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Abstract. Researchers that make tutoring systems would like to know which 

pieces of educational content are most effective at promoting learning among their 

students. Randomized controlled experiments are often used to determine which 

content produces more learning in an ITS. While these experiments are powerful 

they are often very costly to setup and run. The majority of data collected in many 

ITS systems consist of answers to a finite set of questions of a given skill often 

presented in a random sequence. We propose a Bayesian method to detect which 

questions produce the most learning in this random sequence of data. We confine 

our analysis to random sequences with four questions. A student simulation study 

was run to investigate the validity of the method and boundaries on what learning 

probability differences could be reliably detected with various numbers of users. 

Finally, real tutor data from random sequence problem sets was analyzed. Results 

of the simulation data analysis showed that the method reported high reliability in 

its choice of the best learning question in 89 of the 160 simulation experiments 

with seven experiments where an incorrect conclusion was reported as reliable (p 

< 0.05). In the analysis of real student data, the method returned statistically 

reliable choices of best question in four out of seven problem sets. 

Keywords. Bayesian networks randomized controlled experiments, learning gain, 

data mining, machine learning, expectation maximization. 

Introduction 

Researchers that make tutoring systems would like to know which bits of educational 

content are most effective at promoting learning by students, however a standard 

method of figuring that out does not exist in ITS, other than by running costly 

randomized controlled experiments. We present a method that can determine which bits 

of content are most effective. We believe this method could help other researchers with 

a variety of different datasets particularly systems that present items in a randomized 

order. Cognitive Tutor [6], ANDES [5], IMMEX [9], Mastering Physics [5] and SQL-

Tutor [7] are examples of systems that sometime give students a sequence of items in a 

randomized order and also have vast amounts of data.  

In addition to systems typically presented to the AIED audience, traditional 

Computer Aided Instruction (CAI) systems often have this property of sometimes 

giving students items of a given skill in a randomized order.  For instance, a modern 

web-based CAI system called studyIsland.com has data of this type from over 1,000 
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participating schools. The research questions is, can we come up with a method that 

would allow us to analyze these existing datasets to realize which questions, plus 

tutorial help in some cases, are most effective at promoting learning.  

The intuition for the method exhibited in this paper is based on the idea that if you 

consistently see correct answers come after a certain question more than other 

questions, you may be observing a high learning gain question. While questions of the 

same skill may differ slightly in difficulty, questions with high difficulty deviation 

from the mean are likely tapping a different, harder skill as shown in learning factors 

analysis [3]. We propose to use static Bayesian networks and Expectation 

Maximization to learn which items cause the most learning. Guess and slip rates will 

account for question difficulty variation. We will accommodate for all permutations of 

orderings of the items by building networks for each ordering but will allow the 

conditional probability tables of each question to be shared across the networks.     

1. Simulation 

In order to determine the validity of this method we chose to run a simulation 

study exploring the boundaries of the method’s accuracy and reliability. The goal of the 

simulation was to generate student responses under various conditions that may be seen 

in the real world but with the benefit of knowing the underlying best learning question.  

1.1. Model design 

The model used to generate student responses is an eight node static Bayesian network 

depicted in Figure 1. The top four nodes represent a single skill and the value of the 

node represents the probability the student knows the skill at each opportunity. The 

bottom four nodes represent the four questions in the simulation. Student performance 

on a question is a function of their skill value and the guess/slip of the question. Guess 

is the probability of answering correctly if the skill is not known. Slip is the probability 

of answering incorrectly if the skill is known. Learning rates are the probability that a 

skill will go from “unknown” to “known” after encountering the question. The 

probability of the skill going from “known” to “unknown, aka forgetting, is fixed at 

zero. The design of this model is similar to a dynamic Bayesian network or Hidden 

Markov Model with the important distinction that the probability of learning is able to 

differ between opportunities. This ability allows us to model different learning rates per 

question and is key to both the generation of student data in the simulation and analysis 

using the purposed method.  

 

 

 

 

 

 

 

 

 

Figure 1. Simulation network model for a given student with a prior of 0.27 and question sequence [2 4 3 1] 
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 While the probability of knowing the skill will monotonically increase after 

each opportunity, the generated responses will not necessarily do the same since those 

values are generated probabilistically based on skill knowledge and guess and slip. 

1.2. Student parameters 

Only two parameters were used to define a simulated student; a prior and question 

sequence. The prior represents the probability the student knew the skill relating to the 

questions before encountering the questions. The prior for a given student was 

randomly generated from a beta distribution that was fit to a previous year’s 

ASSISTment data. The mean prior for that year across all skills was 0.31 and the 

standard deviation was 0.20. The beta distribution fit an α of 1.05 and β of 2.43. The 

question sequence for a given student was generated from a uniform distribution of 

sequence permutations. 

1.3. Tutor Parameters 

The 12 parameters of the tutor simulation network consist of four learning rate 

parameters, four guess parameters and four slip parameters. The number of users 

simulated was: 100, 200, 500, 1000, 2000, 4000, 10000, and 20000. The simulation 

was run 20 times for each of the 8 simulated user sizes totaling 160 generated data sets, 

referred to later as experiments. In order to faithfully simulate the conditions of a real 

tutor, values for the 12 parameters were randomly generated using the means and 

standard deviations across 106 skills from a previous analysis [8] of ASSISTment data. 

In order to produce probabilistic parameter values that fit within 0 and 1, equivalent 

beta distributions were used. Table 1 shows the distributions that the parameter values 

were randomly drawn from and assigned to questions at the start of each run.  

Table 1. The distributions used to generate parameter values in the simulation 

Parameter type Mean Std Beta dist α Beta dist β 

Learning rate 0.086 0.063 0.0652 0.6738 

Guess 0.144 0.383 0.0170 0.5909 

Slip 0.090 0.031 0.0170 0.6499 

 

Running the simulation and generating new parameter values 20 times gives 

us a good sampling of the underlying distribution for each of the 8 user sizes. This 

method of generating parameters will end up accounting for more variance then the real 

world since guess and slip have a correlation in the real world but will be allowed to 

independently vary in the simulation which means sometimes getting a high slip but 

low guess, which is rarely observed in actual ASSISTment data.  

1.4. Methodology 

The simulation consisted of three steps: instantiation of the Bayesian network, setting 

CPTs to values of the simulation parameters and student parameters and finally 

sampling of the Bayesian network to generate the students’ responses.  



 

To generate student responses the 8 node network was first instantiated in 

MATLAB using routines from the Bays Net Toolbox2 package. Student priors and 

question sequences were randomly generated for each simulation run and the 12 

parameters described in section 1.3 were assigned to the four questions. The placement 

of the question CPTs were placed with regard to the student’s particular question 

sequence. The Bayesian network was then sampled a single time to generate the 

student’s responses to each of the four questions; a zero indicating an incorrect answer 

and a one indicating a correct answer. These four responses in addition to the student’s 

question sequence were written to a file. A total of 140 data files were created at the 

conclusion of the simulation run. Each of these data files were analyzed by the learning 

detection method and the accuracy and reliability results for the experiments are 

summarized in section 3. 

2. Analysis 

The purpose of the learning detection method is to calculate the learning rates of 

questions which are presented in a random sequence and determine which question has 

the highest learning rate and with what reliability. The simulation study gives us the 

benefit of knowing what the ground truth highest learning rate question is so we may 

test the validity of the method’s results. 

2.1. Model design 

The analysis model was based on the same structure as the simulation model, however, 

the eight node simulation model only needed to represent a single question sequence at 

a time. The challenge of the analysis model was to accommodate all question 

sequences in order to learn the parameters of the model over all of the students’ data. In 

order to accomplish this, 24 eight node networks were created representing all 

permutations of four question sequences. While the 24 networks were not connected in 

the Bayesian network’s directed acyclic graph, they are still a part of one big Bayesian 

network whose parameters are tied together with equivalence classes, discussed in the 

next sub section. 

2.2. Equivalence classes 

Equivalence classes allow the 120 CPTs of the 24 networks to be reduced to eight 

shared CPTs and a single prior. Even though there are 96 (24*4) question nodes in the 

full network, they still only represent 4 unique questions and therefore there are still 

only four learning rates to be determined. Equivalence classes tie all of the learning rate 

CPTs for a given question into a single CPT. They also tie the 96 question guess and 

slip CPTs in to four CPTs, one per question. In the Bayesian network, the learning rate 

CPTs for a question is represented in the CPT of the skill node following question. 

Therefore the learning rate equivalence class for question 2, for instance, is always set 

in the CPT of the skill node that comes after the skill node for question 2. Question 2’s 

equivalence class would appear 18 times out of the 24 networks since 6 of those times 
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question 2 is the last question in a sequence. The first skill node in a sequence always 

represents the prior. 

2.3. Methodology 

The analysis method consisted of three steps: splitting the data file into 20 equal parts, 

loading the data in to the appropriate evidence array location based on sequence ID and 

then running Expectation Maximization to fit the parameters of the network for each of 

the 20 parts individually. 

The motivation behind splitting the data up was to get a p value for the results. By 

counting the number of times the most frequent high learning rate question appears we 

can compare that to the null hypothesis that each of the four questions is equally likely 

to have the highest learning rate. We understand that this approach is highly 

conservative and likely reduces the power of the method. We encourage the use of 

alternative, more powerful means for generating a p value. 

Since the 192 (24*8) node analysis network represented every permutation of 

question sequences, care had to be taken in presenting the student response evidence to 

the network. We used the sequence ID from each line of the data file to place the four 

responses of each student in the appropriate position of the evidence array. Expectation 

Maximization was then run on the evidence array in order to learn the equivalence class 

CPTs of the network. Starting points for the EM parameter estimation were set to mean 

values from previous research [8] (learning rates: 0.08, guess: 0.14, slip: 0.06) with the 

exception of the prior which was initialized at 0.50. 

One of the limitations of our method is that it does not scale gracefully; the number 

of network nodes that need to be constructed is exponential in the number of items. 

This is one reason why we did not consider problem sets greater than four. We 

encourage researchers to investigate ways of scaling this method to large problem sets. 

3. Results 

The purpose of the simulation was to provide a means for verifying the validity of the 

Bayesian learning detection method. While real data was the ultimate goal, the 

simulation study was necessary to seed ground truth in question learning rates and 

verify that the method could detect the correct highest learning rate question and that 

the p value was a good indicator of the believability of the result.  

We found that the method reported a reliable (p < 0.05) highest learning rate 

question in 89 out of the 160 experiments and in 82 of those 89 the reported highest 

learning rate question was the correct one as set by the simulation (7.8% error). In 

order to analyze what size learning rate differences the method could detect, the 

learning rate difference of the simulation’s set highest and second highest learning rates 

were calculated for each experiment. The minimum learning difference was 0.001 and 

the max was 0.234. This list of differences was then discretized into four bins 

corresponding to a learning difference range. The learning ranges were set to achieve 

equal frequency such that each bin contained 40 experiment results. Bins corresponded 

to the following learning difference rages: (0.001-0.0165], (0.0165-0.038], (0.038-

0.0715] and (0.0715-0.234). For each range, the percentage of results, with p < 0.05 

and a correct question choice, was calculated for each number of simulated users and 

plotted. The results are exhibited in this plot shown bellow in Figure 2. 



 

 

Figure 2. Plot of the frequency of detecting a correct and reliable learning difference of various size ranges 

The above plot shows a general increase in the likelihood of a reliable result as the 

number of users increase. The purple line shows it is harder to detect smaller learning 

rate differences with less users than it is to detect large learning rate differences. 

Of the seven instances when a false conclusion was made, only twice was the 

question that was incorrectly chosen as best also the question with the highest guess 

and slip value. This indicates that the method does not have a bias towards selecting the 

most difficult or highest guess/slip value question as the highest learning rate question. 

To test how well the method could identify no difference in learning we ran 14 

experiments where the learning rates of all questions were set to zero and 14 

experiments where the learning rates of all questions were set to 0.08. In these cases 

where the learning rates were all the same, the method correctly concluded that there 

was no reliable best question in 26 of the 28 experiments (7% error). 

The reliability p value was calculated with a two-tailed binomial probability for 

hypothesis testing. The binomial is of the “k out of N” type. It is important to note that 

k is the number of times the most frequent high learning rate question occurred (the 

mode) and not the number of times the correct high learning rate question occurred. N 

is the number of samples (20) and p is the probability that the outcome could occur by 

chance. Since the outcome is a selection of one out of four questions, the p value here 

is 0.25. This binomial calculation tells us the probability that the outcome came from 

the null hypothesis that all questions have an equal chance of being chosen as best.  

4. Analysis of real tutor data 

We applied this technique on real student data from our math tutoring system called 

ASSISTment. High school students ages 16-17 answered problem sets of four math 

questions at their school’s computer lab two to three times per month. Each problem set 

was completed in a single day and the sequence of the problems were randomized for 

each student. Each problem contained hints and scaffolds that students would 

encounter if they answered the problem incorrectly. The method does not distinguish 

between the learning value of the scaffold content and the learning value of working 

through the main problem itself.  



 

4.1. Dataset 

Student responses from seven problem sets of four questions each were analyzed. 

While there are problem sets of different sizes on the system, four is the average size of 

these problem sets. The problems in a given problem set were chosen by a subject 

matter expert to correspond to a similar skill. The data was collected during the 2006-

2007 school year and the number of users per problem set ranged from 160 to 800. This 

data from the tutor log file was organized in to the same format as the simulation study 

data files. A sequence ID was also given to each student’s response data indicating 

what order they saw the questions in. 

4.2. Results 

The analysis calculated a separate learning rate and guess and slip parameter for each 

of the four questions in the seven problem sets. The mean of the learning rates was 

0.081 (similar to the mean used in the simulation) with a standard deviation of 0.035. 

The mean guess value was 0.18 which was within 1 std of the simulation guess mean, 

however the mean slip value was unusually high at 0.40. The average number of EM 

iterations was 95 with many of the runs stopping at the pre-set 100 iteration max.  

Table 1. Learning rate results from analysis of student response from problem sets in the ASSISTment tutor 

Problem set Number of users Best question p value prior q1 rate q2 rate q3 rate q4 rate 

16 800 2 0.0652 0.6738 0.1100 0.1115 0.1017 0.1011 

11 560 4 0.0170 0.5909 0.0958 0.0916 0.0930 0.1039 

14 480 3 0.0170 0.6499 0.1365 0.0977 0.1169 0.1063 

25 440 1 0.0652 0.7821 0.1392 0.0848 0.1157 0.1242 

282 220 1 0.0039 0.7365 0.1574 0.0999 0.0991 0.1004 

33 200 4 0.4394 0.7205 0.1124 0.1028 0.1237 0.1225 

39 160 3 0.0652 0.6180 0.0853 0.1192 0.1015 0.0819 

 

Statistically reliable results were reported in four of the seven problem sets as shown 

above in Table 1. The numbers in the best question column and question learn rate 

column headers correspond to the IDs that were arbitrarily assigned to the questions. 

Contribution 

We have a presented a method that has been validated with a simulation study and 

shown to provide believable conclusions. While the power of the method could be 

improved with a different significance test procedure, the algorithm in its current form 

reports false conclusions less than 8% of the time, roughly in line with a 0.05 p value 

threshold. This method has broad applicability and can be used by many scientists who 

have collected responses in a randomized order. We believe researchers could easily 

adapt this method to identify poor learning content as well as identifying the learning 

of items that give no tutoring or feedback.  

We know of no prior work that has shown how to learn about the effectiveness of a 

question, other than the typical method of conducting costly randomized controlled 

experiments. In some aspects, this method seems similar to treating a randomized 



 

sequence of items as a set of randomized controlled experiments and could possibly be 

modified as an approach to a more general problem. 

We claim this method could be important, for if we can learn what content is 

effective at promoting learning, we are one step closer to the elusive dream of building 

self-improving intelligent tutoring systems that can figure out the most effective 

material to present to students.  

Future Work 

A comparison between this Bayesian method of question analysis and an application of 

learning decomposition [2] should be made. Our colleague [4] is pursuing the same 

research questions as we are, using the learning decomposition method and the same 

dataset. Beck, Change, Mostow & Corbett found evidence to suggest that a Bayesian 

method may be the most powerful however we would like to confirm this by applying 

both methods to the same simulated datasets.  
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