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ABSTRACT: The computer generated forces community and the online training community do not share much
overlap. The small overlap that currently exists is that training groups need to use computer generated forces, but
these two tasks are implemented separately and in different ways. This paper presents a method to unify these two
seemingly disparate areas, by using a single cognitive model to provide both tutoring and computer generated forces
capability. We have built a prototype system that uses this technique to deliver both computer generated forces and
tutoring to multiple human players in a 3D first-person simulation.

1 Introduction

In cooperation with the US Army we are working on a
system to tutor soldiers on the use of military operations
on urban terrain (MOUT). One goal of the system is to tu-
tor a whole platoon, which is a group of 30 soldiers, while
they complete a military exercise. Each soldier would be
sitting at a computer running a 3D simulation of the ex-
ercise, controlling a virtual soldier, or avatar, that can
interact with both the environment as well as the other
soldiers. The system will give the soldiers feedback and
advice as they proceed through the exercise. This paper
discusses some of the difficulties in building such a sys-
tem, and a conceptual architecture for dealing with them.
We have built a prototype system to demonstrate the ar-
chitecture.

There are many 3D simulation systems out there, so one
goal of this project is to develop a system that can be used
with one of them to tutor human soldiers, as opposed to
developing our own simulation. This system will need
to communicate with the simulation, as well determine
what feedback to give to the soldiers and when. Another
goal is that the system is able to adapt to different simu-
lations.

Another feature of the system is that it should have the
ability to use computer generated forces (CGFs) as simu-
lated teammates. Given that the exercise may involve up
to 30 men, we may not have 30 soldiers to participate in
the exercise. Therefore we want to have CGFs take the
place of the real soldiers in the exercise.

2 The Problem

We have two components in our system that need to be
modeled. Modeling is a difficult task, and so we want
to limit the amount of it we need to do. The first com-
ponent is the CGFs. These computer controlled soldiers
need to act like real soldiers, or else they will not be ef-
fective to train with. In addition, we want to them to act
as if they were human; that is, they should make mis-
takes. Soldiers will have to learn how deal with errors
that are made in the field. Therefore our CGFs should at-
tempt to be as close to simulating how an actual soldier
could respond to a given situation. There has been much
research in developing CGFs for MOUT tasks, for in-
stance Best and Lebiere [1], however we need our CGFs
to match the skills we are trying to tutor, so we can not
use their research directly. Laird has done work develop-
ing intelligent opponents for MOUT training [2], but we
are looking for computer generated teammates.

The second component is used to tutor human soldiers.
By tutor we mean to give appropriate feedback to sol-
diers based on their performance in the exercise. When a
soldier does well, the system should give positive feed-
back; likewise if they fail or make mistakes the system
should give negative feedback. In addition to feedback,
the system must provide assistance to soldiers who do not
know what to do. For the feedback to be useful however,
the system must be aware of the soldier’s current con-
text. MOUT tactics used by soldiers are complex, with
many variations. Given a situation, there are many cor-
rect things to do. Therefore we must know the state of
the student’s mind at the time in order to give the appro-
priate feedback. In order to do that we must have a model
of the student. We can then use model tracing algorithms
to figure out the reasoning behind their actions, and give
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Figure 1: Conceptual Architecture

the student appropriate feedback and assistance. Model
tracing is a plan recognition algorithm, which we de-
scribe below. Model tracing tutors [3, 4] have been used
by many and have been shown to be effective [5].

3 The Solution

Our solution is to realize that our two modeling tasks are
one in the same. The computer controlled forces are at-
tempting to model a real soldier. For the tutoring task, we
need a model of a real soldier to give appropriate feed-
back. They both use a model of a real soldier; however
they use it in different ways. The computer controlled
forces use the model to produce actions from a given sit-
uation. For the tutoring task we take the given situation
and the user’s actions to determine a line of reasoning,
which is then used to give feedback. Therefore we can
use forward chaining for the computer controlled forces,
and backward chaining for the tutoring task. We can then
develop a single model of production rules that can be
used for both tasks. For this project, we are only explor-
ing rule-based cognitive models.

Figure 1 shows the overall architecture of our system.
On the left side the students interact with the simulation.
They will be producing some input, either via a keyboard,
joystick, or other input device, to control their avatars in
the simulation. The simulation will produce some output
the students can perceive, typically a graphical display
and audio effects.

On the right of the diagram is the set of production rules
that form the cognitive model. Connected to the rules are
what we refer to as the agents. Every agent is an instance

of the cognitive model, and is connected to an avatar in
the simulation. All the agents use the same set of rules,
but each has a distinct working memory, which repre-
sents the knowledge and goals that a particular agent
has. The working memory of different agents will be dif-
ferent, since each will perceive different events in the
world. Additionally, they start with a different working
memory, for instance the squad leader knows he is the
squad leader, and has a different set of goals and knowl-
edge than does the platoon leader. There are two types of
agents, one for CGFs and one for human tutoring. CGF
agents command their avatars in the simulation; the hu-
man tutoring agents provide feedback to students.

Each agent also has a distinct set of skill levels. A skill
level represents the probability that the student knows
that particular skill. Skills can either be a single rule or a
group of rules. Skill levels could be set for the computer
generated forces, so that they would sometimes make
mistakes. These skill levels are determined by a process
called knowledge tracing. The technique is not described
completely here but it is described in Corbett and Ander-
son [6].

The agents are connected to the simulation over some
communication channel. There are three types of mes-
sages that are exchanged: events, actions, and feedback.
Events are things that happened in the simulation that
the soldiers can perceive. Examples would be hearing
footsteps, seeing enemy soldiers, receiving orders from
a team leader, etc. These are always sent from the sim-
ulation to the agents. The simulation is responsible for
deciding which agents receive the events. For instance, if
the event is seeing enemy soldiers, it is up to the simula-
tion to decide which soldiers can see the enemies in the



simulation. The agents use events to update their working
memory.

Actions are things that the soldiers can do. Examples in-
clude moving, shooting, giving orders, etc. Where ac-
tions are sent depends on the mode of the agent. CGFs
send actions to the simulation; their avatars then perform
the actions in the simulation. Tutoring agents receive ac-
tions; these are the actions the students took. The tutoring
agent then uses a model tracing algorithm, described be-
low, to provide feedback.

There is an important distinction between what we re-
fer to as instant actions and latent actions. The differ-
ence between them is that instant actions are executed
in the simulation atomically, where a latent action hap-
pens over time. This is important because it means that
we can only detect latent actions when the action is com-
plete, not when the actions starts. For instance, when a
player moves from one place to another, we cannot tell
when he starts to move where his final destination is go-
ing to be. Generally latent actions have an event that oc-
curs when the action is complete. For instance, when an
avatar moves, an event is generated that specifies where
the avatar currently is. In general the model will use these
events to determine when its current action is finished
and can move on to the next. When we are doing human
tutoring, we can look at these completion events and in-
fer the actions the students have made. This is important
because we want to capture that the student’s action was
to move to a particular place, not just to move.

Feedback messages are used to provide feedback to the
student. They are only sent from the tutoring agents to
the simulation. The simulation relays the feedback to the
student. Examples of feedback include displaying text of
the screen, or highlighting an area of interest on a map.

In order to illustrate how to two types of agents use the
set of rules, we present Table 1, which shows a sample
of six rules that could be used in our system. We have
not implemented these rules yet, but use them to illus-
trate the architecture because they show how the com-
munication between the soldiers works. For purposes of
illustration, these rules are vastly simplified from the ac-
tual rules that we would use; in addition, they are English
language versions of rules we would normally code in a
computer language. These rules have four components.
The first is type, which marks the rule as either a correct
rule or an incorrect one. Incorrect rules are generally typ-
ical mistakes soldier might make; they are used when tu-
toring human soldiers. The next two parts are the “if” and
“then” clauses of the rule; when the conditions under the
if clauses are true, then the actions under the then clause
should fire. Finally there is a message, which is used to
give feedback. Because the rules are presented with En-
glish language if-then clauses, the message field appears
to be the same as the “then” clause. However in an ac-
tual implementation the then clause would be encoded in
a programming language.

Rule 1
type correct
if your goal is to clear a building AND

there is a room with a threat
then order team to clear that room [action]
message “Don’t bypass threats; clear a threatened

room.”
Rule 2

type correct
if your goal is to clear a building AND

there is a room without a threat AND
there is no room with a threat

then order team to clear that room [action]
message “Order the team to clear a room.”

Rule 3
type incorrect
if your goal is to clear a building AND

there is a room without a threat AND
there is a room with a threat

then order team to clear the unthreatened room
[action]

message “There is a room that contains a threat,
you should have cleared that room first.”

Rule 4
type correct
if You see an enemy enter a room AND

You are not the team leader
then tell leader you saw an enemy [action]
message “You need to tell the leader you saw an

enemy enter a room.”
Rule 5

type correct
if You see an enemy enter a room
then consider that room threatened [change

memory]
message “You saw an enemy enter a room; you

must consider that room threatened”
Rule 6

type correct
if you are told an enemy entered a room
then consider that room threatened [change

memory]
message “You were told an enemy entered a room;

you must consider that room threatened”

Table 1: Sample Set of Rules



Four of the six rules have actions as their consequence,
and two change working memory. There is no restric-
tion that rules must do one or the other, in practice, most
rules that produce an action also change working mem-
ory. However the distinction between rules that produce
actions and those that do not will be important when we
discuss the model tracing algorithm below.

3.1 Computer generated forces

When used to run computer generated forces, we apply
the rule using forward chaining. Consider an example
where several things are currently in the agent’s work-
ing memory: you are the team leader, the goal is to clear
a building, there are three rooms that you can reach, you
saw an enemy enter a room, and a team member told you
he saw an enemy enter a different room. Rules 5 and 6
would fire, which would cause working memory to be
updated, so that there are now two threatened rooms and
one unthreatened room. Rule 3 could now fire, except
that it is an incorrect action and we assume, for the mo-
ment, that the computer generated forces do not make
mistakes. Rule 1 will fire, however there are two rooms
that the agent could choose to clear. There are no other
rules that give preference one way or the other, so the
system will arbitrarily chose one. The action produced
by Rule 1 will then be sent to the simulation so that his
team will be ordered to clear a room.

3.2 Human tutoring

Now let us consider what happens when the system is
used to tutor a human soldier. Let us take the scenario
above, with the same things in working memory. There
are three actions the human soldier could take, each ac-
tion being to order his team to clear one of the three
rooms. Two of these rooms should be considered threat-
ened, and clearing either room is only correct action.
Should the soldier order his team to clear a room, we
can use backward chaining to determine that it is correct
action. We see that the action could be the result of Rule
1, 2 or 3. To see which one could fire, the system needs
to determine if the room selected is threatened or not.
Rule 5 and 6 can fire to show that the room is threatened,
which show that Rule 1 could fire, and so we found a
set of rules that from working memory produce the de-
sired action. Since Rule 1 is a correct rule, we know the
student has made a correct action. It is important to no-
tice it does not matter which of two threatened rooms the
human soldier choose to clear, they are both considered
correct. This is an important aspect of the model tracing;
the student is given the flexibility to solve the problem as
they see fit.

If the student had chosen to clear the unthreatened room,
then a different set of rules would be traced. Again, Rules
1, 2 and 3 could all lead to the action chosen, but after
considering Rules 5 and 6 and the state of working mem-
ory, Rule 3 is found to be the source of the action. Rule 3

is marked as an incorrect action, so the system needs to
tell the student they have made a mistake. It can easily do
this by displaying the message associated with the rule to
the student. In this case the student would be told “There
is a room that contains a threat, you should have cleared
that room first.”

The system can give additional information about the
mistake by displaying the messages of the rules that
caused the room to be considered threat; in this case the
student would see “You were told an enemy entered a
room; you must consider that room threatened” or “You
saw an enemy enter a room; you must consider that room
threatened.” The student therefore gets immediate feed-
back that is appropriate to the situation.

If the student doesn’t know which room to clear, he can
ask the system for assistance. The system can run the sys-
tem in forward chaining mode to determine what one of
the correct actions would be. This will is done in same
way as when the CGF ran the model; Rule 5 and 6 will
fire causing Rule 1 to fire. However this time the system
keeps track of the messages that are associated with these
rules, and then presents them to the student. It presents
each message in the order they were fired until the stu-
dent makes an action. In this case the system would pro-
duce “You saw an enemy enter a room; you must con-
sider that room threatened” followed by “Don’t bypass
threats; clear a threatened room.” By presenting each
message individually, the system will only give enough
assistance as the student needs.

4 Implementation

We have built a prototype system that implements the
above architecture. The cognitive model used is not com-
plex, but the purpose is to show it is possible to use the
same model for both the CGFs and for tutoring students.
A screenshot of our system can be seen in Figure 2.

We are using Unreal Tournament 2003 (UT2003), a com-
mercial off the shelf game, as our simulation system.
UT2003 allows the users to make modifications to the
game to support different game types. These modifica-
tions are written in a language called UnrealScript. We
have written such a modification that has several respon-
sibilities. First, it maintains a TCP/IP connection to a
server program we have written that we call UTJess.
These programs communicate using a protocol we de-
veloped which is described below. The modification also
detects events and student actions and sends them to UT-
Jess program. It also receives actions for the CGFs, and
has the avatars perform those actions in the simulation.
Finally, it takes the feedback messages from the UT-
Jess program and relays them to student in an approriate
manner. The UTJess program is a simple program that
has three main purposes: to translate network messages
to and from working memory, running the models for-



Figure 2: Screenshot of our prototype system.

ward for CGFs, and implementing the model tracing and
knowledge tracing algorithms for tutoring.

4.1 The environment

The tutoring system should be able to support differ-
ent scenarios. Each scenario will have different features,
such as buildings, trees, enemy forces and so on. Also
each scenario will have different objectives. Each sce-
nario could also be defined by events that happen dur-
ing the exercise, for instance we could have a scenario
that deals with a platoon leader being killed in combat.
We however define a scenario only on its initial settings.
Currently events that happen during a scenario can not be
forced, nor can they be suppressed. So during any exer-
cise the platoon leader could be killed in combat, and the
soldiers will need to act accordingly.

UT2003 supports custom maps, as well as placing cus-
tom information in the maps. Our system stores all the
scenario information in a map file. In addition to infor-
mation about the objectives, we store other information
in the map. One problem with computer controlled forces
is that they are blind. A human player can look at a room
in UT2003 and identify where all the exits are, but it is
not as easy for the computer to do. Therefore we placed
information about the location of rooms and doors into
the map that allow the computer to tell where things
are. Another way that we use extra information to help
the computer controlled forces is by predefining paths.
The MOUT doctrine has specific rules about how rooms
should be entered, that involve such factors the form of
the room and whether the doors swing in or out. In order
to simplify this for the computer controlled forces, we
place all of the paths in the map. This information is also
used when tutoring human players, to make sure they are
moving along the correct paths.

In this sense, the model has more information than the
student does. We do this because it is a very difficult
problem to model perception, so instead of trying to de-
termine whether or not the student has seen, for instance,
all the doors in a given room, we assume that he has. For
this domain, this is generally not a problem, because the
student has to make sure that they are fully aware of their
situation. However, this can lead to suboptimal tutoring.
For instance, if a student is in a room, and doesn’t see
any more rooms to clear, they may backtrack. This is an
error, and the system will give them a diagnostic mes-
sage “You need to clear all rooms before backtracking.”
The student will likely look back and find the room they
were supposed to clear, but the system would have been
more helpful if it had said “You did not see a room, you
need to clear it before backtracking.” However this can
only be done if we model student perception very finely.
For our prototype, we have not done this, but we hope to
model some elements of perception more accurately in
the future.

4.2 The cognitive model

JESS (Java Expert System Shell) was used to implement
the cognitive model as a series of production rules1. We
currently have 24 rules that code a simple model of clear-
ing a building. These rules are categorized over six dif-
ferent goals: clearing a building, clearing a room, mov-
ing, shooting, waiting, and controlling civilians. Each
goal can have subgoals; in this way clearing a building
is composed of several clear room goals. Clearing rooms
is in turn composed of movement goals and wait goals. A
movement goal represents the task of moving along a par-
ticular path, while a wait goal represents the need for the

1. We were previously using a simplified version of ACT-R[3], but
moved to JESS because it is well documented and has greater cross-
platform capabilites



team to wait until everyone is ready before moving on.
The controlling civilians goal represents the task of se-
curing and watching over civilians. Finally, the shooting
goal is fairly simple: shoot enemies, do not shoot civil-
ians or teammates. The shooting goal is implied, in that
it is assumed that every soldier always has that goal. The
other goals represent tasks that are started and completed.

The clearing building goal is represented by four rules.
The first ruleBeginClearBuilding2 recognizes that the
soldier has been ordered to clear a building, and cre-
ates the goal. TheClearNextRoom rule recognizes that
there is another room to clear, and orders the team to
clear that room. TheBackTrack rule fires when there are
no rooms to clear, that is, the team has reached a dead-
end, and orders the team backtrack. The final ruleFin-
ishClearBuilding determines when the entire building is
clear, and marks the goal as complete and retracts it.

Clearing rooms is represented by five rules. The first rule,
BeginClearRoom, recognizes that the soldier has been
ordered to clear a room and creates the goal. TheStack
rule is fired first, which moves the soldier to stack outside
the doorway by setting a move goal. A wait goal is also
set so the soldier waits until the rest of the team is stacked
at the doorway. When they are all ready, theAssault rule
can fire, which sets a move goal to move the soldier into
the room as prescribed by the MOUT doctrine. Once they
are in the room, theTakeCommand rule can fire, but only
for the team leader. This rule recognizes that there are
civilians in the room, and the consequence of the rule is
that the team leader orders the civilians to clear out of
the room. Another team will have the control civilians
goal, and will watch over the civilians. The last ruleFin-
ishClearRoom fires when all enemies and civilians in the
room are dealt with, and completes and retracts the goal.

The remaining rules deal with moving, waiting, shooting
and watching over civilians. They are fairly straight for-
ward so we do not discuss all of them in detail here, but
show two JESS rules used by our system in Table 2 so
that we can see how these rules are implemented. These
rules are both part of the implied shooting goal. The
rules are very similar, and both check some knowledge
in working memory, and produce an action. However, the
ShootCivilian rule is an incorrect rule, that is, it should
never fire for a properly behaving student. It is marked by
the (incorrect) token so that CGFs do not run it. The two
rules also have messages associated with them;ShootEn-
emy has a hint message that is shown when the rule is ap-
plicable and the student asks for help. TheShootCivilian
rule has a buggy message that is displayed to the student
if he uses the rule, that is, this is the message that pro-
vides negative feedback.

4.3 Algorithms

We can implement model tracing using backward chain-
ing. JESS has a facility for doing backward chaining,

2. We will write all rule names in italics

(defrule ShootEnemy "Engaging enemy"
; figure out which room we’re in
(self (room ?room))

; is there a enemy in this room?
(person

(name ?person)
(type enemy)
(room ?room)

)
=>

; hint message
(assert (advice-message

(message "You need to engage the enemy")
) )

; produce the action
(assert (shoot-person-action

(person ?person)
) )

)

(defrule ShootCivilian "Violating ROE"
; mark this as an incorrect action
(incorrect)

; figure out which room we’re in
(self (room ?room))

; is there a civilian in this room?
(person

(name ?person)
(type civilian)
(room ?room)

)
=>

; bug message
(assert (advice-message

(message "BUG: Do not shoot civilians!")
) )

; produce the action
(assert (shoot-person-action

(person ?person)
) )

)

Table 2: Two rules from the prototype architecture.
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Figure 3: Portion of a model tracing search

however it is primarily a forward chaining system and
its backward chaining capabilities are limited. There are
not many systems that can do both forward and backward
chaining, so we implemented model tracing in a way that
does not rely on backward chaining.

To implement the model tracing algorithm, we used a
depth-first search. Whenever we need to trace the model,
we start with current knowledge base and then look at
rule that can fire. We fire one of these rules, and again
look at rules that can fire. When we have tried all the
rules at a certain level, we backtrack. When a rule pro-
duces an action, we stop and backtrack. We continue until
we have exhausted the search. In this way we can find all
the possible actions from a given knowledge state. Part
of an example search is shown in Figure 3. Here we see
that from the inital state, three rules can fire.BeginClear-
Room can fire because the soldier has been ordered clear
a room, and the soldier can shoot either civilans or en-
emies because they are present. We are concerned only
with the possible actions the soldier can take, not whether
or not they are correct. WhenBeginClearRoom fires, it
modifies working memory so that there isClearRoom-
Goal, which allows theStack rule to fire. This produces
a movement action. This is simplified from the actual im-
plementation, where there are several movement rules so
that the soldier follows a particular path. Once the move-
ment is complete, theIsPosition rule can fire and the sol-
dier should tell his teammates that he’s ready. However,
this rule will not be searched because the previous state
produced an action. Therefore, the set of possible actions
contains three elements: shooting a civilian, shooting an
enemy, and moving to a stack position. Whenever the stu-
dent takes one of these actions we must recompute the
set of possible actions. Additionally, whenever an event
occurs we must recompute the set of possible actions be-
cause the event will change the current state of working

memory.

Since we used a depth-first search, it is possible that our
system could get into an infinite loop. However the model
is simple, and the domain does not lend itself to rules
that could produce looping. However, other, more gen-
eral systems have used an iterative deeping search to pre-
vent infinite looping [7]. Also, more general model trac-
ing algorithms assume that if a given action is not in the
set of possible actions, then the student has made an er-
ror. We have modified this assumption slightly to take
into account latent actions. For instance, if the student
walks forward a few feet, we do not want to call that an
error unless the model specifically says that movement is
an error. Therefore, when a latent action is not traced, we
ignore it, and do not produce an error message.

The distinction between rules that produce actions and
rules that do comes in to play here. We can only observe
the actions that students perform; therefore we can not
directly tell whether or not the student has performed the
rules that do not produce actions. For instance, in Fig-
ure 3, we can not tell whether or not the student has rec-
ognized that they have been ordered to clear a room, that
is, performed theBeginClearRoom rule, if they have not
taken any actions. However, we can infer that they have
if they then move into a stacking position. This is why
we must search through all the rules until find a sequence
that produces an action. The strength of the model tracing
algorithm is that we can detect these rules, and therefore
track whether or not a student knows them using knowl-
edge tracing.

Our system implements Corbett and Anderson’s knowl-
edge tracing algorithm[6] to determine the skill levels of
the students. Unlike most model tracing tutors, we also
track how often the student has made common errors.
For each rule we can attach a name. Whenever a rule



Figure 4: Knowledge tracing skill bars

is fired, we can increase the probability that the student
has learned that rule. Likewise, when the rule is not fired
when it should be, we can decrease that probability of
knowing that rule. For the two rules in Table 2, the skill
names are “Engaging Enemy” and “Violating ROE3.”
Using the knowledge of what skills the student knows,
and what the student needs to “unlearn,” we can grade the
aptitude of the student. These skills are represented to the
user or instructor by skill bars, which can be seen in Fig-
ure 4. “Violating ROE” and “Improper Communication”
are both errors, and appear in red. Although our knowl-
edge tracing algorithm is completely implemented, for
each skill we should also have several parameters which
represent how hard it is to learn or forget a skill. Since
we have not completed our model we have not been able
to do any testing to determine these parameters properly.

4.4 Network Protocol

We have a simple network protocol. Each message is an
ASCII string of the form [header, timestamp, param1,
param2]. A list of all the messages we use can be found
in Table 3.

There are four classes of messages: setup, actions, events,
and feedback messages. Actions, events, and feedback
messages are those described in the conceptual architec-
ture. Setup messages are used to prepare the exercise.
The information about the scenario, including the infor-
mation about doors, rooms, etc, are all sent from the sim-
ulation to the agent at the beginning of the exercise. This
information is stored in working memory. The simulation
also sends information about the participants in the exer-
cise, such as the rank of the individual and which teams
they are part of. Additionally a message is sent to the
agent to tell it which soldier it is controlling.

5 Evaluation
The purpose of our prototype is to determine whether
or not the conceptual architecture we developed is fea-
sible. In order to test that we built a small scenario for

3. Rules of Engagement

a fireteam (four soldiers) consisting of a series of con-
nected rooms. The exercise is to clear all the rooms prop-
erly. The purpose of this evaluation was not to judge the
effectiveness of our CGFs or the effectiveness of the sys-
tem at teaching students; we are only trying to show that
that our architecture is sound.

We ran the exercise with four CGFs, and they cleared
all the rooms in the proper manner, that is, by stacking
outside of the door, waiting until the team was ready, then
assaulting the room as a group, and finally moving into a
formation inside the room.

We also ran the same exercise with two CGFs, and
one student playing the role of the team leader and an-
other playing the role of another team member. The team
leader could choose to clear the rooms in any order they
chose, and the system would give the student feedback
saying that they had made a correct decision. Either stu-
dent could also ask for hints at any point in the exercise,
and the system would give them appropriate feedback.
For instance, when a student was clearing a room, the
system gave these messages:

“your goal is to clear a room”
“you need to move into position”
“move to the highlighted node”

After the last message the system would also tell UT2003
to display a graphic on top of the position the student
needed to move to. The system also gives feedback when
the students make a mistake. Once a student moved into
position, he should tell his teammates he is in position
so that they know when everyone is ready to enter the
room. If the student said he was in position before mov-
ing to the correct location the system would respond with
“incorrect action: you said you were in position, but you
are not in position.” Also the CGFs acted as they should;
they followed the team leader’s orders and stacked out-
side rooms, and told their team members they were in
position as before.



Setup Messages
Path Describes a path
Door Describes a door
Room Describes a room
Person Describes a person
Team Describes a team
Self Tells the agent which per-

son it’s controlling

Event Messages
At Avatar is at a certain loca-

tion
Receive Ready Heard Someone said they were in

position
Receive Clear Room Was ordered to clear a

room, through a particular
door

Receive Clear Building Was ordered to clear the
building

Person Died Some person died
Person Changed Room Some person changed

rooms
Person Changed Type Some person changed type

Action Messages
Move To Move the avatar to particu-

lar location
Say Ready Tell your team you are

ready
Say Clear Room Tell your team to clear a

room through a particular
door

Say Get Down Tell civilians to get down
Say Move Out Tell civilians to move out
Shoot Person Shoot a person

Feedback Messages
Advice Displays some text on the

users screen
Highlight Displays a graphic image

over a particular location

Table 3: Communication Protocol

6 Future Work

This paper represents the beginnings of this project.
There are many things that we will continue to work on
in the future. At this point, our model is very simple, but
demostrates the functionality of our conceptual architec-
ture. Work is currently being done to extend the model to
handle more of the MOUT doctrine.

One aspect that we have not dealt with much is the run-
time performance of the system. Given that the model
tracing is using a search, it is possible that with a large
number of rules that the performance would be unac-
ceptable. However, this would only affect the tutoring,
as the CGF simply use forward chaining. The system is
designed to distributed, with the simulation and the cog-

nitive model running on seperate machines. However, the
system currently runs reasonably well when they are both
running on the same machine.

One simple optimization we have made is to use a lazy
approach to model tracing. As stated earlier, whenever
an event occurs we need to model trace and recompute
the set of possible actions. However, we only need this
set when the student has performed an action. If several
events occur before the student makes an action, we will
waste time recomputing the set. Instead we mark the set
as invalid, and the next time we need it we recompute it.
This is different than recomputing the graph everytime an
action is performed, because some actions, such as move-
ment, can be ignored. For instance if the set of possible
actions contains only a communication action, we do not
want to recompute the set for every step of movement the
student makes.

We also employed some heuristics to increase the search
speed. We know that some of the rules are independent
and can be applied in any order. For instance, when hear-
ing two teammate say they are ready, if does not matter in
which order the rules fired to mark them as ready. Even
though the order does not matter, the naı̈ve search will
search both orders. We mark such rules and when search-
ing, we only consider one order. There is much work that
can be done in finding more heuristics to speed up the
search.

The purpose of using one model for two tasks is that,
presumably, less effort goes into developing the system
overall. However, if it takes as long to make a model that
does two tasks as it does to make two models for seperate
tasks, nothing has been saved. Since we developed our
model from scratch to do both CGFs and tutoring, we
cannot say for certain that any work was saved, although
we feel that the effort was less than if we had built two
models independently. However we believe that it is not
necessary to build the model from scratch in order to use
it for both tasks.

To test this belief, we are currently looking for an exist-
ing model of CGFs that we can convert into a tutoring
model. Although we do not have a model yet, looking
at some other models shows promising results. For in-
stance, Laird’s SOAR Quakebot[8] has an architecture
similar to ours, where the simulation sends events to the
model and the model responds with actions. This gives us
hope that it may be possible to add the tutoring part of our
architecture. Table 4 has a production from TacAir-Soar
with an accompanying source comment. Most of TacAir-
Soar’s productions are similar to this one, in that they
look at the current knowledge of the world, and then cre-
ate new goals or execute actions, much like the rules in
our cognitive model. In order for this particular rule to
be used in model tracing, we would have to attach a skill
name and a hint message to this production. The skill
name could be “Employ Weapons”, and the hint message
could be “There is a bandit out there, and you need to



; Propose employ-weapons if there is a
; bandit out there, but not if we should
; be doing something more important, like
; chasing him, confusing him, bugging out,
; or evading a missile.

(sp intercept*suggest-proposal*employ-weapons
(goal <g> ˆproblem-space.name intercept

ˆstate <s>)
(<s> ˆbogey <b>)
(<b> ˆroe-achieved *yes*

ˆintention known-hostile
ˆcontact *yes*
ˆintercept-geometry-selected *yes*)

-{ (goal <g> ˆoperator <o> +)
(<o> ˆname << pincer chase-bandit

change-piece-of-sky
bug-out evade blow-through
blow-through-continue >>) }

-->
(<s> ˆsuggest-proposal <p> + &)
(<p> ˆname employ-weapons ˆbogey <b>)

)

Table 4: A production from TacAir-Soar[9]

employ weapons.” Of course we can not be sure that this
is all that is needed to make TacAir-Soar into a tutor un-
til we actually try to implement it. Seeing that TacAir-
Soar has over 5,000 rules, we plan to start with a smaller
model first.

7 Conclusion

The purpose of this paper was to show that one could use
the same cognitive model for two tasks, computer gen-
erated forces and human tutoring. Our prototype system
shows that this is indeed possible. In addition we have
developed a conceptual architecture that generalizes this
approach to using a cognitive model in this manner. The
potential benefits of this approach are clear: the necessary
modeling for such a task is cut in half. More practically,
however, is that there has already been much research on
development of computer generated forces. We hope that
by using the techniques in this paper, it would not be hard
to extend these some of these existing models into mod-
els that can also be used as tutors.
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