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Abstract. Researchers who make tutoring systems would like to know which 
sequences of educational content lead to the most effective learning by their 
students. The majority of data collected in many ITS systems consist of answers 
to a group of questions of a given skill often presented in a random sequence. 
Following work that identifies which items produce the most learning we 
propose a Bayesian method using similar permutation analysis techniques to 
determine if item learning is context sensitive and if so which orderings of 
questions produce the most learning. We confine our analysis to random 
sequences with three questions. The method identifies question ordering rules 
such as, question A should go before B, which are statistically reliably beneficial 
to learning. Real tutor data from five random sequence problem sets were 
analyzed. Statistically reliable orderings of questions were found in two of the 
five real data problem sets. A simulation consisting of 140 experiments was run 
to validate the method's accuracy and test its reliability. The method succeeded 
in finding 43% of the underlying item order effects with a 6% false positive rate 
using a p value threshold of <= 0.05. Using this method, ITS researchers can 
gain valuable knowledge about their problem sets and feasibly let the ITS 
automatically identify item order effects and optimize student learning by 
restricting assigned sequences to those prescribed as most beneficial to learning. 

1 Introduction 

Corbett and Anderson style knowledge tracing [3] has been successfully used in 
many tutoring system to predict a student’s knowledge of a knowledge component after 
seeing a set of questions that used that knowledge component.  We present a method that 
allows us to detect if the learning value of an item might be dependent on the particular 
context the question appears in. We will model learning rates of items based on what item 
comes immediately after it. This will allow us to identify rules such as; item A should 
come before B, if such a rule exists. Question A could also be an un-acknowledged 
prerequisite for answering question B. After finding such relationships between 
questions, a reduced set of sequences can be recommended. The reliability of our results 
is tested with a simulation study in which simulated student responses are generated and 
the method is tasked with learning the underlying parameters of the simulation. 

We presented a method [5] that used similar analysis techniques to this one, where 
an item effect model was used to determine which items produced the most learning. 
That method had the benefit of being able to inform Intelligent Tutoring System (ITS) 
researchers of which questions, and their associated tutoring, are or are not producing 
learning. While we think that method has much to offer, it raised the question of whether 
the learning value of an item might be dependent on the particular context it appears in. 
The method in this paper is focused on learning based on item sequence. 
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1.1 The Tutoring System and Dataset 

Our dataset consisted of student responses from The ASSISTment System, a web based 
math tutoring system for 7th-12th grade students that provides preparation for the state 
standardized test by using released math items from previous tests as questions on the 

system. Figure 1 shows an example of 
a math item on the system and tutorial 
help that is given if the student answers 
the question wrong or asks for help. 
The tutorial helps the student learn the 
required knowledge by breaking the 
problem into sub questions called 
scaffolding or giving the student hints 
on how to solve the question.  

The data we analyzed was from 
the 2006-2007 school year. Subject 
matter experts made problem sets 
called GLOPS (groups of learning 
opportunities). The idea behind the 
GLOPS was to make a problem set 
where the items in the problem set 
related to each other. They were not 
necessary strictly related to each other 
through a formal skill tagging 
convention but were selected based on 
their similarity of concept according to 
the expert. We chose the five three item 
GLOPS that existed in the system each 
with between 295 and 674 students 
who had completed the problem set. 
Items do not overlap across GLOP 
problem sets. Our analysis can scale to 
problem sets of six items but we 

wanted to start off with a smaller size 
set for simplicity in testing and 

explaining the analysis method. The items in the five problem sets were presented to 
students in a randomized order. Randomization was not done for the sake of this research 
in particular but rather because the assumption of the subject matter expert was that these 
items did not have an obvious progression requiring that only a particular sequence of the 
items be presented to students. In other words, context sensitivity was not assumed. We 
only analyzed responses to the original questions which meant that a distinction was not 
made between the learning occurring due to answering the original question and learning 
occurring due to the help content. The learning from answering the original question and 
scaffolding will be conflated as a single value for the item. 

Figure 1. An ASSISTment item



1.2 Knowledge Tracing 

The Corbett and Anderson method of “knowledge tracing” [3] has been useful to many 
intelligent tutoring systems. In knowledge tracing there is a set of questions that are 
assumed to be answerable by the application of a particular knowledge component which 
could be a skill, fact, procedure or concept. Knowledge tracing attempts to infer the 
probability that a student knows a knowledge component based on a series of answers.  
Presumably, if a student had a response sequence of 0,0,1,0,0,0,1,1,1,1,1,1 where 0 is an 
incorrect first response to a question and 1 is a correct response, it is likely she guessed 
the third question but then learned the knowledge to get the last 6 questions correct. The 
Expectation Maximization algorithm is used in our research to learn parameters from data 
such as the probability of guess.  

 

 

 

 

Figure 2. Bayesian network model for question sequence [2 1 3] 

Figure 2 depicts a typical knowledge tracing three question static Bayesian 
network. The top three nodes represent a single skill and the inferred value of the node 
represents the probability the student knows the skill at each opportunity. The bottom 
three nodes represent three questions on the tutor. Student performance on a question is a 
function of their skill knowledge and the guess and slip of the question. Guess is the 
probability of answering correctly if the skill is not known. Slip is the probability of 
answering incorrectly if the skill is known. Learning rates are the probability that a skill 
will go from “not known” to “known” after encountering the question. The probability of 
the skill going from “known” to “not known” (forgetting) is fixed at zero. Knowledge 
tracing assumes that the learning on a piece of knowledge is independent of the question 
presented to students, that is that all questions should lead to the same amount of 
learning.  The basic design of a question sequence in our model is similar to a dynamic 
Bayesian network or Hidden Markov Model used in knowledge tracing but with the 
important distinction that the probability of learning is able to differ between 
opportunities. This ability allows us to model different learning rates per question which 
is essential to our analysis. The other important distinction of our model is the ability to 
model permutations of sequences with parameter sharing, discussed in the next section. 

2 Analysis Methodology 

In order to represent all the data in our randomized problem sets of three items we must 
model all six possible item sequence permutations. If six completely separate networks 
were created then the data would be split into six which would degrade the accuracy of 
parameter learning. This would also learn a separate guess and slip for each question in 
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each sequence despite the questions being the same in each sequence. In order to leverage 
the parameter learning power of all the data and define an individual question’s guess and 
slip values we will use parameter sharing2 to link the parameters across the different 
sequence networks. This means that question one as it appears in all six sequences will 
share the same guess and slip conditional probability table (CPT). The same will be true 
for the other two questions. This will give us three guess and slip parameters total and the 
values will be trained to reflect the questions' non sequence specific guess and slip 
values. In our item order effect model we also link the learning rates of item sequences. 

2.1 The Item Order Effect Model 

In the model we call the item order effect model we look at what effect item order has on 
learning. We set a learning rate for each pair of items and then test if one pair is reliably 
better for learning than another. For instance, should question A come before question B 
or vice versa? Since there are three items in our problem sets there will be six ordered 
pairs which are (3,2) (2,3) (3,1) (1,3) (2,1) and (1,2). This model allows us to train the 
learning rates of all six ordered pairs simultaneously along with guess and slip for the 
questions by using shared parameters to link all occurrences of pairs to the same learning 
rate conditional probability table. For example, the ordered pair (3,2) appears in two 
sequence permutations; sequence (3,2,1) and sequence (1,3,2) as shown in Figure 3. 

 

 

 

 

 

 

 

 

 

2.2 Reliability Estimates Using the Binomial Test 

In order to derive the reliability of the learning rates fit from data we employed the 
binomial test3 by randomly splitting the response data into 10 by student. We fit the 
model parameters using data from each of the 10 bins separately and counted the number 
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Figure 3. A two sequence portion of the Item Order 
Effect Model (six sequences exist in total) 



of bins in which the learning rate of one item pair was greater than its reverse, (3,2) > 
(2,3) for instance. We call a comparison of learning rates such as (3,2) > (2,3) a rule. The 
null hypothesis is that each rule is equally likely to occur. A rule is considered 
statistically reliable if the probability that the result came from the null hypothesis is <= 
0.05. For example, if we are testing if ordered pair (3,2) has a higher learning rate than 
(2,3) then there are two possible outcomes and the null hypothesis is that each outcome 
has a 50% chance of occurring. Thus, the binomial test will tell us that if the rule holds 
true eight or more times out of ten then it is <= 0.05 probable that the result came from 
the null hypothesis. This is the same idea as flipping a coin 10 times to determine the 
probability it is fair. The less likely the null hypothesis, the more confidence we can have 
in the result. If the learning rate of (3,2) is greater than (2,3) with p <= 0.05 then we can 
say it is statistically reliable that question three and its tutoring followed by question two 
better help students learn the skill than question two and its tutoring followed by question 
three. Based on this conclusion it would be recommended to give sequences where 
question three comes before two. The successful detection of a single rule will eliminate 
half of the sequences since three comes before two in half of the sequence permutations. 
Strictly speaking the model is only reporting the learning rate when two comes directly 
after three however in eliminating half the sequences we make the pedagogical 
assumption that question three and its tutoring will help answer question two even if it 
comes one item prior such as in the sequence (3, 1, 2). Without this assumption only the 
two sequences with (2,3) can be eliminated and not sequence (2,1,3). 

2.3 Item Order Effect Model Results 

We ran the analysis method on our problem sets and found reliable rules in two out of the 
five problem sets. The results below show the item pair learning rate parameters for the 
two problem sets in which reliable rules were found. The 10 bin split was used to 
evaluate the reliability of the rules while all student data for the respective problem sets 
were used to train the parameters shown below. 

Table 1. Item order effect model results 

  Learning probabilities of Item Pairs  
Problem Set Users (3,2) (2,1) (3,1) (1,2) (2,3) (1,3) Reliable Rules

24 403 0.1620 0.0948 0.0793 0.0850 0.0754 0.0896 (3,2) > (2,3) 
36 419 0.1507 0.1679 0.0685 0.1179 0.1274 0.1371 (1,3) > (3,1) 

 
 As shown in Table 1, there was one reliable rule found in each of the problem 
sets. In problem set 24 we found that item pair (3,2) showed a higher learning rate than 
(2,3) in eight out of the 10 splits giving a binomial p of 0.0439. Item pair (1,3) showed a 
higher learning rate than (3,1) also in eight out of the 10 splits in problem set 36. Other 
statistically reliable relationships can be tested on the results of the method. For instance, 
in problem set 36 we found that (2,1) > (3,1) in 10 out of the 10 bins. This could mean 
that sequence (3,1,2) should not be given to students because question three comes before 
question one and question two does not. Removing sequence (3,1,2) is also supported by 
rule (1,3) > (3,1). In addition to the learning rate parameters, the model simultaneously 
trains a guess and slip value for each question. Those values are shown below in Table 2. 



Table 2. Trained question guess and slip values 

 Problem Set 24 Problem Set 36 
Question # Guess Slip Guess Slip 
1 0.17 0.18 0.33 0.13 
2 0.31 0.08 0.31 0.10 
3 0.23 0.17 0.20 0.08 

3 Simulation 

In order to determine the validity of the item order effect method we chose to run a 
simulation study exploring the boundaries of the method’s accuracy and reliability. The 
goal of the simulation was to generate student responses under various conditions that 
may be seen in the real world and test if the method would accurately infer the underlying 
parameter values from the simulated student data. This simulation model assumes that 
learning rates have distinct values and that item order effects of some magnitude always 
exist and should be detectable given enough data. 

3.1 Model design 

The model used to generate student responses is a six node static Bayesian network as 
depicted in Figure 2 from section 1.2. While the probability of knowing the skill will 
monotonically increase after each opportunity, the generated responses (0s and 1s) will 
not necessarily do the same since those values are generated probabilistically based on 
skill knowledge and guess and slip. Simulated student responses were generated one 
student at a time by sampling from the six node network. 

3.2 Student parameters 

Only two parameters were used to define a simulated student, a prior and question 
sequence. The prior represents the probability the student knew the skill relating to the 
questions before encountering the questions. The prior for a given student was randomly 
generated from a distribution that was fit to a previous year’s ASSISTment data [6]. The 
mean prior for that year across all skills was 0.31 and the standard deviation was 0.20. In 
order to draw probabilistic parameter values that fit within 0 and 1, an equivalent beta 
distribution was used. The beta distribution fit an α of 1.05 and β of 2.43. The question 
sequence for a given student was generated from a uniform distribution of sequence 
permutations. 

3.3 Tutor Parameters 

The 12 parameters of the tutor simulation network consist of six learning rate parameters, 
three guess parameters and three slip parameters. The number of users simulated was: 
200, 500, 1000, 2000, 4000, 10000, and 20000. The simulation was run 20 times for each 
of the seven simulated user sizes totaling 140 generated data sets, referred to later as 
experiments. In order to faithfully simulate the conditions of a real tutor, values for the 12 
parameters were randomly generated using the means and standard deviations across 106 



skills from a previous analysis [6] of ASSISTment data. Table 3 shows the distributions 
that the parameter values were randomly drawn from and then assigned to questions and 
learning rates at the start of each run.  

Table 3. The distributions used to generate parameter values in the simulation 

Parameter type  Mean  Std  Beta dist α  Beta dist β 
Learning rate  0.086  0.063  0.0652  0.6738 

Guess  0.144  0.383  0.0170  0.5909 

Slip  0.090  0.031  0.0170  0.6499 

 

Running the simulation and generating new parameter values 20 times gives us a 
good sampling of the underlying distribution for each of the seven user sizes. This 
method of generating parameters will end up accounting for more variance than the real 
world since standard deviations were calculated for values across problem sets as 
opposed to within. Also, guess and slip have a correlation in the real world but will be 
allowed to independently vary in the simulation which means sometimes getting a high 
slip but low guess, which is rarely observed in actual ASSISTment data. It also means the 
potential for generating very improbable combinations of item pair learning rates. 

3.4 Simulation Procedure 
The simulation consisted of three steps: instantiation of the Bayesian network, setting 
CPTs to values of the simulation parameters and student parameters and finally sampling 
the Bayesian network to generate the students’ responses.  

To generate student responses the six node network was first instantiated in 
MATLAB using routines from the Bayes Net Toolbox package. Student priors and 
question sequences were randomly generated for each simulation run and the 12 
parameters described in section 3.3 were assigned to the three questions and item pair 
learning rates. The question CPTs and learning rates were positioned with regard to the 
student’s particular question sequence. The Bayesian network was then sampled a single 
time to generate the student’s responses to each of the three questions; a zero indicating 
an incorrect answer and a one indicating a correct answer. These three responses in 
addition to the student’s question sequence were written to a file. A total of 140 data files 
were created at the conclusion of the simulation runs, all of which were to be analyzed by 
the item order effect detection method. The seeded simulation parameters were stored in 
a log file for each experiment to later be checked against the method's findings. An 
example of an experiment’s output file for 500 users is shown in Table 4 below. 

Table 4. Example output from data file with N=500 

Simulated User Sequence identifier 1st Q 2nd Q 3rd Q  
1 5 0 1 1 

...
 

...
 

...
 

...
 

...
 

500 3 1 0 1 

Each data file from the simulation was split into 10 equal parts and each run 
separately through the analysis method just as was done in analysis of real tutor data. 
This analysis step would give a result such as the example in Table 5 below. 



Table 5. Example output from item order effect analysis 
 (3,2) (2,1) (3,1) (1,2) (2,3) (1,3) 

Split 1 0.0732 0.0267 0.0837 0.0701 0.0379 0.642 

...
 

...
 

...
 

...
 

...
 

...
 

...
 

Split 10 0.0849 0.0512 0.0550 0.0710 0.0768 0.0824 

In order to produce a p value and determine statistical reliability to the p < 0.05 
level the binomial test is used. The method counts how many times (3,2) was greater than 
(2,3) for instance. If the count is greater than eight then the method considers this an 
identified rule. Even though there are six item pairs there is a maximum of three rules 
since if (3,2) > (2,3) is a reliable rule then (3,2) < (2,3) is not. In some cases finding two 
rules is enough to identify a single sequence as being best. Three rules always guarantee 
the identification of a single sequence. The method logs the number of rules found and 
how many users (total) were involved in the experiment. The method now looks "under 
the hood" at the parameters set by the simulation for the item pair learning rates and 
determines how many of the found rules were false. For instance, if the underlying 
simulated learning rate for (3,2) was 0.08 and the simulated learning rate for (2,3) was 
0.15 then the rule (3,2) > (2,3) would be a false positive (0.08 < 0.15). This is done for all 
140 data files. The total number of rules is three per experiment thus there are 420 rules 
to be found in the 140 data files.  

3.5 Simulation Results 

The average percent of found rules per simulated user size is plotted in Figure 2 below. 
The percentage of false positives is also plotted in the same figure and represents the 
error. 

 

Figure 4. Results of simulation study 



Figure 4 shows that more users allows for more rules about item order to be 
detected. It also shows that the false positive rate remains fairly constant, averaging 
around the 6% mark. From 200 users to 1,000 users the average percentage rules found 
was around 30% which would correspond to about 1 rule per problem set (0.30 * 3). This 
percentage rises steadily in a linear fashion from 500 users up to the max number of users 
tested of 20,000 where it achieves a 69% discovery rate which corresponds to about two 
rules per problem set on average. The error starts at 13% with 200 users and then remains 
below 10% for the rest of the user sizes. The overall average percent of rules found 
across users sizes is 43.3%. The overall average false positive rate is 6.3% which is in 
line with the binomial p value threshold of 0.05 that was used and validates the accuracy 
of the method's results and dependability of the reported binomial p value. 

Limitations and Future Work 

One of the limitations of this permutation analysis method is that it does not scale 
gracefully. The number of network nodes that need to be constructed is exponential in the 
number of items. For a three item model there are six nodes per sequence and six 
sequences. For a seven item model there are fourteen nodes per sequence and 5,040 
sequences (70,560 nodes). One potential optimization would be to only construct 
sequences for which there is data, which will be at most the number of students. 

 The split 10 procedure has the effect of decreasing the amount of data the method 
has to operate on for each run. A more efficient sampling method may be beneficial, 
however, our trials using resampling with replacement for the simulation instead of 
splitting resulted in a high average false positive rate (>15%). A more sensitive test that 
takes into account the size of the difference between learned parameter values would 
improve reliability estimates. The binomial accuracy may also be improved by using a 
Bonferroni correction as suggested by a reviewer. This correction is used when multiple 
hypotheses are tested on a set of data (i.e. the reliability of item ordering rules). The 
correction suggests using a lower p value cut-off. 

There is a good deal of work in the area of trying to build better models of what 
students are learning. One approach [1] uses a matrix of skill to item mappings which can 
be optimized [2] for best fit and used to help learn optimal practice schedules [7] while 
another approach attempts to find item to item knowledge relationships [4] such as 
prerequisite item structures using item tree analysis. We think that the item order effect 
method introduced here and its accompanying paper [5] have parallels with these works 
and could be used as a part of a general procedure to try to learn better fitting models. 

Contribution 

This method has been shown by simulation study to provide reliable results suggesting 
item orderings that are most advantageous to learning. Many educational technology 
companies [8] (i.e. Carnegie Learning Inc. or ETS) have hundreds of questions that are 
tagged with knowledge components. We think that this method, and ones built off of it, 
will facilitate better tutoring systems. In [5] we used a variant of this method to figure out 
what items are causing the most learning. In this paper, we presented a method that 



allows scientists to see if the items in a randomly ordered problem set produce the same 
learning regardless of context or if there is an implicit ordering of questions that is best 
for learning. Those best orderings might have a variety of reasons for existing. Applying 
this method to investigate those reasons could inform content authors and scientists on 
best practices in much the same way as randomized controlled experiments do but by 
utilizing the far more economical means of investigation which is data mining. 
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