
Determining the Significance of Item Order In
Randomized Problem Sets

Zachary A. Pardos1 and Neil T. Heffernan

{zpardos, nth}@wpi.edu
Worcester Polytechnic Institute

Abstract. Researchers who make tutoring systems would like to know which
sequences of educational content lead to the most effective learning by their
students. The majority of data collected in many ITS systems consist of answers
to a group of questions of a given skill often presented in a random sequence.
Following work that identifies which items produce the most learning we
propose a Bayesian method using similar permutation analysis techniques to
determine if item learning is context sensitive and if so which orderings of
questions produce the most learning. We confine our analysis to random
sequences with three questions. The method identifies question ordering rules
such as, question A should go before B, which are statistically reliably beneficial
to learning. Real tutor data from five random sequence problem sets were
analyzed. Statistically reliable orderings of questions were found in two of the
five real data problem sets. A simulation consisting of 140 experiments was run
to validate the method's accuracy and test its reliability. The method succeeded
in finding 43% of the underlying item order effects with a 6% false positive rate
using a p value threshold of <= 0.05. Using this method, ITS researchers can
gain valuable knowledge about their problem sets and feasibly let the ITS
automatically identify item order effects and optimize student learning by
restricting assigned sequences to those prescribed as most beneficial to learning.

1 Introduction

Corbett and Anderson style knowledge tracing [3] has been successfully used in
many tutoring system to predict a student’s knowledge of a knowledge component after
seeing a set of questions that used that knowledge component. We present a method that
allows us to detect if the learning value of an item might be dependent on the particular
context the question appears in. We will model learning rates of items based on what item
comes immediately after it. This will allow us to identify rules such as; item A should
come before B, if such a rule exists. Question A could also be an un-acknowledged
prerequisite for answering question B. After finding such relationships between
questions, a reduced set of sequences can be recommended. The reliability of our results
is tested with a simulation study in which simulated student responses are generated and
the method is tasked with learning the underlying parameters of the simulation.

We presented a method [5] that used similar analysis techniques to this one, where
an item effect model was used to determine which items produced the most learning.
That method had the benefit of being able to inform Intelligent Tutoring System (ITS)
researchers of which questions, and their associated tutoring, are or are not producing
learning. While we think that method has much to offer, it raised the question of whether
the learning value of an item might be dependent on the particular context it appears in.
The method in this paper is focused on learning based on item sequence.

1
 National Science Foundation funded GK-12 Fellow

Pardos, Z. A., Heffernan, N. T. In Press (2009). Determining the Significance of Item Order In
Randomized Problem Sets. In Proceedings of the 2nd International Conference on
Educational Data Mining. Cordoba, Spain.

1.1 The Tutoring System and Dataset

Our dataset consisted of student responses from The ASSISTment System, a web based
math tutoring system for 7th-12th grade students that provides preparation for the state
standardized test by using released math items from previous tests as questions on the

system. Figure 1 shows an example of
a math item on the system and tutorial
help that is given if the student answers
the question wrong or asks for help.
The tutorial helps the student learn the
required knowledge by breaking the
problem into sub questions called
scaffolding or giving the student hints
on how to solve the question.

The data we analyzed was from
the 2006-2007 school year. Subject
matter experts made problem sets
called GLOPS (groups of learning
opportunities). The idea behind the
GLOPS was to make a problem set
where the items in the problem set
related to each other. They were not
necessary strictly related to each other
through a formal skill tagging
convention but were selected based on
their similarity of concept according to
the expert. We chose the five three item
GLOPS that existed in the system each
with between 295 and 674 students
who had completed the problem set.
Items do not overlap across GLOP
problem sets. Our analysis can scale to
problem sets of six items but we

wanted to start off with a smaller size
set for simplicity in testing and

explaining the analysis method. The items in the five problem sets were presented to
students in a randomized order. Randomization was not done for the sake of this research
in particular but rather because the assumption of the subject matter expert was that these
items did not have an obvious progression requiring that only a particular sequence of the
items be presented to students. In other words, context sensitivity was not assumed. We
only analyzed responses to the original questions which meant that a distinction was not
made between the learning occurring due to answering the original question and learning
occurring due to the help content. The learning from answering the original question and
scaffolding will be conflated as a single value for the item.

Figure 1. An ASSISTment item

1.2 Knowledge Tracing

The Corbett and Anderson method of “knowledge tracing” [3] has been useful to many
intelligent tutoring systems. In knowledge tracing there is a set of questions that are
assumed to be answerable by the application of a particular knowledge component which
could be a skill, fact, procedure or concept. Knowledge tracing attempts to infer the
probability that a student knows a knowledge component based on a series of answers.
Presumably, if a student had a response sequence of 0,0,1,0,0,0,1,1,1,1,1,1 where 0 is an
incorrect first response to a question and 1 is a correct response, it is likely she guessed
the third question but then learned the knowledge to get the last 6 questions correct. The
Expectation Maximization algorithm is used in our research to learn parameters from data
such as the probability of guess.

Figure 2. Bayesian network model for question sequence [2 1 3]

Figure 2 depicts a typical knowledge tracing three question static Bayesian
network. The top three nodes represent a single skill and the inferred value of the node
represents the probability the student knows the skill at each opportunity. The bottom
three nodes represent three questions on the tutor. Student performance on a question is a
function of their skill knowledge and the guess and slip of the question. Guess is the
probability of answering correctly if the skill is not known. Slip is the probability of
answering incorrectly if the skill is known. Learning rates are the probability that a skill
will go from “not known” to “known” after encountering the question. The probability of
the skill going from “known” to “not known” (forgetting) is fixed at zero. Knowledge
tracing assumes that the learning on a piece of knowledge is independent of the question
presented to students, that is that all questions should lead to the same amount of
learning. The basic design of a question sequence in our model is similar to a dynamic
Bayesian network or Hidden Markov Model used in knowledge tracing but with the
important distinction that the probability of learning is able to differ between
opportunities. This ability allows us to model different learning rates per question which
is essential to our analysis. The other important distinction of our model is the ability to
model permutations of sequences with parameter sharing, discussed in the next section.

2 Analysis Methodology

In order to represent all the data in our randomized problem sets of three items we must
model all six possible item sequence permutations. If six completely separate networks
were created then the data would be split into six which would degrade the accuracy of
parameter learning. This would also learn a separate guess and slip for each question in

S S S

2 1 3

0 0 1

Question sequence:

Responses:

0.08 0.12

Skill node with
prior

Skill learning rates:

each sequence despite the questions being the same in each sequence. In order to leverage
the parameter learning power of all the data and define an individual question’s guess and
slip values we will use parameter sharing2 to link the parameters across the different
sequence networks. This means that question one as it appears in all six sequences will
share the same guess and slip conditional probability table (CPT). The same will be true
for the other two questions. This will give us three guess and slip parameters total and the
values will be trained to reflect the questions' non sequence specific guess and slip
values. In our item order effect model we also link the learning rates of item sequences.

2.1 The Item Order Effect Model

In the model we call the item order effect model we look at what effect item order has on
learning. We set a learning rate for each pair of items and then test if one pair is reliably
better for learning than another. For instance, should question A come before question B
or vice versa? Since there are three items in our problem sets there will be six ordered
pairs which are (3,2) (2,3) (3,1) (1,3) (2,1) and (1,2). This model allows us to train the
learning rates of all six ordered pairs simultaneously along with guess and slip for the
questions by using shared parameters to link all occurrences of pairs to the same learning
rate conditional probability table. For example, the ordered pair (3,2) appears in two
sequence permutations; sequence (3,2,1) and sequence (1,3,2) as shown in Figure 3.

2.2 Reliability Estimates Using the Binomial Test

In order to derive the reliability of the learning rates fit from data we employed the
binomial test3 by randomly splitting the response data into 10 by student. We fit the
model parameters using data from each of the 10 bins separately and counted the number

2
 Parameter sharing was accomplished in the Bayesian network model using equivalence classes from Kevin Murphy’s Bayes

Net Toolbox, available at: http://bnt.sourceforge.net/
3
 The binomial test was run with the MATLAB command: binopdf(successes, trials, 1/outcomes)

S S S

1 3 2

S S S

3 2 1

Item Pair (3,2) Learning Rate

Skill was
known before

Prob. that skill is
known now

T 1.00 (no forget)

F 0.14 (learning)

Question 3 CPT

Skill is
known

Prob. of correct
answer

T 0.91 (1-slip)

F 0.18 (guess)

The Question 3 Conditional
Probability Table (CPT) is shared by
the question 3 node as it appears in
these two sequences as well as the
other four sequence permutations

Item pair (3,2)'s learning rate is the
probability that if the skill was not
known at question three it will be
known at question two. This is the
probability of learning the skill

Questions one and two have their own
shared CPTs as well

The five other item pairs have their
own CPTs in the full network

Figure 3. A two sequence portion of the Item Order
Effect Model (six sequences exist in total)

of bins in which the learning rate of one item pair was greater than its reverse, (3,2) >
(2,3) for instance. We call a comparison of learning rates such as (3,2) > (2,3) a rule. The
null hypothesis is that each rule is equally likely to occur. A rule is considered
statistically reliable if the probability that the result came from the null hypothesis is <=
0.05. For example, if we are testing if ordered pair (3,2) has a higher learning rate than
(2,3) then there are two possible outcomes and the null hypothesis is that each outcome
has a 50% chance of occurring. Thus, the binomial test will tell us that if the rule holds
true eight or more times out of ten then it is <= 0.05 probable that the result came from
the null hypothesis. This is the same idea as flipping a coin 10 times to determine the
probability it is fair. The less likely the null hypothesis, the more confidence we can have
in the result. If the learning rate of (3,2) is greater than (2,3) with p <= 0.05 then we can
say it is statistically reliable that question three and its tutoring followed by question two
better help students learn the skill than question two and its tutoring followed by question
three. Based on this conclusion it would be recommended to give sequences where
question three comes before two. The successful detection of a single rule will eliminate
half of the sequences since three comes before two in half of the sequence permutations.
Strictly speaking the model is only reporting the learning rate when two comes directly
after three however in eliminating half the sequences we make the pedagogical
assumption that question three and its tutoring will help answer question two even if it
comes one item prior such as in the sequence (3, 1, 2). Without this assumption only the
two sequences with (2,3) can be eliminated and not sequence (2,1,3).

2.3 Item Order Effect Model Results

We ran the analysis method on our problem sets and found reliable rules in two out of the
five problem sets. The results below show the item pair learning rate parameters for the
two problem sets in which reliable rules were found. The 10 bin split was used to
evaluate the reliability of the rules while all student data for the respective problem sets
were used to train the parameters shown below.

Table 1. Item order effect model results

 Learning probabilities of Item Pairs
Problem Set Users (3,2) (2,1) (3,1) (1,2) (2,3) (1,3) Reliable Rules

24 403 0.1620 0.0948 0.0793 0.0850 0.0754 0.0896 (3,2) > (2,3)
36 419 0.1507 0.1679 0.0685 0.1179 0.1274 0.1371 (1,3) > (3,1)

 As shown in Table 1, there was one reliable rule found in each of the problem
sets. In problem set 24 we found that item pair (3,2) showed a higher learning rate than
(2,3) in eight out of the 10 splits giving a binomial p of 0.0439. Item pair (1,3) showed a
higher learning rate than (3,1) also in eight out of the 10 splits in problem set 36. Other
statistically reliable relationships can be tested on the results of the method. For instance,
in problem set 36 we found that (2,1) > (3,1) in 10 out of the 10 bins. This could mean
that sequence (3,1,2) should not be given to students because question three comes before
question one and question two does not. Removing sequence (3,1,2) is also supported by
rule (1,3) > (3,1). In addition to the learning rate parameters, the model simultaneously
trains a guess and slip value for each question. Those values are shown below in Table 2.

Table 2. Trained question guess and slip values

 Problem Set 24 Problem Set 36
Question # Guess Slip Guess Slip
1 0.17 0.18 0.33 0.13
2 0.31 0.08 0.31 0.10
3 0.23 0.17 0.20 0.08

3 Simulation

In order to determine the validity of the item order effect method we chose to run a
simulation study exploring the boundaries of the method’s accuracy and reliability. The
goal of the simulation was to generate student responses under various conditions that
may be seen in the real world and test if the method would accurately infer the underlying
parameter values from the simulated student data. This simulation model assumes that
learning rates have distinct values and that item order effects of some magnitude always
exist and should be detectable given enough data.

3.1 Model design

The model used to generate student responses is a six node static Bayesian network as
depicted in Figure 2 from section 1.2. While the probability of knowing the skill will
monotonically increase after each opportunity, the generated responses (0s and 1s) will
not necessarily do the same since those values are generated probabilistically based on
skill knowledge and guess and slip. Simulated student responses were generated one
student at a time by sampling from the six node network.

3.2 Student parameters

Only two parameters were used to define a simulated student, a prior and question
sequence. The prior represents the probability the student knew the skill relating to the
questions before encountering the questions. The prior for a given student was randomly
generated from a distribution that was fit to a previous year’s ASSISTment data [6]. The
mean prior for that year across all skills was 0.31 and the standard deviation was 0.20. In
order to draw probabilistic parameter values that fit within 0 and 1, an equivalent beta
distribution was used. The beta distribution fit an α of 1.05 and β of 2.43. The question
sequence for a given student was generated from a uniform distribution of sequence
permutations.

3.3 Tutor Parameters

The 12 parameters of the tutor simulation network consist of six learning rate parameters,
three guess parameters and three slip parameters. The number of users simulated was:
200, 500, 1000, 2000, 4000, 10000, and 20000. The simulation was run 20 times for each
of the seven simulated user sizes totaling 140 generated data sets, referred to later as
experiments. In order to faithfully simulate the conditions of a real tutor, values for the 12
parameters were randomly generated using the means and standard deviations across 106

skills from a previous analysis [6] of ASSISTment data. Table 3 shows the distributions
that the parameter values were randomly drawn from and then assigned to questions and
learning rates at the start of each run.

Table 3. The distributions used to generate parameter values in the simulation

Parameter type Mean Std Beta dist α Beta dist β
Learning rate 0.086 0.063 0.0652 0.6738

Guess 0.144 0.383 0.0170 0.5909

Slip 0.090 0.031 0.0170 0.6499

Running the simulation and generating new parameter values 20 times gives us a
good sampling of the underlying distribution for each of the seven user sizes. This
method of generating parameters will end up accounting for more variance than the real
world since standard deviations were calculated for values across problem sets as
opposed to within. Also, guess and slip have a correlation in the real world but will be
allowed to independently vary in the simulation which means sometimes getting a high
slip but low guess, which is rarely observed in actual ASSISTment data. It also means the
potential for generating very improbable combinations of item pair learning rates.

3.4 Simulation Procedure
The simulation consisted of three steps: instantiation of the Bayesian network, setting
CPTs to values of the simulation parameters and student parameters and finally sampling
the Bayesian network to generate the students’ responses.

To generate student responses the six node network was first instantiated in
MATLAB using routines from the Bayes Net Toolbox package. Student priors and
question sequences were randomly generated for each simulation run and the 12
parameters described in section 3.3 were assigned to the three questions and item pair
learning rates. The question CPTs and learning rates were positioned with regard to the
student’s particular question sequence. The Bayesian network was then sampled a single
time to generate the student’s responses to each of the three questions; a zero indicating
an incorrect answer and a one indicating a correct answer. These three responses in
addition to the student’s question sequence were written to a file. A total of 140 data files
were created at the conclusion of the simulation runs, all of which were to be analyzed by
the item order effect detection method. The seeded simulation parameters were stored in
a log file for each experiment to later be checked against the method's findings. An
example of an experiment’s output file for 500 users is shown in Table 4 below.

Table 4. Example output from data file with N=500

Simulated User Sequence identifier 1st Q 2nd Q 3rd Q
1 5 0 1 1

...

...

...

...

...

500 3 1 0 1

Each data file from the simulation was split into 10 equal parts and each run
separately through the analysis method just as was done in analysis of real tutor data.
This analysis step would give a result such as the example in Table 5 below.

Table 5. Example output from item order effect analysis
 (3,2) (2,1) (3,1) (1,2) (2,3) (1,3)

Split 1 0.0732 0.0267 0.0837 0.0701 0.0379 0.642

...

...

...

...

...

...

...

Split 10 0.0849 0.0512 0.0550 0.0710 0.0768 0.0824

In order to produce a p value and determine statistical reliability to the p < 0.05
level the binomial test is used. The method counts how many times (3,2) was greater than
(2,3) for instance. If the count is greater than eight then the method considers this an
identified rule. Even though there are six item pairs there is a maximum of three rules
since if (3,2) > (2,3) is a reliable rule then (3,2) < (2,3) is not. In some cases finding two
rules is enough to identify a single sequence as being best. Three rules always guarantee
the identification of a single sequence. The method logs the number of rules found and
how many users (total) were involved in the experiment. The method now looks "under
the hood" at the parameters set by the simulation for the item pair learning rates and
determines how many of the found rules were false. For instance, if the underlying
simulated learning rate for (3,2) was 0.08 and the simulated learning rate for (2,3) was
0.15 then the rule (3,2) > (2,3) would be a false positive (0.08 < 0.15). This is done for all
140 data files. The total number of rules is three per experiment thus there are 420 rules
to be found in the 140 data files.

3.5 Simulation Results

The average percent of found rules per simulated user size is plotted in Figure 2 below.
The percentage of false positives is also plotted in the same figure and represents the
error.

Figure 4. Results of simulation study

Figure 4 shows that more users allows for more rules about item order to be
detected. It also shows that the false positive rate remains fairly constant, averaging
around the 6% mark. From 200 users to 1,000 users the average percentage rules found
was around 30% which would correspond to about 1 rule per problem set (0.30 * 3). This
percentage rises steadily in a linear fashion from 500 users up to the max number of users
tested of 20,000 where it achieves a 69% discovery rate which corresponds to about two
rules per problem set on average. The error starts at 13% with 200 users and then remains
below 10% for the rest of the user sizes. The overall average percent of rules found
across users sizes is 43.3%. The overall average false positive rate is 6.3% which is in
line with the binomial p value threshold of 0.05 that was used and validates the accuracy
of the method's results and dependability of the reported binomial p value.

Limitations and Future Work

One of the limitations of this permutation analysis method is that it does not scale
gracefully. The number of network nodes that need to be constructed is exponential in the
number of items. For a three item model there are six nodes per sequence and six
sequences. For a seven item model there are fourteen nodes per sequence and 5,040
sequences (70,560 nodes). One potential optimization would be to only construct
sequences for which there is data, which will be at most the number of students.

 The split 10 procedure has the effect of decreasing the amount of data the method
has to operate on for each run. A more efficient sampling method may be beneficial,
however, our trials using resampling with replacement for the simulation instead of
splitting resulted in a high average false positive rate (>15%). A more sensitive test that
takes into account the size of the difference between learned parameter values would
improve reliability estimates. The binomial accuracy may also be improved by using a
Bonferroni correction as suggested by a reviewer. This correction is used when multiple
hypotheses are tested on a set of data (i.e. the reliability of item ordering rules). The
correction suggests using a lower p value cut-off.

There is a good deal of work in the area of trying to build better models of what
students are learning. One approach [1] uses a matrix of skill to item mappings which can
be optimized [2] for best fit and used to help learn optimal practice schedules [7] while
another approach attempts to find item to item knowledge relationships [4] such as
prerequisite item structures using item tree analysis. We think that the item order effect
method introduced here and its accompanying paper [5] have parallels with these works
and could be used as a part of a general procedure to try to learn better fitting models.

Contribution

This method has been shown by simulation study to provide reliable results suggesting
item orderings that are most advantageous to learning. Many educational technology
companies [8] (i.e. Carnegie Learning Inc. or ETS) have hundreds of questions that are
tagged with knowledge components. We think that this method, and ones built off of it,
will facilitate better tutoring systems. In [5] we used a variant of this method to figure out
what items are causing the most learning. In this paper, we presented a method that

allows scientists to see if the items in a randomly ordered problem set produce the same
learning regardless of context or if there is an implicit ordering of questions that is best
for learning. Those best orderings might have a variety of reasons for existing. Applying
this method to investigate those reasons could inform content authors and scientists on
best practices in much the same way as randomized controlled experiments do but by
utilizing the far more economical means of investigation which is data mining.

Acknowledgements

We would like to thank the Worcester Public Schools and the people associated with
creating ASSISTment listed at www.ASSISTment.org including investigators Kenneth
Koedinger and Brian Junker at Carnegie Mellon and also Dave Brown and Carolina Ruiz
at Worcester Polytechnic Institute for their suggestions. We would also like to
acknowledge funding from the U.S. Department of Education’s GAANN and IES grants,
the Office of Naval Research, the Spencer Foundation and the National Science
Foundation.

References

[1] Barnes, T. (2005). Q-matrix Method: Mining Student Response Data for Knowledge.
Proceedings of the AAAI-05 Workshop on Educational Data Mining, Pittsburgh, 2005.
(AAAI Technical Report #WS-05-02).

[2] Cen, H., Koedinger, K. R., & Junker, B. (2006). Learning factors analysis - A general
method for cognitive model evaluation and improvement. In Proc. the 8th International
Conference on Intelligent Tutoring Systems. pp. 164-175

[3] Corbett, A. T., Anderson, J. R. & O'Brien, A. T. (1995) Student modeling in the ACT
programming tutor. In P. Nichols, S. Chipman, & R. Brennan (Eds.), Cognitively
diagnostic assessment (pp. 19-41). Hillsdale, NJ: Erlbaum.

[4] Desmarais, M. C., Meshkinfam, P. & Gagnon, M. (2006). Learned student models
with item to item knowledge structures. User Modeling and User-adapted Interaction,
16(5), 403–434.

[5] Pardos, Z. A., Heffernan, N. T. In Press (2009) Detecting the Learning Value of Items
In a Randomized Problem Set. In Proceedings of the 14th International Conference on
Artificial Intelligence in Education. Brighton, UK. IOS Press.

[6] Pardos, Z. A., Heffernan, N. T., Ruiz, C. & Beck, J. (2008) Effective Skill
Assessment Using Expectation Maximization in a Multi Network Temporal Bayesian
Network. The Young Researchers Track at the 20th International Conference on
Intelligent Tutoring Systems. Montreal, Canada. pp. 31-40

[7] Pavlik, P. I., Jr., Presson, N., & Koedinger, K. R. (2007). Optimizing knowledge
component learning using a dynamic structural model of practice. In proceedings of the
8th International Conference on Cognitive Modeling. Ann Arbor, Michigan, USA.

[8] Stevens, R. H., & Thadani, V. (2006) A Bayesian Network Approach for Modeling
the Influence of Contextual Variables on Scientific Problem Solving. In M. Ikeda, K.
Ashley, and T.-W. Chan (Eds.): ITS 2006, LNCS 4053, Springer-Verlag. pp.71-84.

