS test is a graduation requirement in which all students educated with public funds 
are required to participate. It administers rigorous standardized tests in English, math, history and 
science in grades 3–10 every year. Students need to pass the math and English portions of the 
10th grade versions in order to get a high school diploma without further remediation. In 2003, a 
full 10% of high school seniors were predicted to be denied a high school diploma due to having 



failed to pass the test on their fourth try. Moreover, the state of Massachusetts has singled out 
student performance on the 8th grade math test as an area of highest need for improvement2. 

 There is a large interest in “Formative Assessment” in K-12 Education (Olson, 2004) with many 
companies3 providing such services. Some teachers make extensive use of practice tests and 
released test items to help identify learning deficits for individual students and the class as a 
whole. However, such formative assessments not only require great effort and dedication, but 
they also take valuable time away from instruction. Some online testing systems (such as 
Renaissance Learning4) automatically grade students and provide reports but they may not be 

informative as they do not maintain sufficiently 
rich data records for students and therefore 
cannot report on a fine-grained model of student 
knowledge.  

The limited classroom time available in middle 
school mathematics classes compels teachers to 
choose between time spent assisting students' 
development and time spent assessing students' 
abilities. Yet, traditionally these two areas of 
testing (i.e. Psychometrics) and instruction (i.e., 
math educational research and instructional 
technology research) have been separate fields of 
research with their own goals. A solution must 
involve a way whereby students can take an 
assessment, but also learn as they are being 
assessed; unfortunately statisticians have not 
done a great deal of work to enable assessment 
of students while they are learning during the 
test.5 A solution needs to be found so that 
teachers can get the benefit of being data-driven 
in trying to meet instructional objectives, but at 
the same time, make sure that their students’ 
time is spent primarily on learning. To help 
resolve this dilemma, the U.S. Dept of Education 
funded Heffernan and Koedinger to build a web-
based tutoring system that would also do 
assessment at the same time. Assistance and 
assessment are integrated in the system 
(“ASSISTment”6) that will offer instruction to 
students while providing a more detailed 

                                                 
2 http://www.doe.mass.edu/mcas/2002/results/summary.pdf 
3 Including nwea.org/assessments/, measuredprogress.org, Pearson and ww.cddre.org/Services/4Sight.cfm 
4 www.renlearn.com 
5 Standard psychometric models (e.g. van der Linden & Hambleton, 1997) assumes the amount of learning happens during a test 
is limited. Some works have been done to measure growth and change (e.g. Tan, Imbos & Dos, 1994; Embretson, 1992; Fischer 
& Seliger, 1997), but they are not based on testing data where students are actively learning materials.   
6 The term “ASSISTment” was coined by Kenneth Koedinger and blends assisting and assessment. 
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evaluation of their abilities to the teacher than is possible under current approaches. Unlike other 
assessment systems, the ASSISTment technology also provides students with intelligent tutoring 
assistance while the assessment information is being collected. 

The ASSISTment system is a tutoring program and each week when students work on the 
website, the system “learns” more about the students’ abilities and thus, it can hypothetically 
provide increasingly accurate predictions of how they will do on a standardized mathematics test. 
It helps students to work through tough problem by breaking the problem into steps; meanwhile, 
it collects data related to different aspects of student performance such as accuracy, speed, help-
seeking behavior and attempts as students interact with the system. Recent studies showed that 
ASSISTments can assess students accurately (Feng, Heffernan & Koedinger, 2006a, 2006b; 
Feng, Beck, Heffernan, & Koedinger, 2008) as it assists student learning (Razzaq & Heffernan, 
2006, 2007; Feng, Heffernan, Beck & Koedinger, 2008). Besides, Mendicino, Razzaq & 
Heffernan (in press) showed that students learned significantly more when given home in 
ASSISTment system than when doing traditional paper-and-pencil homework. Based on the rich 
source of data, we were also able to report continuously via various reports (e.g. Feng & 
Heffernan, 2007) to teachers and other stakeholders to help them better understand students’ 
performance and progress.  

In Massachusetts, the state department of education has released 10 years (1998-2007) worth of 
8th grade MCAS test items, almost 400 items, which we have turned into ASSISTments by 
adding “tutoring”. Each ASSISTment consists of an original question and a list of scaffolding 
questions. The original question usually has the same text as found in the MCAS test while the 
scaffolding questions were created by our content experts to coach students who fail to answer 
the original question. Item 19 of the 2003 MCAS is shown in Figure 1. An ASSISTment that was 
built for this item is shown in Figure 2 which shows the state of the interface when the student is 
partly done with the problem. The first scaffolding question appears only if the student gets the 
item wrong. We see that the student typed “23” (which happened to be the most common wrong 
answer for this item from the data collected). After an error, students are not allowed to try the 
item further, but instead must then answer a sequence of scaffolding questions (or “scaffolds”) 
presented one at a time. Students work through the scaffolding questions, possibly with hints, 
until they eventually get the problem correct. If the student presses the hint button while on the 
first scaffold, the first hint is displayed, which would be the definition of congruence in this 
example. If the student hits the hint button again, the second hint appears which describes how to 
apply congruence to this problem. If the student asks for another hint, the answer is given. Once 
the student gets the first scaffolding question correct (by typing “AC”), the second scaffolding 
question appears. Buggy messages will show up if the student types in a wrong answer as 
expected by the author. Figure 2 shows a buggy messages that appeared after the student clicked 
on “½*x(2x)” suggesting he might be thinking about area. Once the student gets this question 
correct he will be asked to solve 2x+x+8=23 for 5, which is a scaffolding question that is focused 
on equation-solving. So if a student got the original question wrong, what skills should be 
blamed? This example is meant to show that the ASSISTment system has a better chance of 
showing the utility of fine-grained skill modeling due to the fact that we can ask scaffolding 
questions that will be able to tell if the student got the question wrong because they did not know 
congruence versus not knowing perimeter, versus not being able to set up and solve the equation. 
As a matter of logging, the student is only marked as getting the item correct if they answered 
the questions correctly before asking for any hints or encountering scaffolding. 



Figure 3 shows the original question of 
another ASSISTment built for item 27 of 1999 
MCAS test. The ASSISTment provides two 
scaffolding questions. The first one asked 
“What is the length of one side of a square in 
the figure?” and the second says “Now you 
have enough information to find the perimeter 
of the figure. What do you think it is?” In the 
“WPI-78”, the original question was tagged 
with 2 skills: “Perimeter” and “Area”; the first 

scaffolding question is associated with “Perimeter” and the second one “Area”.   

In the first year the ASSISTment system was launched, the 2004-2005 school year, some 600+ 
students used the system about once every two weeks. Eight math teachers from two schools 
would bring their students to the computer lab, at which time students would be presented with 
randomly selected MCAS test items. Since then the number of users has expanded every year 
and more than 3000 students from Massachusetts used the system during the school year of 
2007-2008.  

1.3 Literature Review 
Modeling student response data from intelligent tutoring systems has a long history (Corbett, 
Anderson, & O’Brien, 1995; Draney, Pirolli, & Wilson, 1995). Corbett and Anderson did show 
that they could get better fitting models to predict student performance in LISP programming by 
tracking individual production but their system never asked questions that were tagged with 
more than one production, which is the sort of data we have (described below). Our collaborators 
(Ayers & Junker, 2006) are engaged in trying to allow multi-mapping using a version of the 
WPI-78 but report their Linear Logistic Test Model (LLTM) does not fit well. A “multi-
mapping” skill model, in contrast to a “single-mapping” or a “non-multi-mapping” model, allows 
one item to be tagged with more than one skill. Anozie & Junker (2006), are looking at this same 
data set, also trying to predict the same state test scores we will describe below, but they are not 
using skills at all, and since their method is unidimensional, in one sense representing the more 
traditional psychometric approach. This paper will not be able to compare the results of these 
different approaches and models, as we are all using slightly different versions of the same data 
set. 

Others, in the psychometrics field, have developed multi-dimensional Item Response Theory 
models but these models have generally not allowed multi-mapping. These models permit 
student performance to be measured by comparisons within items. For instance, Bock, Gibbons, 
and Muraki (1988) developed a multidimensional IRT model that identifies the dimensions that 
are needed to fit test data, similar to an exploratory factor analysis. Though different approaches 
have been adopted to develop skill models and thus model students’ responses, as far as we 
know, little effort has been put in that compares different grain-sized skill models in the 
intelligent tutoring system area. The few that have done this have done so in a non-multi-mapped 
manner (Corbett, Anderson, & O’Brien, 1995; Draney, Pirolli, & Wilson, 1995).  While we 
come to this work from the point of view of an intelligent tutoring system’s researchers, in the 
education field more broadly, researchers want to fit students’ data collected in the traditional 
paper-and-pencil method. Unfortunately, the only work we are aware of that shows that by 

 
Figure 3. The original question of item 27 of 1999 
MCAS test 



building fine-grained skill models researchers could build better fitting models is by Yun, Willett 
and Murnane (2004).  Yun et al. (2004) developed an alternative curriculum framework by 
examining questions in the MCAS state test and they performed confirmatory factor analysis on 
students’ item level response data from the 2001 MCAS English language arts (ELA) test to 
investigate how well the MCAS test items map onto the state learning standards’ and onto the 
alternative framework. Their result showed that the alternative framework fits student response 
data better as measured by Akaike Information Criteria (AIC), suggesting the state’s learning 
standards for ELA is subject to improvement. 

Recently, Mislevy (2006) described six steps in model-based reasoning in science. These steps, 
including model formation, model elaboration, model use, model evaluation, model revisions 
and model-based inquiry, provide a framework for considering our progress in developing & 
refining cognitive models. Following these steps, the rest of the article is organized as follows. In 
Section 2, we describe how the fine grained model was developed and how it is currently being 
used in ASSISTment system. In Section 3, we evaluate the models by answering two research 
questions. And we conclude our work in Section 4 and bring up the issue of model refinement 
and model-based inquiry as part of our future work.  

2 Towards a Fine Grained Skill Model 
2.1  Developing a fine grained model for 8th grade MCAS 
In April, 2005, we staged a seven hour long “coding session”, where we invited our subject-
matter expert, Cristina Heffernan, with the assistance of the second author to create a set of skills 
and to use those skills to tag all of the existing 8th grade MCAS items with these skills7. The 
process is quite similar to the study conducted by Gierl, Wang, & Zhou (2008). There were about 
300 released test items for us to code. Because we wanted to be able to track learning between 
items, we wanted to come up with a number of skills that were somewhat fine-grained but not 
too fine-grained such that each item had a different skill. We therefore imposed upon our 
subject-matter expert that no one item would be tagged with more than 3 skills8. It is not 
coincidence that many of our assistments have about three scaffolding questions (The question in 
Figure 2 shows two scaffolding questions and there are two more after that, for a total of four 
scaffolding questions for that ASSISTment); we wanted the fine grained-ness of the modeling to 
match the fine grained-ness of the scaffolding. We knew we wanted most of our scaffolds to 
have identifiability, meaning that each scaffolding question should be tagged with only one skill.  
We wanted identifiability because we thought that when a student got a question wrong, that was 
tagged with two skills, we should have a very hard time coming up with a method that would be 
able to blame the “correct” skill.  Identifiability of scaffolds avoids those problems, but of course 
forces the modeler to have to use fewer skills.  

As a matter of fact, in the data sources that we talk about in section 3.1, the average number of 
skills tagged to main questions is 1.44 and the number is 1.03 for scaffolding questions, which 
means that for many ASSISTments, there was only one skill tagged with the main question.  In 
such cases, each of the scaffolds was also tagged with that skill. There clearly is something a bit 
                                                 
7 We hand-coded the skills in this work. Though, others have done work showing it is possible to use an automatic technique 
such as LFA (Cen, Koedinger & Junker, 2005), Q-matrix (Barnes, 2005) method for topic construction, rule space method 
(Tatsuoka, 1990). We choose to use a hand-coding method, as it is easier to interpret the meaning of skills when coded by hand.  
8 This April 2005 tagging session was preceded by another tagging session where we did not impose any constraints; we wound 
up with some questions being tagged with 9 skills, and we thought it would have been impossible to build a good fitting model. 



odd there, as an individual scaffolding question should be easier than the main item. We note 
this, but our modeling effort does not correct for the presumably wrong assumption that all 
questions tagged with the same set of skills have the same degree of difficulty. 

 
Figure 4. Picture showing the 3rd author at far left, working with staff to develop the model.  Each table has rows of 
items, organized by skill. 

 
Figure 5. The April 2005 coding session when all the existing MCAS items are tagged with skills 

During the “coding session”, the subject-matter expert was free to create whatever skills she 
thought appropriate. We printed three copies of each item so that each item could show up in 
different piles, where each pile of printed items represented a skill. We reviewed the items, 



solved the problems and conducted cognitive task analysis to identify what is the knowledge 
needed to perform each task. Though we have English names for the skills, those names are just 
a handy tag; the real meaning of a skill must be divined from the questions with which it is 
associated. The name of the skill served no-purpose in our computerized analysis. When the 
coding session was over, we had six tables covered with 106 piles of items (See Figure 4 & 
Figure 5). We wound up with about 106 skills, but not every skill that was created was 
eventually involved in the data source used by this work so we call this model the WPI-78. To 
create the coarse-grained models, we used the fine-grained model to guide us. We decided to use 
the same broad strands that are used by both the National Council of Teachers of Mathematics 
and the Massachusetts Department of Education. These strands are named 1) “Patterns, Relations 
and Algebra”, 2) “Geometry”, 3) “Data Analysis, Statistics and Probability”, 4) “Number Sense 
and Operations” and 5) “Measurement”. The Massachusetts Department of Education actually 
tags each item with exactly one of the 5 strands, but our mapping was not the same as the state’s 
mapping. Therefore, it was named WPI-5. Furthermore, we allowed multi-mapping, i.e. allow an 
item to be tagged with more than one skill. An interesting piece of future work would be to 
compare our fit with the classification that the state uses. Similarly, we adopted the name of the 
39 learning standards (nested inside the 5 strands) in the Massachusetts Curriculum Framework, 
associated each skill in WPI-78 to one of the learning standards, and, thus, created the model 
WPI-39. After the students had taken the 2005 state test, the state released the items in that test, 
and we had our subject-matter expert tag up these items in WPI-5, WPI-39 and WPI-78. After 
our 600 students had taken the 2005 state test and 2006 state test, the state released the items 
from that test, and we had our subject matter expert tag up the items in that test as well. 

Table 1. Hierarchical relationship among skill models 

WPI-78 WPI-39 WPI-5 WPI-1 

Inequality-solving Setting-up-and- 
solving-equations 

Patterns, 
Relations, 
and Algebra 

Math 
(Unidimensional 
assessment) Equation-solving 

Equation-concept 

… … 

Plot-graph Modeling-covariation 

X-Y-graph Understand-line-slope-concept 

… … … 

Congruence Understand-and-applying-
congruence- 
and-similarity 

Geometry 

Similar-triangles 

… … 

Perimeter Using-measurement- 
formulas-and-techniques 

Measurement 

Area 

… … 

The WPI-1, WPI-5 and WPI-39 models are derived from the WPI-78 model by nesting a group 
of fine-grained skills into a single category. Table 1 shows the hierarchical nature of the 
relationship among WPI-78, WPI-39, WPI-5, and WPI-1. The first column lists 10 of the 78 



skills in the WPI-78 skill model. In the second column we see how the 5 skills in WPI-78 are 
nested inside of “Patterns, Relations and Algebra”, which itself is one piece of the 5 skills that 
comprise the WPI-5 skill model. 

Consider item 19 from the 2003 MCAS test (as shown in Figure 2). In the WPI-78 skill model, 
the first scaffolding question is tagged with “congruence”, the second tagged with “perimeter”, 
the third tagged with “equation-solving”. In the WPI-39 model, the corresponding skills tagged 
are “Setting-up-and-solving-equations”, “Understanding-and-applying-congruence-and-
similarity”, and “Using-measurement-formulas-and-techniques”. In the WPI-5, the questions 
were therefore tagged correspondingly with “Geometry”, “Measurement” and “Patterns, 
Relations and Algebra”, and just one skill of “math” at the WPI-1. Similarly, the original 
question of item 27 from the 1999 MCAS test shown in Figure 3 is tagged “Perimeter” and 
“Area”, and therefore it is tagged with “Measurement” in the WPI-5, and then again “math” in 
the WPI-1. 

 
Figure 6. A skill report showing skills on which students performed well or poorly 

One might wonder what else developing these skill models are useful for. Most intelligent 
tutoring systems require the construction of complex models that represent student knowledge 
states used to track student knowledge. If we have a better skill model we should be able to do a 
better job of predicting which items students will get correct in real-time. That means we should 
be able to do a better job of selecting the next best item for them to work on. In our tutoring 
system, the next best item will be the one that has the largest ratio of expected test-score gain to 
expected time to complete the problem. Expected test score gain will be a function that depends 
upon both the expected rise in skills from doing that item at that time, as well as the weight of 
those skills on the test (i.e., the MCAS). A better model would help to address the issues as we 
mentioned in section 1.1 to help teachers adjust their instruction in a data-driven manner. Such a 
model will allow a teacher who has one week before the MCAS to know what topics to review to 
maximize the class average. We should be able to make a calculation averaging the whole class 
to suggest what will give the teacher the biggest “bang for the buck”. An example of a useful 
report that teachers can get using the ASSISTment system is shown in Figure 6. Teachers can see 



how their students are doing on each skill and can determine where they need to spend the most 
time in their classroom instruction. 

2.2 Validating the fine-grained model 
To validate the fine-grained model, a study was conducted to see how different educators agree 
on the tagging of problems and to calculate an inter-rater reliability. We randomly selected 50 
sample items from the ASSISTment problem pool, and asked our subject-manner expert to give 
a short description of the skills in case the names of skills are not self-explanatory. Two middle 
school math teachers (we will refer to them as teacher A and teacher B) were given the items and 
the list of skills, and were asked to tag the items with proper skills individually. The skills were 
organized in the hierarchical structure as shown in Table 1 to help teachers locate skills. It took 
each teacher around 30 to 45 minutes to finish the whole tagging process on paper, which is 
faster than what we would have expected. Yet, this is not surprising with regard to the fact that 
both teachers are experienced with the ASSISTment system and familiar with the skills in the 
fine-grained model since they have been building new items and tagging their items (not 
included in the sample) with the skills using the ASSISTment builder (as described in the next 
section). 

We first looked at the results to see how much homogeneity there is in the tagging made by the 
two teachers and our subject-matter expert at item level. Since we allow multi-tagging and 
imposed no restriction on how many skills can be tagged to an item, there are many ways that the 
tagging can differ among different raters. In one case, teacher A tagged an item with 3 skills, 
teacher B tagged the item with one skill (one of the three skills used by teacher A), and in our 
model, the same item was tagged with 2 skills (a subset of the skills used by teacher A); in 
another case, teacher A picked the same skill as in our model, yet teacher B picked another skill; 
etc. For instance, the item shown in Figure 7 is tagged with “Supplementary-angles” and 
“Traversals” in our model, yet both of the two teachers tagged it with only the skill “Traversals”.  

 
Figure 7. A sample problem where the two teachers partially agreed with our model on the skill tagging. 

We considered there is a full agreement between two teachers and our subject-manner expert at 
the item level when both of two teachers tagged an item with exactly the same set of skills as 
being used in our skill model. A partial agreement on an item means at least one rater agreed 
with another on at least one skill tagging. A disagreement means neither of the two teachers 
tagged an item with any skill that was associated with that item in our model. Among the 50 



items in the sample, the three raters fully agreed on 11 items (22%), partially agreed on 28 items 
(56%), and disagreed on 11 items.  

Inter-rater reliability was also assessed by comparing the tagging between any pair of raters 
(teachers A/B or our subject-matter expert) at skill level. We examined all the skills that were 
selected to tag to an item by two raters one by one to see how often two raters agreed/disagreed 
with each other. The results suggested raters disagreed with each other more often than they 
agreed at skill level, although the difference is not always reliable as indicated by a modified 
sign-test9. For instance, overall teacher A and our subject manner expert agreed on 38 skills but 
disagreed on 54 skills while teacher B agreed with our subject manner expert on 37 skills but 
disagreed on 7110 skills.  

All in all, we did not find a lot of concordance between the teachers and our subject manner 
expert’s tagging. This disappointed us a bit, honestly, but it also led us to believe more that 
model development and skill tagging are difficult tasks. With 106 skills in the model, it is hard 
for people to pick up one, agree on one skill (for two raters, the chance is at one out of 10,000, 
although for most skills, experience teachers can quickly tell if an item is or is not associated 
with the skill), even harder when we allow multi-mapping. In Section 3, we will evaluate our 
model on how well our skill model helps track student performance, even though the teachers did 
not seem agree with us very much.  

2.3 Tagging skills to problems in ASSISTments 
The ASSISTment Builder (Heffernan et al., 2006) has the authoring tools that mainly support 
content creation in the ASSISTment system. In addition to content creation, it allows content 
authors to tag the ASSISTments they have built with skills, which are organized into sets known 
as skill models. This tool, shown in Figure 8, provides a means to map certain skills to specific 
problems to specify that a problem involves knowledge of that skill. This mapping between skills 
and problems allows the reporting system (Feng & Heffernan, 2007) to track student knowledge 
over time using longitudinal data analysis techniques. In Feng, Heffernan & Koedinger (2006a), 
we report on the ability to track the learning of individual skills using the coarse-grained model, 
WPI-5 that classifies each 8th grade MCAS math item in one of five categories: Algebra, 
Measurement, Geometry, Number Sense, and Data Analysis. The skills are organized in a 
hierarchical structure as shown in Figure 5. The user is allowed to browse the skills within each 
transfer model and to map the ones they select to a problem.  

                                                 
9 http://www.fon.hum.uva.nl/Service/Statistics/Sign_Test.html 
10 In general, teacher B tends to tag an item with more skills than teacher A and our subject manner expert. This is 
why when we compared tagging by teacher B and our subject manner expert, there are more skills for us to look at 
than when we compared teacher A’s tagging to our subject manner expert’s tagging.  



 
Figure 8. A screen shot showing an item and a list of skills that could be tagged to the item in the ASSISTment 
builder 

3 Statistical Analysis of the Skill Model 

3.1 Data Source 
We collected data from 44711 students who used our system from Sep. 17, 2004 through May 16, 
2005 for on average 7.3 days (one period per day)12. All these students had worked on the system 
for at least 6 days (one session per day). We excluded data from the students’ first day of using 
the system considering the fact that they were learning how to use the system at that time. The 
item-level state test report was available for all these 447 students so that we were able to 
construct our predictive models on these students’ data and evaluate the accuracy on state test 
score prediction. The original data set, corresponding to students’ raw performance (before 
applying any “credit-and-blame” strategies as described below and not inflated due to the 
encoding used for different skill models), includes both responses to original questions and to 
scaffolding questions. It contains about 138 thousand data points, among which around 43 
thousand come from original questions. On average, each student answered 87 MCAS (original) 
questions. We will refer to this data set as Data-2005.  

We obtained a similar data set for the usage of the ASSISTment system during the 2005-2006 
school year as well. The data set involves 474 students who on average worked in the system for 

                                                 
11 The amount of data is limited by the maximum memory allowed by the open source statistical package we used.   
12 Given the fact that the state test was given on May 17, 2005, it would be inappropriate to use data after that day for the purpose of predicting 
state scores. Therefore that data was not included in our data set. 



5.5 days and answered 51 original questions. The item level response data from the 2006 MCAS 
tests is available for these students too. This data set will be referred to as Data-2006. 

Both of  the data sets are organized in the way that there can be one or multiple rows for every 
student response to each single question depending on which skill model we are interested in and 
how many skills the question is “tagged” with in that particular skill model. For instance, 
suppose a question is tagged with 2 skills in a model, then for each response made to the 
question there would be 2 rows in the data set, with skill names listed in a separate column. 
Students’ exact answers are not included. Instead, we use a binary column to represent whether 
the student answered the specified item correctly or not. No matter what the input type of the 
item is (multiple-choice or text-input), a “1” indicates a correct response while a “0” means a 
wrong answer was given. Additionally, a column is associated with each response, indicating the 
number of months elapsed since September 17, 2004 till the time when the response was made. 
Thus the number of months elapsed for a response made on September 17th will be zero, and the 
number will be 1 for a response made at October 17th, 2004, and so on. This gives us a 
longitudinal, binary response data set across the school year.   

Table 2 displays 12 rows of the raw data for one student (system ID = 950) who finished the item 
19 (shown in Figure 1) and item 27 (shown in Figure 2) on two different days. The first 7 rows 
represent the student’ response on item 19 (with original item ID13 being 326) and the remaining 
6 rows show his response on item 27 (with original item ID being 1183). We can see that since 
the original question of item 19 was tagged with 3 skills “Congruence”, “Perimeter” and 
“Equation-Solving”, the student’s response was duplicated in rows 1 – 3. Likewise, the original 
question of item 27 is tagged with 2 skills as shown in row 9 and row 10. For both items, the 
student answered the original questions incorrectly (indicated by “0” in the response column of 
rows 1-3 and rows 9-10) and thus was presented with the scaffolding questions. The student did 
not do very well on the first item. He only gave a correct answer to the second scaffolding 
question (indicated by “1” in the response column of row 5), but failed to answer all of the other 
scaffolding questions. In contrast, although the student did not get item 27 right on the first shot, 
the student went through both scaffolding questions correctly. WPI-78 is the skill model being 
used here.  

                                                 
13 The “itemID” is a number that we used internally in the system to uniquely identify a question. It is displayed only for the purpose of 
interpreting the data.  

Table 2. Sample Raw Data 

RowID StudentID State Test ID ItemID WPI-78 skills Original? Response Month Elapsed 
1 950 2003-#19 326 Congruence Y 0 1.32 
2 950 2003-#19 326 Perimeter Y 0 1.32 
3 950 2003-#19 326 Equation-Solving Y 0 1.32 
4 950 2003-#19 327 Congruence N 0 1.32 
5 950 2003-#19 328 Perimeter N 1 1.32 
6 950 2003-#19 329 Equation-Solving N 0 1.32 
7 950 2003-#19 330 Equation-Solving N 0 1.32 
9 950 1999-#27 1183 Perimeter Y 0 2.94 

10 950 1999-#27 1183 Area Y 0 2.94 
11 950 1999-#27 1184 Perimeter N 1 2.94 
12 950 1999-#27 1185 Area N 1 2.94 



3.2 The Statistical Model Fitted to ASSISTments Data - Mixed-effects 
Logistic Regression Model 

We fit a longitudinal model, the mixed-effects logistic regression model, to our data to obtain an 
estimate of student knowledge on individual skills at a certain time, assuming student knowledge 
was changing linearly over time. For dichotomous (binary in our case) response data, several 
approaches have been developed. These approaches use either a logistic regression model or a 
probit regression model and various methods for incorporating and estimating the influence of 
the random effects on individuals. Snijders & Bosker (1999, Chapter 14) provide a practical 
summary of the mixed-effects logistic regression model and various procedures for estimating its 
parameters. Hedeker & Gibbons (in progress, Chapter 9) describes mixed-effects models for 
binary data that accommodate multiple random effects. As these sources indicate, the mixed-
effects logistic regression model is a very popular and widely accepted choice for analysis of 
dichotomous data. It describes the relationship between a binary or dichotomous outcome and a 
set of explanatory variables. In this work, we adopted this model and fitted it to our longitudinal, 
binary response data.   

As a statistical foundation of the mixed-effects generalization of the logistic regression model, 
we first present the simpler fixed-effects logistic regression model. Let pi represent the 
probability of a positive response for the ith individual. The probability of a negative outcome is 
then ip−1 . Let ),,,,1( 21 ipiii xxxx K= denote the set of covariates and ),,,( 10 ′= pββββ K  be the 
vector of corresponding regression coefficients. Then the logistic regression model can be 
written as: 
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In logistic regressions, the logit is called the link function because it maps the (0, 1) range of 
probabilities unto (-∞, +∞) range of linear predictors. And by doing this, now the logistic 
regression model is linear in terms of the logit, though not in terms of the probabilities.  

Now we generalize the simple logistic regression model to the mixed-effects model by 
introducing the random effects. Suppose TIME is the only covariate we care about in the model 
(Skill can be introduced as a factor in the model in a similar way). The 2-level representation of 
the model in terms of logit can be written as 

Level-1 (or within-person) model:  
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Level-2 (or between-person) model: 
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Where  



 ijp  is the probability of a positive response for student i at time j 

 ii bb 10 , denote the two learning parameters for student i. ib0  represents the “intercept” or how 
good is the student’s initial knowledge; ib1 represents the “slope” which describes the change (i.e. 
learning) rate of student i.  

 10 ,ββ  are the fixed-effects and represent the “intercept” and “slope” of the whole population 
average change trajectory.  

 ii vv 10 ,  are the random effects and represent the student-specific variance from the population 
mean.  

Such a model is often referred to as a “longitudinal model” (Singer & Willett, 2003) since TIME 
is introduced as a predictor of the response 
variable, which allows us to investigate 
change over time. The fact that this mixed-
effect regression model is linear in terms of 
logit enables us to fit generalized linear 
mixed models on the data in R (R 
Development Core Team, 2007), an open-
source statistical environment. The models 
were fitted in R using lmer() function and 
“logit” was used as the link function. Below 
in the box is the sample code we ran in R to 
train a mixed-effects logistic regression 

model using both TIME and WPI-5 skills as covariates.  

After the model was constructed, the fixed-effects for the whole group (i.e. 10 ,ββ  in the above 2-
level model) and the random effects for each student (i.e. ii vv 10 , ) were extracted and then the two 
learning parameters “intercept” and “slope” (i.e. ib0  and ib1  in the model above) was calculated 
for each individual student (and for each skill if skill was introduced as factor into the model). 
Given this, we thus can apply the model on the items in the state test to estimate students’ 
response to each of them.  

3.3 Predicting State Test Scores  
After the model is fit, we have skill levels of the students based on their online ASSISTment data 
using the specified skill model. We then apply the model on the actual state test. All the items in 
the state tests have been tagged in all of the 4 skill models by our subject matter expert14. To 
predict a student’s test score when a particular skill model is adopted, we will first find the 
fractional score the student can get on each individual item and then sum the “item-score” up to 
acquire a total score for the test. So how did we come up with a prediction of their state test item-
score?  

Given a student’s learning parameters on all skills, and the exact test date of MCAS, we can 
calculate the probability of positive response from the student to an item tagged with any single 
skill. In the case that an item was tagged with more than one skill, we picked the skill that gave 
                                                 
14 All the tagging was done after the MCAS items were released without any reference to the modeling process described in this paper.  

## train the model, using WPI-5 skill model 
>> model.growth.WPI.5 <- lmer(response ~ 
monthElapsed + skills + skills * monthElapsed + 
(monthElapsed | studentID), data= WPI.5, family= 
binomial (link="logit"), control = list(msVerbose = 1,  
usePQL = FALSE)) 
## extract the fixed effects of the model  
>> fix.ef.WPI.5 <- fixef(model.growth.WPI.5) 
## extract random effects for every student 
>> ran.ef.WPI.5 <- ranef(model.growth.WPI.5) 
 



us the lowest probability among all the skills that apply to the item15 for that student (the hardest 
skill for the student). Thus, we obtained the probability of positive response to any particular 
item in the state test. In our approach, a student’s probability of correct response for an item was 
used directly as the fractional score to be awarded on that item for the student. We summed item 
scores up to produce the total points awarded on the test. For example, if the probability of an 
item marked with Geometry is 0.6, then 0.6 points were added to the sum to produce the points 
awarded. This sum of these points was what we use as the predicted state test score16.  

The prediction functions we build using the existing data are also intended to work well in future 
years, and so for reasons of interpretability, the prediction error function chosen was mean 
absolute deviation (MAD). This measure is suggested by Brian Junker, a statistician from 
Carnegie Mellon University (Junker, 2007).   
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where MCASi is the actual MCAS score of the ith student, and predictioni is the predicted score 
from the prediction function being evaluated. For every model, we subtract each student’s real 
test score from his predicted score, took the absolute value of the difference and averaged them 
to get the MAD. We also calculate a normalized metric named % Error by dividing the MAD 
by the full score.  

)/(% eMaxRawScorMADError =                                      

where “MaxRawScore” is the maximum raw score possible with the MCAS questions used.  The 
MCAS state test consists of 5 open response, 4 short answer and 30 multiple choice questions. 
The max score is 54 points if all 39 MCAS questions are considered, since some are scored 
wrong/right and some are scored with partial credit. In our case, only the multiple choice and 
short answer questions are used with regard to the fact that currently open response questions are 
not supported in our system. This makes a full score of 34 points with one point earned for a 
correct response on an item. For the students in our 2005 data set, the mean score out of 34 
points was 17.9 (standard deviation=7.1). For the students in 2006 data set, the mean score was 
18.8 (standard deviation = 7.8).  

3.4 Research Question 1: Does Adding Scaffolding Questions Help? 
Research Question 1 (We will refer to as RQ1): Would adding response data to scaffolding 
questions help us do a better job of tracking students’ knowledge and thus more accurately 
predicting state test scores, compared to only using the original questions? Because the 
scaffolding questions break the test questions down into a series of simpler tasks that directly 
assess fewer knowledge components, we believe the ASSISTment system can do a more 

                                                 
15 We admit that there are other approaches dealing with multi-mapped items. For instance, one way can be taking into consideration the 
conjunctive relationship among the skills and “somehow” combining the probabilities together to produce a “final” probability for the item. Using 
Bayesian Networks is also a reasonable way to deal with this situation and our colleagues Pardos, Heffernan, Anderson and Heffernan (2006) use 
this approach and seem to be getting similar results that fine-grained models enable better predictive models. 
16 We think it might be useful to discuss our model from a more qualitative point of view.  Is it the case that if you tag an item with more skills, 
does that mean our model would predict that the item is harder?  The answer is no, in the sense that if you tagged a bunch of items with an easy 
skill (i.e., one easier than what the item was currently tagged with), that would not change our model’s prediction at all.  This makes qualitative 
sense, in that we believe the probability of getting a question correct is given by the probability of getting correct the most difficult skill 
associated with that question.  



accurate assessing job. This hierarchal breakdown of knowledge provides a much finer-grained 
analysis than is currently available. We think that getting an answer to RQ1 would help us 
properly evaluate the second and more important research question described in Section 4. 

3.4.1 Scaffolding Credit and Partial Blame  

We started our work examining only students’ responses to original questions. And then we 
brought up RQ1, asking ourselves if we can improve our models by including students’ response 
to the scaffolding questions. As discussed in Section 1, adding in scaffolding responses creates a 
good chance for us to detect which skills are the real obstacles that prevent students from 
correctly answer the original questions. And this would be especially useful when we utilize a 
finer-grained model. 

Since the scaffolding questions show up only if the students answer the original question 
incorrectly, their responses to the scaffolding questions are explicitly logged. However, if a 
student gets an original question correct, he/she is only credited for that one question in the raw 
data. To deal with the “selection effect”, we introduced the compensation strategy of 
“scaffolding-credit”: scaffolding questions are also marked correct if the student gets the original 
questions correct.  

An important thing we need to determine when using a multi-mapping model (in which one item 
is allowed to be tagged with more than one skill) is which skills to blame when a student 
answered an item tagged with multiple skills incorrectly. Intuitively, the tutor may want to blame 
all the skills involved. However, this would be unfair to those relatively easy skills when they are 
tagged to some compound, hard items. To avoid this problem, we applied the “partial blame” 
strategy: if a student got such an item wrong, the skills in that item will be sorted according to 
the overall performance of that student on those skills and only the skill on which that particular 
student showed the worst performance will be blamed.  

When evaluating a student’s skill levels, both original questions and scaffold responses are used 
in an equal manner and they have the same weight in evaluation. 

3.4.2 Results  

Recall that RQ1 asked whether adding response data to scaffolding questions can help us do a 
better job of tracking students’ knowledge and thus more accurately predicting state test scores. 
To answer RQ1, we first trained mixed-effects logistic regression models using the data set that 
only includes original questions response; one regression model for each skill model. Then we 
replicated the training process but used the data set that was constructed by including responses 
to scaffolding questions and applying the “credit-and-blame” strategy described as above. Again 
models were trained for all 3 skill models. 

It turns out that better-fitted models as measured by % Error on the state test can always be 
obtained by using scaffolding questions. In particular, when using the WPI-1 on DATA-2005, 
the mean decrease of “% Error” is 1.91% after scaffolding questions were introduced; for WPI-5, 
the decrease is 1.21%; and the decrease of “% Error” is 2.88% for the WPI-39 and 5.79% for the 
WPI-78 which is the biggest improvement. We then did paired t-tests between the “% Error” 
terms for the 447 students and found that the improvements are statistically significant in all the 
four cases as summarized in Table 3. We noticed the same effect in DATA-2006. As shown in 
Table 3, the improvement on %Error is statistically reliable on all of the four models.  [Please 



read across the columns for an answer to RQ1.  Reading across the rows is the answer to RQ2 
which we will describe in the next section.] 

This drop-down of %Error (also MAD) makes sense for two reasons. One is that by using the 
response data to scaffolding questions we are using more of the data we collected. A second 
reason is that the scaffolding questions help us do a better job of dealing with credit-and-blame 
problems. We admit that here we have confounded the impacts of simply adding in scaffolding 
questions response data and adopting the credit-and-blame strategies. And we want to investigate 
their effects separately in the near future. To get more “identifiability” per skill, in the next 
section we use the “full” response data (with scaffolding question responses added in) to try to 
answer the question of whether finer-grained models predict better. 

Table 3. The effect of using scaffolding questions on DATA-2005 and DATA-2006 

Skill 
Model 

MAD % Error (MAD/#items) 

∆%Error 
p-value of 
paired t-test Orig. 

Response 
Orig.+ 

Scaffolding Response 
Orig. 
Response 

Orig.+ 
Scaffolding 
Response 

DATA-2005 

WPI-1 5.07 4.42 14.91% 13.00% 1.91% 0.008 

WPI-5 4.78 4.37 14.06% 12.85% 1.21% 0.049 

WPI-39 5.20 4.22 15.29% 12.41% 2.88% <0.0001 

WPI-78 6.08 4.11 17.75% 12.09% 5.79% <0.0001 

DATA-2006 

WPI-1 6.81 6.58 20.05% 19.37% 0.63% 0.001 

WPI-5 6.76 6.51 19.88% 19.14% 0.74% <0.0001 

WPI-39 5.98 4.83 18.68% 15.10% 3.58% <0.0001 

WPI-78 5.58 4.99 16.91% 14.70% 2.21% <0.0001 

Sharp readers may have noticed that the MAD of WPI-39 model for DATA-2006 is lower than 
that of WPI-78, yet %Error of the WPI-39 model is higher than %Error of the WPI-78 model. 
This is because the two multiple choice items in 2006 MCAS test, item 13 and item 26, were 
tagged with the skills “N.6.8-understanding-absolute-value” and “P.9.8-modeling-covariation” 
respectively, yet, none of the ASSISTment items were tagged by the same two skills, which 
means we don’t have training data to track student knowledge on the two skills. Therefore, we 
ignored the two items when predicting students’ total score of 2006 MCAS test using the WPI-
39 model. This reduces the total number of MCAS items of the WPI-39 to 32. Thus, the %Error 
of the WPI-39 model is calculated by MAD/32 while the %Error of the other models are 
calculated by MAD/34.  

Does an error rate of 12.09% on the WPI-78 seem impressive or poor? What is a reasonable goal 
to shoot for?  Zero percent error? In Feng, Heffernan & Koedinger (2006b) we reported on a 
simulation of giving two MCAS tests in a row to the same students and then used one test to 
predict the other and got an approximate 11% error rate, suggesting that a 12% error rate is 
looking somewhat impressive. 



3.5 Research Question 2: Does the Finer-Grained Model Predict Better? 
Research Question 2 (We will refer to as RQ2): How does the finer-grained skill model (WPI-
78) do on estimating external test scores compared to the other skill models?  

We think that an answer to RQ2 that says that a finer-grained model allows for better 
modeling/prediction would have important societal implications (e.g. regarding tracking student 
performance and reporting to teachers.)  

3.5.1 Does WPI-78 Fit Better than the Coarser-Grained Models? 

To answer RQ2, we compared the four mixed-effects regression models (trained on the “full” 
data set with scaffolding questions used) fitted using the 4 different skill models. As shown in 
Table 4, the WPI-78 had the best result, followed by the WPI-39, WPI-5, and followed by the 
WPI-1. % Error dropped down when a finer-grained model was used, from WPI-1 to WPI-5 and 
then from WPI-39 to WPI-78.  

Table 4.  Evaluating the accuracy of skill models 

Skill Model MAD 95% Confidence 
Interval for MAD % Error  

DATA-2005 

WPI-1  4.42 [4.12, 4.72] 13.00% 

WPI-5  4.37 [4.07, 4.66] 12.85% 

WPI-39  4.22 [3.94, 4.50] 12.41% 

WPI-78 4.11 [3.84, 4.39] 12.09% 

IRT-2005 4.36 [4.04, 4.68] 12.82% 

DATA-2006 

WPI-1  6.58 [6.18, 6.99] 19.37% 

WPI-5  6.51 [6.11, 6.90] 19.14% 

WPI-39  4.83 [4.56, 5.11] 15.10% 

WPI-78  4.99 [4.71, 5.28] 14.70% 

IRT-2006 4.67 [4.34, 4.99] 13.7% 

To see if the “% Error” was statistically significantly different for the models, we compared each 
model with every other model. We did paired t-tests between the “% Error” terms for the 447 
students in DATA-2005 and also the 474 students in DATA-2006. We found out that in DATA-
2005, the WPI-78 did as well as the WPI-39 (p = .21), and they both predicted MCAS score 
reliably better than the WPI-5 and WPI-1. In DATA-2006 the WPI-78 model is statistically 
reliably better than the WPI-39, WPI-5 and WPI-1 (p<.001 in all cases), and WPI-1 is 
statistically reliably worse on predicting MCAS scores than the other models (p <.0001). This 
suggested that using finer-grained skill models was helpful in tracking students’ knowledge over 
time.  

 
We want to stress that the main goal of this paper is to see if finer-grained skill models track 
students’ knowledge better and we claim the goal was achieved based on the result presented in 
Tables 3 & 4. Therefore, though questions such as “Are the improvements in accuracy from 4.42 
to 4.11 meaningful?”, “What is the practical value of this improvement?” are interesting, they are 

 p=.006 
 p<.0001

 p=.21 
 p=.10 

 p<.0001

 p<.0001

 p=.0001

 p=.03 



beyond the scope of this paper. Besides, our results on student performance prediction are by no 
means the best. As a matter of fact, we trained an Item Response Theory (IRT; e.g. van der 
Linden & Hamilton, 1997) model that has been widely used in traditional testing area by 
psychometricians as a control. We fit the simplest model, the Rasch model (Fischer and 
Molenaar, 1995) that models student i’s dichotomous response (0 = wrong, 1 = correct) to 
problem j as a logistic function of the difference between student proficiency (θi) and problem 
difficulty (βj), on our online data. The fitted model gave us an estimate of math proficiency for 
every individual student which allows us to compute the predicted MCAS score assuming every 
item in MCAS has an average difficulty (β=0). In Table 4, IRT-2005 refers to the IRT modeling 
condition for DATA-2005, and IRT-2006 refers to the IRT modeling for DATA-2006. As we can 
see, the %Error of the Rasch model for DATA-2005 is 12.82%, marginally higher than that of 
the WPI-78, 12.09% (p = .10). Yet, the Rasch model did in the next year where the %Error 
(13.70%) is reliably higher (p = .03) than that of the WPI-78 (14.70%).  

As a measure of internal fit, we calculated the average absolute residual for each model fitted on 
the data. For data of both years, the WPI-78 fits best. Since the WPI-78 model contains far more 
skills than other models, one might think the model won simply because of the large number of 
parameters. Therefore, as a sanity check, we generated a Random-WPI-78 model in which items 
are randomly mapped with skills from the WPI-78 model. It turned out that the random model 
did reliably worse than the WPI-78 model (and also the WPI-39), both in MCAS score prediction 
and in the internal fit. We do not bother to report the internal fit of our models using measures 
like BIC, because “we don’t know how to”. Less flippantly, the size of the datasets is different 
using the different models; the finer-grained models add additional rows for all questions that are 
tagged with more than one skill and BIC only make sense when the data is meant to be the exact 
same.  

Readers may have noticed in Table 3 that when only response data on original questions were 
used, the order changed for DATA-2005: the WPI-5 still did better than WPI-1. However, the 
prediction error gets worse when the WPI-39 or WPI-78 models were used. Our interpretation of 
this is that when only original responses were used, individual skills don’t get as much 
“identifiability”; it only makes sense to make fine-grained skill models, if you have questions 
that can be tagged with just a single skill. Another reason why finer-grained models might not fit 
the data as well would be the fact that the finer-grained model has fewer data points per skill, and 
thus there is a tradeoff between the number of skills you would like, and the precision in the skill 
estimates. Possibly, one reason most tests like the GRE are unidimensional is that they might not 
ask enough questions to justify the additional fit they might get.  

Comparing the results we got using DATA-2005 and those using DATA-2006, we noticed two 
things changed. First, the order of prediction accuracy differs when only original questions were 
used. The finer-grained models still track student knowledge better than coarser-grained models 
when DATA-2006 was used; yet it is not the case when DATA-2005 was used. Second, the 
prediction error was much higher in the year 2005-2006 than in the previous year. Third, the 
effectiveness of the IRT model reduced in the year 2006. One possible reason is that we have 
fewer training data points for each student in the year 2005-2006 (5.5 sessions and 51 problems 
done vs. 7.3 sessions and 87 problems done). Additionally, the problem set administered to 
students in the two years are not the same either.  



3.5.2 How well does the Model WPI-78 Fit the Data?  

 
Figure 9. A question tagged with the skill “Qualitative-Graph-Interpretation” 

When using logistic regression, the statistical packages allow the user to analyze which of the 
parameters seem to have good fitting values. We now turn to do a little more analysis on the 
WPI-78 to see how good our model is. In our model, each skill gets one coefficient indicating the 
skill’s “intercept” and one for the skill’s “slope”.  The first of these, the intercept, allows us to 
model that some skills start the year with 
students knowing them better, while the slope 
allows for the fact that some skills are learned 
more quickly than others. Our model shows 
that for students who used the system in the 
school year 2004-2005, the easiest skills are 
“Subtraction”, “Division” and “Simple-
Calculation”, while the skill that had the 
hardest incoming difficulty was “Qualitative-
Graph-Interpretation” (as shown in Figure 9). We also looked at the fits on the slopes for each 
skill. The skill that showed the steepest rate of learning during the course of the year was “Sum-
of-Interior-Angles-Triangle” (e.g. “what is the sum of the angles inside of a triangle?”). It seems 
quite plausible that students learned a good amount related to this skill as we noticed in a 
classroom a poster that said the “The sum of the interior angles in a triangle is 180” clearly 
indicating that this was a skill that teachers were focused on teaching. Attentively, the skill that 
showed the least learning was called “Equation-Concept” (as shown in Figure 10). Out of the 78 
skills, 7 coefficients predicted un-learning (i.e. the slopes are negative, which is presumably an 
issue of overfitting). In the future, we will investigate automating the process to remove such 
skills from the model and to re-fit the data. 

Speaking of the accuracy of fit, we noticed the model obtained a high accuracy on predicting 
student response on items tagged with the simple skills (e.g. Division, Subtraction), yet not so 
good at tracking student knowledge on skills “Of-Means-Multiply”, “Interpreting-Linear-
Equations” or “Inequality-Solving” (correct rate around .5 ~.6) 

We speculated that skills that had less data for them would be more likely to be poorly fit. We 
did a correlation to see if the skills that were poorly fit were the same skills that had a relatively 
smaller numbers of items, but surprisingly the correlation was very weak. Other reasons a skill 
might have a poorly fit slope would be that we tagged items with the same skill names that share 

 
Figure 10. A question tagged with the skill “Equation-

Concept” 



some superficial similarity, but do not have the same learning rates. This analysis suggests some 
future work in refining the WPI-78 model; one possible refinement is to merge “equation-
concept” with “equation-solving” (i.e., delete the “equation-concept” skill from the model and 
map all items tagged with “equation-concept” to “equation-solving”).  We speculate this refining 
of this model using computational techniques like Learning Factors Analysis (Cen, Koedinger & 
Junker, 2005) could substantially improve the fit of this model to the data.  This refinement 
might work better if students’ learning of equation-concept should transfer to increase their 
performance on equation-solving and vice-versa. 

All in all, we make no claim that the Q-matrix (Barnes, 2005) we created represented the best 
fitting Q-matrix possible. Nevertheless, we stand by the claim that this model, taken in total, is 
good enough that it can produce better fit to the data, and make better predictions of the MCAS, 
indicating the model is useful, even given the flaws that might exist in it. 

4 Conclusion & Future Work 
It appears that we have found evidence that using students’ responses to scaffolding questions 
were helpful in constructing a model that can track students’ knowledge better (RQ1). Also, we 
presented results showing fine-grained models can better predict MCAS scores (RQ2). The 
important results presented are certainly about RQ2, where we show one instance where a fine-
grained model can be used to predict students’ skills better17.  

We believe that the ASSISTment system can be a better predictor of state test scores because of 
this work. Of course, teachers want reports by skills, and this is the first evidence we have saying 
that our skill mappings are “good”. (We make no claim that our WPI-78 is an optimal fitting 
mapping.) We have shared our data with other scholars. Researchers interested are welcomed to 
contact us for detail. 

Now that we are getting reliable results indicating the value of these models, we will seriously 
consider using these models in selecting the next best-problem to present a student with. Existing 
literature has shown that creating an accurate model of a students’ knowledge can be quite 
difficult due to various sources of uncertainty caused by factors such as multiple sources of 
student errors, careless slip and lucky guesses, learning and forgetting (Katz, Lesgold, Eggan & 
Gordin, 1992), requiring the time of experts to create and then test these models on students.  
The first model is the best guess and should be iteratively refined after usage in intelligent 
tutoring systems. However, the expert-built models are subject to the risk of “expert blind spot”, 
an education phenomenon documented in numerous prior studies (Koedinger, Alibali, & Nathan, 
2000; Koedinger & Nathan, 1997, 2004; M. J. Nathan & Koedinger, 2000, 2003; M. J. Nathan, 
Koedinger, & Alibali, 2001; M. J. Nathan, Long, & Alibali, 2002; Mitchell J. Nathan & 
Petrosino, 2003; M. J. Nathan, Stephens, Masarik, Alibali, & Koedinger, 2002).  We are happy 
to see that our first cognitive model fits well on student performance data. On top of that we are 
now engaged in an effort to refine the current model by bringing in content specialists, cognitive 
scientists and researchers in the field of student modelling. The plan is to improve the model 
iteratively and use student performance data to evaluate the fitness of the models in each cycle, 
focusing on the less well-fitted skills.  

                                                 
17 Pardos, Heffernan, Anderson & Heffernan (2006) simultaneously worked to answer the same research question, 
using Bayesian networks, and they reached the same conclusion as we did (Pardos, Feng, Heffernan & Heffernan, 
2007). 
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