

Detecting the Learning Value of Items In a

Randomized Problem Set

Zachary A. Pardos1, Neil T. Heffernan

Worcester Polytechnic Institute

{zpardos@wpi.edu, nth@wpi.edu}

Abstract. Researchers that make tutoring systems would like to know which

pieces of educational content are most effective at promoting learning among their

students. Randomized controlled experiments are often used to determine which

content produces more learning in an ITS. While these experiments are powerful

they are often very costly to setup and run. The majority of data collected in many

ITS systems consist of answers to a finite set of questions of a given skill often

presented in a random sequence. We propose a Bayesian method to detect which

questions produce the most learning in this random sequence of data. We confine

our analysis to random sequences with four questions. A student simulation study

was run to investigate the validity of the method and boundaries on what learning

probability differences could be reliably detected with various numbers of users.

Finally, real tutor data from random sequence problem sets was analyzed. Results

of the simulation data analysis showed that the method reported high reliability in

its choice of the best learning question in 89 of the 160 simulation experiments

with seven experiments where an incorrect conclusion was reported as reliable (p

< 0.05). In the analysis of real student data, the method returned statistically

reliable choices of best question in four out of seven problem sets.

Keywords. Bayesian networks randomized controlled experiments, learning gain,

data mining, machine learning, expectation maximization.

Introduction

Researchers that make tutoring systems would like to know which bits of educational

content are most effective at promoting learning by students, however a standard

method of figuring that out does not exist in ITS, other than by running costly

randomized controlled experiments. We present a method that can determine which bits

of content are most effective. We believe this method could help other researchers with

a variety of different datasets particularly systems that present items in a randomized

order. Cognitive Tutor [6], ANDES [5], IMMEX [9], Mastering Physics [5] and SQL-

Tutor [7] are examples of systems that sometime give students a sequence of items in a

randomized order and also have vast amounts of data.

In addition to systems typically presented to the AIED audience, traditional

Computer Aided Instruction (CAI) systems often have this property of sometimes

giving students items of a given skill in a randomized order. For instance, a modern

web-based CAI system called studyIsland.com has data of this type from over 1,000

1
 Corresponding Author.

participating schools. The research questions is, can we come up with a method that

would allow us to analyze these existing datasets to realize which questions, plus

tutorial help in some cases, are most effective at promoting learning.

The intuition for the method exhibited in this paper is based on the idea that if you

consistently see correct answers come after a certain question more than other

questions, you may be observing a high learning gain question. While questions of the

same skill may differ slightly in difficulty, questions with high difficulty deviation

from the mean are likely tapping a different, harder skill as shown in learning factors

analysis [3]. We propose to use static Bayesian networks and Expectation

Maximization to learn which items cause the most learning. Guess and slip rates will

account for question difficulty variation. We will accommodate for all permutations of

orderings of the items by building networks for each ordering but will allow the

conditional probability tables of each question to be shared across the networks.

1. Simulation

In order to determine the validity of this method we chose to run a simulation

study exploring the boundaries of the method’s accuracy and reliability. The goal of the

simulation was to generate student responses under various conditions that may be seen

in the real world but with the benefit of knowing the underlying best learning question.

1.1. Model design

The model used to generate student responses is an eight node static Bayesian network

depicted in Figure 1. The top four nodes represent a single skill and the value of the

node represents the probability the student knows the skill at each opportunity. The

bottom four nodes represent the four questions in the simulation. Student performance

on a question is a function of their skill value and the guess/slip of the question. Guess

is the probability of answering correctly if the skill is not known. Slip is the probability

of answering incorrectly if the skill is known. Learning rates are the probability that a

skill will go from “unknown” to “known” after encountering the question. The

probability of the skill going from “known” to “unknown, aka forgetting, is fixed at

zero. The design of this model is similar to a dynamic Bayesian network or Hidden

Markov Model with the important distinction that the probability of learning is able to

differ between opportunities. This ability allows us to model different learning rates per

question and is key to both the generation of student data in the simulation and analysis

using the purposed method.

Figure 1. Simulation network model for a given student with a prior of 0.27 and question sequence [2 4 3 1]

S S S S

2 4 3 1

0 0 1 0

Question sequence:

Generated responses:

0.08 0.17 0.06

Skill node with a

prior of 0.27:

Skill learning rates:

 While the probability of knowing the skill will monotonically increase after

each opportunity, the generated responses will not necessarily do the same since those

values are generated probabilistically based on skill knowledge and guess and slip.

1.2. Student parameters

Only two parameters were used to define a simulated student; a prior and question

sequence. The prior represents the probability the student knew the skill relating to the

questions before encountering the questions. The prior for a given student was

randomly generated from a beta distribution that was fit to a previous year’s

ASSISTment data. The mean prior for that year across all skills was 0.31 and the

standard deviation was 0.20. The beta distribution fit an α of 1.05 and β of 2.43. The

question sequence for a given student was generated from a uniform distribution of

sequence permutations.

1.3. Tutor Parameters

The 12 parameters of the tutor simulation network consist of four learning rate

parameters, four guess parameters and four slip parameters. The number of users

simulated was: 100, 200, 500, 1000, 2000, 4000, 10000, and 20000. The simulation

was run 20 times for each of the 8 simulated user sizes totaling 160 generated data sets,

referred to later as experiments. In order to faithfully simulate the conditions of a real

tutor, values for the 12 parameters were randomly generated using the means and

standard deviations across 106 skills from a previous analysis [8] of ASSISTment data.

In order to produce probabilistic parameter values that fit within 0 and 1, equivalent

beta distributions were used. Table 1 shows the distributions that the parameter values

were randomly drawn from and assigned to questions at the start of each run.

Table 1. The distributions used to generate parameter values in the simulation

Parameter type Mean Std Beta dist α Beta dist β

Learning rate 0.086 0.063 0.0652 0.6738

Guess 0.144 0.383 0.0170 0.5909

Slip 0.090 0.031 0.0170 0.6499

Running the simulation and generating new parameter values 20 times gives

us a good sampling of the underlying distribution for each of the 8 user sizes. This

method of generating parameters will end up accounting for more variance then the real

world since guess and slip have a correlation in the real world but will be allowed to

independently vary in the simulation which means sometimes getting a high slip but

low guess, which is rarely observed in actual ASSISTment data.

1.4. Methodology

The simulation consisted of three steps: instantiation of the Bayesian network, setting

CPTs to values of the simulation parameters and student parameters and finally

sampling of the Bayesian network to generate the students’ responses.

To generate student responses the 8 node network was first instantiated in

MATLAB using routines from the Bays Net Toolbox2 package. Student priors and

question sequences were randomly generated for each simulation run and the 12

parameters described in section 1.3 were assigned to the four questions. The placement

of the question CPTs were placed with regard to the student’s particular question

sequence. The Bayesian network was then sampled a single time to generate the

student’s responses to each of the four questions; a zero indicating an incorrect answer

and a one indicating a correct answer. These four responses in addition to the student’s

question sequence were written to a file. A total of 140 data files were created at the

conclusion of the simulation run. Each of these data files were analyzed by the learning

detection method and the accuracy and reliability results for the experiments are

summarized in section 3.

2. Analysis

The purpose of the learning detection method is to calculate the learning rates of

questions which are presented in a random sequence and determine which question has

the highest learning rate and with what reliability. The simulation study gives us the

benefit of knowing what the ground truth highest learning rate question is so we may

test the validity of the method’s results.

2.1. Model design

The analysis model was based on the same structure as the simulation model, however,

the eight node simulation model only needed to represent a single question sequence at

a time. The challenge of the analysis model was to accommodate all question

sequences in order to learn the parameters of the model over all of the students’ data. In

order to accomplish this, 24 eight node networks were created representing all

permutations of four question sequences. While the 24 networks were not connected in

the Bayesian network’s directed acyclic graph, they are still a part of one big Bayesian

network whose parameters are tied together with equivalence classes, discussed in the

next sub section.

2.2. Equivalence classes

Equivalence classes allow the 120 CPTs of the 24 networks to be reduced to eight

shared CPTs and a single prior. Even though there are 96 (24*4) question nodes in the

full network, they still only represent 4 unique questions and therefore there are still

only four learning rates to be determined. Equivalence classes tie all of the learning rate

CPTs for a given question into a single CPT. They also tie the 96 question guess and

slip CPTs in to four CPTs, one per question. In the Bayesian network, the learning rate

CPTs for a question is represented in the CPT of the skill node following question.

Therefore the learning rate equivalence class for question 2, for instance, is always set

in the CPT of the skill node that comes after the skill node for question 2. Question 2’s

equivalence class would appear 18 times out of the 24 networks since 6 of those times

2
 Kevin Murphy’s Bayes Net Toolbox is available at: http://bnt.sourceforge.net/

question 2 is the last question in a sequence. The first skill node in a sequence always

represents the prior.

2.3. Methodology

The analysis method consisted of three steps: splitting the data file into 20 equal parts,

loading the data in to the appropriate evidence array location based on sequence ID and

then running Expectation Maximization to fit the parameters of the network for each of

the 20 parts individually.

The motivation behind splitting the data up was to get a p value for the results. By

counting the number of times the most frequent high learning rate question appears we

can compare that to the null hypothesis that each of the four questions is equally likely

to have the highest learning rate. We understand that this approach is highly

conservative and likely reduces the power of the method. We encourage the use of

alternative, more powerful means for generating a p value.

Since the 192 (24*8) node analysis network represented every permutation of

question sequences, care had to be taken in presenting the student response evidence to

the network. We used the sequence ID from each line of the data file to place the four

responses of each student in the appropriate position of the evidence array. Expectation

Maximization was then run on the evidence array in order to learn the equivalence class

CPTs of the network. Starting points for the EM parameter estimation were set to mean

values from previous research [8] (learning rates: 0.08, guess: 0.14, slip: 0.06) with the

exception of the prior which was initialized at 0.50.

One of the limitations of our method is that it does not scale gracefully; the number

of network nodes that need to be constructed is exponential in the number of items.

This is one reason why we did not consider problem sets greater than four. We

encourage researchers to investigate ways of scaling this method to large problem sets.

3. Results

The purpose of the simulation was to provide a means for verifying the validity of the

Bayesian learning detection method. While real data was the ultimate goal, the

simulation study was necessary to seed ground truth in question learning rates and

verify that the method could detect the correct highest learning rate question and that

the p value was a good indicator of the believability of the result.

We found that the method reported a reliable (p < 0.05) highest learning rate

question in 89 out of the 160 experiments and in 82 of those 89 the reported highest

learning rate question was the correct one as set by the simulation (7.8% error). In

order to analyze what size learning rate differences the method could detect, the

learning rate difference of the simulation’s set highest and second highest learning rates

were calculated for each experiment. The minimum learning difference was 0.001 and

the max was 0.234. This list of differences was then discretized into four bins

corresponding to a learning difference range. The learning ranges were set to achieve

equal frequency such that each bin contained 40 experiment results. Bins corresponded

to the following learning difference rages: (0.001-0.0165], (0.0165-0.038], (0.038-

0.0715] and (0.0715-0.234). For each range, the percentage of results, with p < 0.05

and a correct question choice, was calculated for each number of simulated users and

plotted. The results are exhibited in this plot shown bellow in Figure 2.

Figure 2. Plot of the frequency of detecting a correct and reliable learning difference of various size ranges

The above plot shows a general increase in the likelihood of a reliable result as the

number of users increase. The purple line shows it is harder to detect smaller learning

rate differences with less users than it is to detect large learning rate differences.

Of the seven instances when a false conclusion was made, only twice was the

question that was incorrectly chosen as best also the question with the highest guess

and slip value. This indicates that the method does not have a bias towards selecting the

most difficult or highest guess/slip value question as the highest learning rate question.

To test how well the method could identify no difference in learning we ran 14

experiments where the learning rates of all questions were set to zero and 14

experiments where the learning rates of all questions were set to 0.08. In these cases

where the learning rates were all the same, the method correctly concluded that there

was no reliable best question in 26 of the 28 experiments (7% error).

The reliability p value was calculated with a two-tailed binomial probability for

hypothesis testing. The binomial is of the “k out of N” type. It is important to note that

k is the number of times the most frequent high learning rate question occurred (the

mode) and not the number of times the correct high learning rate question occurred. N

is the number of samples (20) and p is the probability that the outcome could occur by

chance. Since the outcome is a selection of one out of four questions, the p value here

is 0.25. This binomial calculation tells us the probability that the outcome came from

the null hypothesis that all questions have an equal chance of being chosen as best.

4. Analysis of real tutor data

We applied this technique on real student data from our math tutoring system called

ASSISTment. High school students ages 16-17 answered problem sets of four math

questions at their school’s computer lab two to three times per month. Each problem set

was completed in a single day and the sequence of the problems were randomized for

each student. Each problem contained hints and scaffolds that students would

encounter if they answered the problem incorrectly. The method does not distinguish

between the learning value of the scaffold content and the learning value of working

through the main problem itself.

4.1. Dataset

Student responses from seven problem sets of four questions each were analyzed.

While there are problem sets of different sizes on the system, four is the average size of

these problem sets. The problems in a given problem set were chosen by a subject

matter expert to correspond to a similar skill. The data was collected during the 2006-

2007 school year and the number of users per problem set ranged from 160 to 800. This

data from the tutor log file was organized in to the same format as the simulation study

data files. A sequence ID was also given to each student’s response data indicating

what order they saw the questions in.

4.2. Results

The analysis calculated a separate learning rate and guess and slip parameter for each

of the four questions in the seven problem sets. The mean of the learning rates was

0.081 (similar to the mean used in the simulation) with a standard deviation of 0.035.

The mean guess value was 0.18 which was within 1 std of the simulation guess mean,

however the mean slip value was unusually high at 0.40. The average number of EM

iterations was 95 with many of the runs stopping at the pre-set 100 iteration max.

Table 1. Learning rate results from analysis of student response from problem sets in the ASSISTment tutor

Problem set Number of users Best question p value prior q1 rate q2 rate q3 rate q4 rate

16 800 2 0.0652 0.6738 0.1100 0.1115 0.1017 0.1011

11 560 4 0.0170 0.5909 0.0958 0.0916 0.0930 0.1039

14 480 3 0.0170 0.6499 0.1365 0.0977 0.1169 0.1063

25 440 1 0.0652 0.7821 0.1392 0.0848 0.1157 0.1242

282 220 1 0.0039 0.7365 0.1574 0.0999 0.0991 0.1004

33 200 4 0.4394 0.7205 0.1124 0.1028 0.1237 0.1225

39 160 3 0.0652 0.6180 0.0853 0.1192 0.1015 0.0819

Statistically reliable results were reported in four of the seven problem sets as shown

above in Table 1. The numbers in the best question column and question learn rate

column headers correspond to the IDs that were arbitrarily assigned to the questions.

Contribution

We have a presented a method that has been validated with a simulation study and

shown to provide believable conclusions. While the power of the method could be

improved with a different significance test procedure, the algorithm in its current form

reports false conclusions less than 8% of the time, roughly in line with a 0.05 p value

threshold. This method has broad applicability and can be used by many scientists who

have collected responses in a randomized order. We believe researchers could easily

adapt this method to identify poor learning content as well as identifying the learning

of items that give no tutoring or feedback.

We know of no prior work that has shown how to learn about the effectiveness of a

question, other than the typical method of conducting costly randomized controlled

experiments. In some aspects, this method seems similar to treating a randomized

sequence of items as a set of randomized controlled experiments and could possibly be

modified as an approach to a more general problem.

We claim this method could be important, for if we can learn what content is

effective at promoting learning, we are one step closer to the elusive dream of building

self-improving intelligent tutoring systems that can figure out the most effective

material to present to students.

Future Work

A comparison between this Bayesian method of question analysis and an application of

learning decomposition [2] should be made. Our colleague [4] is pursuing the same

research questions as we are, using the learning decomposition method and the same

dataset. Beck, Change, Mostow & Corbett found evidence to suggest that a Bayesian

method may be the most powerful however we would like to confirm this by applying

both methods to the same simulated datasets.

Acknowledgements

We would like to thank the Worcester Public Schools and the people associated with

creating ASSISTment listed at www.ASSISTment.org including investigators Kenneth

Koedinger and Brian Junker at Carnegie Mellon. We would also like to acknowledge

funding from the U.S. Department of Education’s GAANN and IES grants, the Office

of Naval Research, the Spencer Foundation and the National Science Foundation. The

first author is a NSF GK12 fellow.

References

[1] Beck, J. E., Chang, K., Mostow, J., & Corbett, A. T. (2008) Does Help Help? Introducing the Bayesian

Evaluation and Assessment Methodology. Intelligent Tutoring Systems 2008: 383-394.

[2] Beck, J. E., & Mostow, J. (2008) How Who Should Practice: Using Learning Decomposition to Evaluate

the Efficacy of Different Types of Practice for Different Types of Students. Intelligent Tutoring

Systems 2008: 353-362

[3] Cen, H., Koedinger, K., Junker, B. (2006) Learning Factors Analysis - A General Method for Cognitive

Model Evaluation and Improvement. In: 8th International Conference on Intelligent Tutoring Systems

[4] Feng, M., Heffernan, N.,Beck, M. (in submission) Using learning decomposition to analyze instructional

effectiveness in the ASSISTment system. AIED 2009.

[5] Gertner, A. G., & VanLehn, K. (2000) Andes: A Coached Problem Solving Environment for Physics.

Intelligent Tutoring Systems 2000: 133-142

[6] Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. (1997). Intelligent tutoring goes to school

in the big city. International Journal of Artificial Intelligence in Education, 8, 30-43.

[7] Mitrovic, A. (2003) An Intelligent SQL Tutor on the Web. International Journal of Artificial Intelligence

in Education 13 (2003) 171-195

[8] Pardos, Z. A., Heffernan, N. T., Ruiz, C. & Beck, J. In press (2008). Effective Skill Assessment Using

Expectation Maximization in a Multi Network Temporal Bayesian Network. The Young Researchers

Track at the 20th International Conference on Intelligent Tutoring Systems. Montreal, Canada.

[9] Stevens, R. H., & Thadani, V. (2006) A Bayesian Network Approach for Modeling the Influence of

Contextual Variables on Scientific Problem Solving. In M. Ikeda, K. Ashley, and T.-W. Chan (Eds.):

ITS 2006, LNCS 4053, Springer-Verlag. pp.71-84.

