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Abstract.  A basic question of instructional interventions is how effective it is in 
promoting student learning. This paper presents a study to determine the relative 
efficacy of different instructional strategies by applying an educational data 
mining technique, learning decomposition.  We use logistic regression to 
determine how much learning is caused by different methods of teaching the same 
skill, relative to each other. We compare our results with a previous study, which 
used classical analysis techniques and reported no main effect. Our results show 
that there is a marginal difference, suggesting giving students scaffolding 
questions is less effective at promoting student learning than providing them 
delayed feedback. Our study utilizes learning decomposition, an easier and 
quicker approach of evaluating the quality of ITS interventions than experimental 
studies.  We also demonstrate the usage of computer-intensive approach, 
bootstrapping, for hypothesis testing in educational data mining area.  

1 Introduction 

The field of Intelligent Tutoring Systems (ITS) is often concerned with what type of 
educational intervention is more effective on promoting student learning. A handful of 
studies [e.g. 8, 11, 14, 15] have been conducted on comparing different variants of 
tutoring and feedback strategies, such as worked-out examples, tutored problem solving. 
One popular method of determining whether one type of instruction is more effective 
than the other is to run a randomized controlled study. Although the method is shown to 
be useful, a major problem with the controlled study approach is that it can be expensive. 
A study could involve many users (in each condition), be of considerable duration, and 
require the administration of pre/post tests. To address this problem, Beck [2] introduced 
an approach called learning decomposition, an easy recipe to enable researchers to 
answer questions such as what type of practice is most effective for helping student to 
learn a skill. Instead of focusing on performance gain from pretest to posttest, learning 
decomposition leverages item-level data during a study and is concerned with how 
student performance changes while students are using the tutor. This approach is a 
modification of the learning curve analysis technique [12] that has been used in 
evaluating the efficacy of instructional contents. For instance, Koedinger and Mathan [9] 
compared learning outcomes associated with two types of feedback in the context of a 
spreadsheet tutor. Martin et al. [10] evaluated ITS using learning curves, and they also 
described the impact of changes in system’s setup on the results of such analysis.   

The ASSISTment system [13] is an online system that presents math problems to 
students who range from approximately 12 to 16 year olds in middle school or high 
school to solve. When a student has trouble solving a problem, the system usually 



provides instructional assistance to lead the student through by breaking the problem into 
scaffolding steps, or displaying hint messages on the screen, upon student request. Time-
stamped student answers are logged into our database. In the ASSISTment system, when 
the authors create the instructional content, they may use different tutoring strategies.  
Razzaq et al. [14] reported a randomized controlled experiment that examined effects of 
the level of tutor-student interaction on helping students learn math skills. In this paper, 
we take a second look at the study and use a different approach to analyze the 
experiment: learning decomposition and bootstrapping with randomization test. 

The goal of this paper includes 1) Comparing the relative impact of various educational 
interventions in the ASSISTment system by doing an item-level analysis. 2) Presenting a 
case study of applying the learning decomposition technique to a domain, mathematics, 
other than reading where the technique has been shown to be valuable [1, 2, 3].  3) There 
has been little prior use of bootstrapping with educational data [1]. We show how 
bootstrapping can be used with learning decomposition.   

2 Methods 

2.1 Experimental design 

As mentioned in section 1, the experiment reported in [14] compared the efficacy of 
interventions with various levels of interactions. The experiment included three 
conditions: scaffolding + hints; hints on demand; delayed feedback. When a problem first 
appears on the screen, we refer to this as the “main question.”  If students answered the 
main question wrong, the “scaffolding + hints” (referred to as scaffold condition) 
condition forced them to do the scaffolding questions, which would ask them to complete 
each step required to solve a problem, and they must answer all scaffolding questions 
correctly to proceed. While in the “hints on demand” (referred to as hint condition) these 
students only received a message indicating their answer was wrong, and the hint 
messages, which would tell them the same information without expecting an answer to 
each step, would only appear when they press the Hint button on the screen. The third 
condition was a delayed feedback condition (referred to as delayed condition) where 
students got no immediate feedback from the tutor (even if they answered the question 
wrong) until they have finished all of the problems in the experiment, whereupon they 
received worked out solutions to all of the problems.  

In this experiment students were presented an assignment with two pretest problems 
organized in one pretest section, four experiment problems in one experiment section, 
and four post-test problems in the posttest section that addressed the topic of interpreting 
linear equations, an 8th-grade (approximately 13-year old) math skill. Two of the pretest 
problems were repeated in the post-test. Problems in the same section were shown in 
random order. Students were randomly assigned to the three conditions with equal 
probability. There were 366 eighth grade students from the Worcester Public Schools in 
Worcester, Massachusetts who participated in the experiment: 131 students were in 
honors level classes and 235 were in regular math classes. For the analysis in this paper, 
we exclude students who got both pretest problems correct (assuming they have mastered 
the skill), and those who did not finish all problems in the experiment. This leaves 300 



students in our data set, with 101 in the delayed condition, 106 in the hint condition and 
93 in the scaffold condition. We check to make sure students in all three conditions do 
not differ on their incoming knowledge. The mean and 95% confidence interval of 
average pretest and posttest scores for the three groups are listed in Table 1, and Table 2. 

Table 1. Statistics of students’ performance on pretest  
Condition Mean Std. Err 95% confidence interval 
Delayed 0.342 0.023 [0.297, 0.387] 
Hint 0.354 0.022 [0.311, 0.397] 
Scaffold 0.323 0.025 [0.274, 0.372] 

Table 2. Statistics of students’ performance on posttest  
Condition Mean Std. Err 95% confidence interval 
Delayed 0.381 0.025 [0.332, 0.430] 
Hint 0.368 0.024 [0.321, 0.415] 
Scaffold 0.341 0.025 [0.292, 0.390] 

2.2 Approach 

2.2.1 Introducing learning decomposition 

Beck [2] introduced the idea of learning decomposition that extends the classic 
exponential learning curve by taking into account the heterogeneity of different learning 
opportunities for a single skill. The standard form of exponential learning curve can be 
seen in Equation 1. In this model, parameter A represents students’ performance on the 
first trial; e is the numerical constant (2.718); parameter b represents the learning rate of a 
skill, and t is the number of practice opportunities the learner has at the skill.  

b tperformance A e− ∗= ∗  
Equation 1. Standard exponential learning curve model 
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Equation 2. Learning decomposition model 

The model as shown in Equation 1 does not differentiate different types of practice, but 
just counts up the total number of previous opportunities. In order to investigate the 
difference two types of practice (I and II), the learning opportunities are “decomposed” 
into two parts in the model in Equation 2 in which two new variables t1 and t2 are 
introduced in replace of t, and t = t1 + t2

1. t1 represents the number of previous practice 
opportunities at one type I; and t2 represents the number of previous opportunities of type 
II. The new parameter B characterizes the relative impact of type I trials compared to type 
II trials.  The estimated value of B indicates how many trials that one practice of type I is 
worth relative to that of type II. For example, a B value of 2 would mean that practice of 
type I is twice as valuable as one practice of type II, while a B value of .5 indicates a  
practice of type I is half as effective as a practice of type II. The basic idea of learning 
decomposition is to find an estimate of weight B that renders the best fitting learning 
curve. Equation 2 factors the learning opportunities into two types, but the decomposition 
                                                 
1 Interestingly, t1 + t2 does not have to equal t, as shown in [16] and as we will show in this paper.  



technique can generalize to n types of trials by replacing t with B1*t1 + B2*t2 + … + tn.  
Thus, parameter Bi represents the impact of a type i trial relative to the “baseline” type n.  

2.2.2 Decomposing learning opportunities  

Now that we have described the model of learning decomposition, we want to 
“decompose” students’ learning opportunities in our data set in order to fit such a model. 
Various metrics can be used as an outcome measurement of student performance. For 
instance, Beck [4] chose to model student’s reading time since it is a continuous variable. 
Although one may argue for other indicators, e.g. students’ help requests and response 
times, we simply choose to use the correctness of student’s first attempt to a problem as 
an outcome measure of their performance. A “1” in the data indicates the student got a 
problem correctly on the first attempt, and thus proceeded to the next problem without 
getting any instructional assistance, while a “0” means he failed on the first try and 
received certain type of tutoring from the system, depending on which condition the 
student has been assigned into.  

When it comes to a nominal variable, in our case, dichotomous (0/1) response data, a 
logistic model should be used. Now learned performance, (i.e. performance in Equation 
2), is reflected by odds ratio of success to failure. Equation 3 represents a logistic 
regression model for learning decomposition.  
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Equation 3. Logistic models for learning decomposition 

Equation 3 can be transformed to an equivalent form as below: 
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Where α, γ are the new representation of students’ initial knowledge and their learning 
rates of a skill on the logistic scale. Now that we have determined our outcome variable 
and functional form of the model, all that remains is to decompose learning opportunities 
into components. We split student trials into four groups largely on the basis of 
experimental condition as below. Therefore, the number n is equal to 4 in this analysis.   

• hint_wrong_trial (th) indicates the number of prior wrong trials that a student in 
the hint condition had encountered 

• scaffold_wrong_trial (ts) counts the number of prior wrong trials that a student in 
the scaffold condition had made before.  

• delayed_wrong_trial (td) is similar to the other two variables but for students in 
the delayed condition. However, it is specially calculated such that the prior 
encounters will not increase until the student was presented the explanations for 
all the problems in order to address the fact that the learning actually happened at 
the moment when the explanations were shown. Note that by doing so we assume 
that simple exposure to the content does not cause learning. It is also worth 
pointing out that although the approach of learning decomposition itself does not 
require the administration of pretests and posttests, in this particular analysis, we 
do need the results of posttest to be able to detect the impact of explanations (in 
the delayed feedback condition) on student learning. 



• Others (to). Because what we really care about is the relative effectiveness of the 
different tutoring interventions during the experiment, we did not differentiate 
students’ practice trials on pretest, posttest and trials where they gave a correct 
answer to the experiment problem. Instead, all these trials are combined together 
into the group others. Actually, since the number trials on pretest and posttest are 
the same for all students, it is the correct trial on experiment problems that matter 
in this group.  

For those readers who are familiar with ASSISTments vocabulary, it is also worth 
pointing out that although in the experiment there are three versions of the experiment 
problems with different associated interventions, one for each condition, we created one 
unified problem ID for all the three versions, since the main questions are the same. 

Table 3. Decomposed response data of student A 
Decomposed previous trials 

Student 
ID Section Problem 

ID Correct? 

Previous 
trials (t) Hint_ 

wrong_
trial 
(th) 

Scaffold_
wrong_ 
trial (ts) 

Delayed_ 
wrong_ 
trial (td) 

Others 
(to) 

A Pretest Pre-1 1 0 0 0 0 0 
A Pretest Pre-2 0 1 0 0 0 1 
A Exp Exp2 0 2 0 0 0 2 
A Exp Exp4 1 3 0 1 0 2 
A Exp Exp1 0 4 0 1 0 3 
A Exp Exp3 1 5 0 2 0 3 
A Posttest Pre-1 1 6 0 2 0 4 
A Posttest Post-2 0 7 0 2 0 5 
A Posttest Pre-2 1 8 0 2 0 6 
A Posttest Post-1 1 9 0 2 0 7 

 

Table 3 shows a sequence of time-ordered trials of a student who was assigned in the 
scaffolding condition. The student finishes all three sections, fails on one of the pretest 
problems, but learns to solve the problem during the experiment as suggested by a correct 
answer to the same problem in the posttest. The right part of Table 3 shows the 
corresponding data after the trials are decomposed into component parts. Since the 
student is in the scaffolding condition, all values in the hint_wrong_trial and 
delayed_wrong_trial are zero. He solves the first encountered experiment problem wrong 
(row 3), which cause an increase on the value of scaffold_wrong_trial from zero to 1 ( 
row 4). Again, he gets the third experiment problem wrong (row 5), and then the value of 
scaffold_wrong_trial increases from 1 to 2 in row 6. The value of trial for others just 
increases by one whenever a pretest problem, a posttest problem or a correct trial was 
encountered. For instance, the student answers the second encountered experiment 
problem correct (row 4), and thus the value of others increased by 1 (row 5). Limited by 
space, we only demonstrate the decomposition process for a student in the scaffold 
condition; the process for the hint condition would be identical.  For the delayed feedback 
condition, since the student would not see the feedback until after all of the experimental 
trials, it is necessary to model that differently. In the delayed condition, the number of 



delayed-wrong trials would stay as zero until it jumps to be 2 in row 7, since the student 
would have seen the two explanations after finishing the experimental questions. This 
problem requires a rather novel use of learning decomposition, and some care in 
accounting for when the learning opportunities actually occur.   

2.3 Results 

We fit the model shown in Equation 3 to the decomposed data in the statistics software 
package R (see www.r-project.org). To account for variance among students and items, 
student IDs and unified problem IDs are also introduced as factors. By taking this step we 
account the fact that student responses are not independent of each other, and properly 
compute statistical reliability and standard errors. Also, by fitting our model in this 
manner we do not suffer the scaling problems mentioned by [10] since all three 
conditions have the same intercept (i.e. A parameter).  After the model is fitted, it outputs 
estimated coefficients for every condition, as shown in Table 4. The result suggests that 
the delayed feedback, estimated coefficient being 0.720, is more effective at helping 
student learn the skill than the other two conditions, esp. the scaffolding condition for 
which the coefficient estimate is 0.633. In prior work with this experiment [14], the 
authors reported that they did not find any main effect. It is possible to use the estimated 
coefficients (B) and standard errors in Table 4 to perform a statistical z-test, as we did in 
[7]. However, there is a bit of serendipity: the first author was conducting some 
exploratory analyses using resampling to see how stable the parameter estimates really 
were. It appeared that there was little overlap between the estimates for the scaffold and 
delayed conditions. Therefore, we decide to test this approach formally using 
bootstrapping [5] and randomization tests [6].  

Table 4. Coefficients of logistic learning decomposition model 

Coefficients Estimate 
(B) 

Std. 
Error z value Pr(>|z|) 

Others -0.235 0.034 -6.816 9.33e-12 *** 

Hint_wrong_trial 0.706 0.091 7.760 8.52e-15 *** 
Scaffold_wrong_trial 0.633 0.103 6.175 6.62e-10 *** 
Delayed_wrong_trial 0.720 0.054 13.224 < 2e-16 *** 

Bootstrapping is a modern, computer-intensive, general purpose approach to statistical 
inference, falling within a broader class of resampling methods [5]. It involves the 
construction of a number of resamples of the observed dataset by random sampling with 
replacement from the original data set; and each resample is independent (conditioned on 
the original sample) and identically distributed. Although bootstrapping was developed as 
techniques for parameter estimation, it can be used for hypothesis testing as well. In 
general, first we make a null hypothesis. Then we draw repeated samples from the 
original data set under the condition that the null hypothesis is true, and then we reject the 
null hypothesis if the statistic computed from the observed dataset is unlikely under the 
null hypothesis, or otherwise retain the null. In this particular analysis, the hypothesis we 
would like to test is “The delayed feedback strategy promotes learning more or less 
effectively than the scaffold (or hint) strategy.” Correspondingly, the null hypothesis 



would be “There is no difference on learning promotion between the delayed and 
scaffolding strategies.”  

Specifically, we follow the following steps to test our hypothesis.  

Step 1: Decide on a metric to measure the relative effectiveness between delayed 
feedback and scaffolding strategies. For this example, we choose the difference between 
the estimated coefficients of Delayed_wrong_trial and Scaffold_wrong_trial.  

Step 2: Calculate the metric on the original data. The results in Table 3 provides 
B(Delayed_wrong_trial) – B(Scaffold_wrong_trial), equal to .087.  

Step 3:  Bootstrap the original data with randomization to construct samples where the 
null hypothesis is true 

Repeat N times { 

Repeat M times (M =  the number of students in our original data set) { 

Sample data of one student (with replacement) from the original data; 

Randomly allocate the student into one of the three conditions: delayed, 
scaffold, or hint by changing the “Condition” label of each data point 

Re-compute the number of prior trials for the student according to the 
newly assigned condition; 

} 

Train logistic learning decomposition model on the re-sampled data, and record 
B(Delayed_wrong_trial) – B(Scaffold_wrong_trial) ; 

} 

In our case, we pick the repeated times N to be 500, and M is 300 as there are 300 
students in our data set.  

Step 4: Check how likely our original result is under the null hypothesis, and reject or 
retain the null hypothesis. After the bootstrapping process, we obtain a list of difference 
between Delayed_wrong_trial and Scaffold_wrong_trial, totally 501 cases including our 
original result. Then we rank the list descending, and found that the original result was at 
the 95 percentile, the 25th in the ranking order, which suggests that the probability of the 
original result has a probability of less than 5%.  Although it is tempting to think we have 
p < 0.05, this methodology is actually conducting a one-tailed test.  Thus, the two-tailed 
value is p = 0.1.  Therefore, we have a marginally reliable result that delayed feedback is 
better than scaffold + hint, and giving students delayed feedback seems causing more 
learning than requesting them to finish a series of scaffolding questions.  

To complete the story, we repeat the same process compare the other two pairs: delayed 
vs. hint conditions, and scaffold vs. hint conditions, but find that they are comparable to 
each other at helping students learning the math skill in ASSISTments.   



3 Conclusion 

This paper explored the research question of measuring the instructional effectiveness of 
different tutoring interventions, using the learning decomposition technique. We found 
that presenting students with delayed feedback works better than breaking problems into 
scaffolding questions. We also used bootstrapping with randomization to test the 
statistical reliability of the finding.  

Typically, there are two reasons for the usage of learning decomposition (or any 
educational data mining technique).  The first is repurposing a previous experiment’s data 
to answer a new question.  The second is using EDM techniques to “zoom in” and 
detecting subtle effects that previous approaches failed to report. Previous works on 
learning decomposition [3, 4, 16] have been focusing on the first reason, while in this 
paper we focus on the second reason through an item level analysis and bootstrapping.   

One open question is why bootstrapping plus randomization gives different results than 
the parametric method of using estimated coefficients and standard errors to derive an 
analytic p-value. We did a z-test using estimated coefficients and standard errors given in 
Table 4 and obtained p = .4. Typically computationally intensive techniques are less 
powerful than parametric ones, unless one or more of the parametric tests’ assumptions 
have been violated. We are not sure where the problem lies, but suggest caution in 
interpreting standard error terms from logistic regression models using learning 
decomposition.   

The contribution of the paper lies in three aspects. First, we found that there is a main 
effect in a randomized controlled study that delayed feedback tutoring strategy is more 
effective than giving students scaffolding questions in ASSISTments. While previous 
analysis using ANOVA failed to detect such an effect, we were able to do so by 
conducting an item level analysis using EDM techniques. Second, we showed how 
learning decomposition can be applied in the domain of mathematics to use observational 
data to estimate the effectiveness of different tutoring strategies. It provides evidence that 
the learning decomposition is not domain specific. This simple, low cost approach is 
generally applicable to a variety of ITS that focus on different domains for identifying 
variances in educational effectiveness of interventions. Also, our use of learning 
decomposition is novel in that we are careful to consider when various aspects of an 
intervention occur, and do not give credit for a learning opportunity that has not yet 
happened (the delayed-wrong condition). Third, the process described in this paper serves 
as a demonstration of how bootstrapping approach and randomization tests can be 
employed in the educational data mining field.  
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