
Refining Learning Maps with Data Fitting Techniques:
What Factors Matter?

X, X, X, X

X

Abstract. Cognitive models/Learning maps (skill graphs) have been identified
to be possible to improve using some data mining techniques. However the fac-
tors that affect this improvements/refining process are not so clear. In an earlier
paper we presented a method for improving these cognitive models. The pur-
pose of this paper is to present the factors to consider when using our initial al-
gorithm to refine learning maps. We present a simulation study that shows how
important each of the factors is for this refinement process.

Keywords: Data Mining, LFA, Learning Maps, Cognitive Models

1 Introduction

Learning maps have been used as a tool to depict the set of skills in a cognitive do-
main and the relationship between these skills. A number of studies have been con-
ducted to find and represent the relationships between the skills [4], [7], [9-10]. Tat-
suoka introduced the Rule-space method for identifying skills/knowledge components
in a given cognitive domain whereas [6] present another approach called the Attribute
Hierarchy Method (AHM). The rule-space method (RSM) does not present the rela-
tionship of the skills/knowledge components as a hierarchy. However AHM, which is
a variation of Tatsuoka’s RSM, considers the hierarchical relationship between the
components [11]. Gierl [5] used the AHM approach to make inferences of students’
cognitive assessment. None of these approaches dealt with methods for improving the
item response models developed using the methods proposed. The Learning Factors
Analysis (LFA) method by [2] was introduced to deal with this problem. In that paper
three different operations for improving the predictive abilities of learning maps or
cognitive models are introduced. In [1] an attempt was made to solve this problem by
presenting the results of a number of experiments that showed that learning maps can
be refined using just one (the merge operation) of the three possible of the LFA meth-
od. It was shown that there were significant improvements in RMSE for the best
model chosen, starting off with a pre-defined learning map.

We realize that, to generalize the method for refining learning maps, there are a
number of questions that still need to be answered. These include: “What are the fac-
tors that can determine when a model can be best refined?” and “Do the number of
skills, the number of items per skills, the number of levels in the skill hierarchy and

the number of data points have any effect in determining the best refined model?”
Whilst the LFA methods use a set of factors to determine whether to merge, add or
split skills to generate better models from an existing one, all the factors used are
based on expert knowledge and are independent of data. In order to answer the above
questions, we present a number of simulation experiments.

2 Problem Statement

The LFA model uses three operations (splits, merges and adds) to refine knowledge
components. In each of the operations, learning factors were included in the model
refinement process. These factors did not include the number of skills in the model,
the levels in the hierarchy of skills in the model, the number of items per skill and the
guess and slip parameter values for the items. We hypothesize that these factors are
important in generating an optimal model from a given learning map (pre-requisite
skill hierarchy). Hence we set out in this paper to present a series of experiments that
help in determining the impact of the above mentioned factors in refining a given
learning map or cognitive model.

3 Methodology

To be able to answer the research questions, we started off with a 3-skill graph. We
inserted a fake skill at different locations of the graph and run our evaluation code to
determine when the original skill-graph is learned back and what factors determine
when this occurs. We examine the following factors and determine which of these
factors have the most impact on using the greedy algorithm presented in the earlier
paper to refine a given model: guess and slip parameter values, the number of levels
in the skill graph hierarchy and the number of data points (i.e. students and items) .
For each randomly chosen skill graph we generate a set of simulated data, one each
for the number of student and item pairs used. We then evaluate the models using
Expectation Maximization to determine the factors that have the most impact. The
section presents the random graph generation, Bayesian network creation, fake skill
creation and the evaluation code.

3.1 Random Skill Hierarchy Generation.

To generate a skill graph randomly we start by choosing a random skill hierarchy. Our
algorithm to generate the skill hierarchy takes a range of skills and a graph depth as
input parameters. The output of the algorithm is a valid skill hierarchy where the
number of vertices is within the skill range and the number of levels is within the
depth range. We order our vertices from 1 to N and use the constraint that a vertex
cannot have a directed edge pointing to a smaller numbered vertex. We also enforce
the constraint that a vertex cannot have any self-edges.

To generate a random graph we choose a random number within the range of pos-
sible graphs. We then convert this number to binary form and add the correct number
of leading zero’s (we know the number of skills from the random number chosen).
Then we simply insert the bits of the binary number into the varying spots of the ma-
trix form of the graph in order.

The result is a directed acyclic graph with no self-edges. It will not necessarily be
connected. The final step is to check if the graph is connected. If the graph is connect-
ed, we keep it; otherwise we discard it and repeat the generation process. This method
allows us to instantly generate valid graphs. An example is shown in Table 1 and Fig
1 for a graph with three skills.

Table 1. Example Matrix. Matrix generated by the random number 5. A ‘Y’ represents that
this cell is ignored because it must be a zero since a vertex cannot have directed edges pointing
to vertices with larger numbers. An ‘X’ represents that this cell is ignored because it must be a
zero since a vertex cannot have self-edges.

Vertex /
Vertex

1 2 3

1 X (0) 1 0

2 Y (0) X (0) 1

3 Y (0) Y (0) X (0)

Fig. 1. Example Graph Generated

3.2 Create Bayesian Network.

The Bayesian network used for the analysis was generated from the skill graph select-
ed from the previous step. To generate the items for the skills an item range is speci-
fied. A random number of items are chosen within the item range for each skill. In our
experiments we restricted our range to be a single value so all skills will have an
equal number of items. We set our Bayesian network up like knowledge tracing,
where every skill has one or more items and every item has a guess and slip node [3].
An item must belong to exactly one skill. The skill nodes are latent nodes since we
cannot observe whether or not a student knows the skill. Each item node is an observ-
able node, which is a ‘1’ if the student answered the item correctly and a ‘0’ if the
student did not answer the item correctly. Both the guess and slip nodes are also latent

nodes representing whether or not the student guessed or slipped on the item. A stu-
dent is considered to have guessed when the student answered correctly but did not
know the skill. A student is considered to have slipped when the student answered
incorrectly but knew the skill. Using the previous skill graph example we added the
item, guess, and slip nodes to the graph.

The final step to create the Bayesian network is to create the conditional probabil-
ity tables (CPT) for the nodes. For our experiments we defined each skill node as
AND nodes. This means that a student can only know a post-requisite skill if the stu-
dent knows all of the prerequisite skills. Therefore if a student does not know one of
the prerequisite skills then the student cannot know the post-requisite skill. If the stu-
dent does know all the prerequisite skills (or there are no prerequisite skills), we pick
a random probability that the student will know the post-requisite skill between 0.3 –
0.7. Our guess and slip parameters have varying probabilities since that was one of
the parameters we experimented with. All the item nodes have a deterministic (0%
chance or 100% chance of correctness) CPT based off of the skill, guess, and slip
nodes (which or not deterministic).

3.3 Creation of Fake skill

We exported our Bayesian network to Matlab and used Kevin Murphy’s Bayes Net
Toolkit to generate the ground truth data. Once the ground truth data was generated
we randomly generated “fake” skills from the original graph. A fake skill is generated
by randomly choosing a real skill. Once a real skill is chosen, a random number of
items are chosen from the real skill. These items are then detached from the real skill
and attached to the fake skill. The fake skill is then randomly chosen to be either a
parent or a child of the real skill. Fig 2 shows the creation of a fake skill.

Fig. 2. Creation of Fake Skill. The left skill graph shows the original skill graph before the
creation of the fake skill. The skill graph on the right shows the skill graph after the creation of
the fake skill. The fake skill was created from Skill_1 where item 2 was removed from skill 1
and attached to the fake skill.

3.4 Evaluation

In order to evaluate our Bayesian Network we used a similar process as done in [1].
We use Expectation Maximization (EM) to learn parameters and fit our model. To

evaluate our model we used per student per item cross validation with 5 student folds
and 3 item folds. Our student and item folds were chosen randomly for our evalua-
tion. In [1] the item folds were chosen randomly but kept the same for each student.
The only difference between the evaluation in and this experiment is that each student
is assigned a different set of random item folds instead of all students having the same
set of random item folds.

4 Experiments

4.1 Experiment 1

In this first experiment, we started with a set of 3-skill graphs. For each of the graphs,
we insert a fake skill. We define a fake skill as one that is broken off of an existing
skill. The fake skill has a random number of items chosen from the original skill and
the fake skill is either a pre-requisite or post-requisite of the original skill. If the fake
skill is a pre-requisite of the original skill, all the previous pre-requisites of the origi-
nal skill become the pre-requisites of the new fake skill and the original skill becomes
the post-requisite of the fake skill. The whole idea is to figure out if this fake skill will
be easily identified and merged with the skill from which it was created from. This is
to validate our merge operations and to determine what factors influence the determi-
nation of a better skill-model /skill map than the original.

4.2 Analysis

We analyzed the results of the experiment and looked at how the number of students,
number of items, guess/slip values, and the number of fake skills impacted RMSE of
our predictions and the percent of correct graphs learned back. Fig 3 shows the rela-
tionship between the probability a student guesses/slipped and the RMSE as well as
the percent of the correct skill graph being learned back. We paired guess and slip
values to lower the number of variables in our experiment. Our guess/slip pairings
are as follows {(0, 0), (0.1, 0.08), (0.3, 0.16), (0.5, 0.25)}. It shows that the higher
chance the student has to guess the answer the less accurate and harder it is to learn
back the true original graph. The percent of graphs learned back with a guess/slip
probability of 0 is significantly better than the percent of graphs learned back with a
guess probability of .5 (p < .001). A realistic guess probability is around 0.14 calcu-
lated in [8]. At this point the percentage of graphs learned is somewhere between 0.25
and 0.33. These are not great percentages to learn back a correct graph under realistic
guess and slip values. Not much can be done to lower the guess probability on typical
questions middle school math students would see. However more student data can be
used to increase model performance.

Fig. 3. Effect of guess/slip on learning back the original graph.

The guess/slip probability is the biggest factor that affects model accuracy followed
by the number of students. Table 2 shows how both the guess/slip probability and the
number of students affects the percentage of correct graphs learned back and average
RMSE. A cell is broken up into two columns where the first column in the cell is the
percentage of correct graphs learned back and the second column in the cell in the
average RMSE value.

Table 2. Student/Guess Impact on Evaluation

Students

Guess 50 100 150 200

PLB RMSE PLB RMSE PLB RMSE PLB RMSE

0 0.33 0.09 0.64 0.08 0.7 0.1 0.67 0.02

0.1 0.25 0.36 0.33 0.33 0.33 0.32 0.38 0.31

0.3 0.25 0.46 0.33 0.44 0.08 0.44 0.38 0.43

0.5 0.08 0.49 0.08 0.48 0.08 0.48 0 0.46

For a guess probability of 0.3, the percentage of correct graphs (PLB) increases from
25% for 50 students to 38% for 200 students (p = 0.2). This shows that under a realis-
tic worst case guess probability, increasing the number of students can increase the
percentage of correct skill graphs learned back. The number of fake skills seems to
have little effect on RMSE, however a large effect on learning back the correct graph.
With more than one fake skill the percentage of correct graphs drops significantly
from 0.6 for 1 fake skill to 0 for 3 fake skills (p < .002) for guess values of 0.1. This
can be seen for the three points with an x-axis value of 0.1 in Fig 4. We excluded the
number of items from our analysis since there were no strong trends.

Fig. 4. Effect of Number of Fake Skills on model improvements

4.3 Experiment 2

In experiment 1 multiple randomly chosen graphs were used as the ground truth. In
this experiment we chose to try each possible 3-skill graph to see if the graph struc-
ture had an effect on whether or not the correct skill graph was learned back. The
methodology was the same as experiment 1 except instead of randomly choosing
graphs we ran each of the four graphs for each possible number of students and items
per skill. Fig 5 shows all four possible 3-skill graphs. After determining that the major
factor impacting performance were guess/slip values, a reasonable pair of values were
chosen for the guess and slip values (guess=0.1 and slip=0.08). Additionally we fixed
the number of fake skills to one in order to reduce the variability of the factors.

Fig. 5. Different Graph types for experiment 2

Fig. 6. Effect of students/items on the model simplification.

The general observation from this experiment is clear from Fig 6 above. As the

number of data points increases, the level of accuracy in recovering the original graph
increases. This is in spite of the fact that the location of the fake skill was not fixed.
Moreover, for any given number of students, an increase in the number of items re-
sults in a slight decrease in RMSE and hence better chance of learning back the origi-
nal graph. This experiment shows that the data points (i.e. student and item numbers)
have an impact on improving on the determination of the best model from a given
model.

4.4 Experiment 3

In this experiment we fixed all variables except for the number of students and the
number of items per skill. We wanted to see how stable our search was and how well
it performed for a small example with reasonable parameter values. We fixed guess at
0.10 and slip at 0.08 with three skills and one fake skill. For the fake skill we took the
first half of items from the original skill. We ran our algorithm for 50, 100, 150, and
200 students for 2 and 8 items per skill. For each pair of parameters we ran the exper-
iment 10 times with different random seeds and took an average of the number times
the correct graph was learned back. Fig 7 shows the results of this experiment. We
found that the results are very stable for graphs that had two items per skill. The re-
sults were less stable for graphs with eight items per skill although the percent of
graphs learned back was much batter. The graphs that had two items per skill were
learned back correctly 8% of the time, where graphs with eight items per skill were
learned back correctly 43% of the time, which is a significant improvement (n=40,
p<.001).

0

0.1

0.2

0.3

0.4

0.5

50 100 150 200

RM
SE

Students

Effect of Student/Item Counts on Model Simplification

2 4 6 8

Fig. 7. Percent of graphs learned back for student ranges 50-200 and 2+8 items per skill.

4.5 Experiment 4

We ran experiment 4 to confirm that the number of students has an impact on the
recoverability of the original graph, fixing all other parameters at reasonable values
and varying the number of students. For this experiment, guess and slip values were
set at 0.1 and 0.08 respectively. We used graph type 4 (fig. 6), set the number of items
to 4 and fake skills at 1, varying the location of the fake skill. The student numbers
were varied from 10 to 100. For each student number, the evaluation was run 10
times. The results, in fig 8, show that as we intuitively assumed, the number of stu-
dents has a huge impact on the algorithm’s ability to learn back the true graph. The
results show that as the number of students increases the probability of a skill graph
being learned back increases whiles at the same time the RMSE reduces. These re-
sults, we found, are significant with p-values below 0.01. This finding confirms that
student numbers is an important factor that needs to be considered when refining
learning maps.

Fig. 8. Impact of Student Numbers

0.00
0.10
0.20
0.30
0.40
0.50
0.60

0 100 200 300

Le
ar

ne
d

Ba
ck

 %

Students

2 Items

8 Items

0
0.2
0.4
0.6
0.8

1

10 30 60 90 100

Student Numbers

Impact of Student Numbers on Learning Back
Original Skill Graph

Average of
RMSE

% Learned Back

5 Conclusion

Many learning maps/cognitive models are built from expert knowledge. With the
production of lots of educational data on student performance, it has become impera-
tive to find data centered methods of improving upon these expert-designed learning
maps. In our earlier studies we designed and presented an algorithm for simplify-
ing/improving the predictive accuracy of these models. In this paper we have present-
ed a number of factors that influence the data centered model improvement process
we initially published. We have shown with our simulation studies that the guess/slip
values, number of items per skill, the number of students and the number of fake
skills in the graph affect the simplification of the skill models. We also explored many
parameters to see how much data is needed to recover the true learning maps. For
future work we plan to continue to evaluate our algorithm on larger examples to see
how well our algorithm can scale up and test it on well-known real data sets.

6 References

1. Adjei, S. A., Selent, D., Heffernan, N. T., Broadus, A, Kingston, N. (2013) Refining Learn-
ing Maps with Data Fitting Techniques: Searching for Better Fitting Learning Maps, Inter-
national Conference on Learning Sciences (Submitted)

2. Cen, H., Koedinger, K. R., & Junker, B. (2006). Learning Factors Analysis: A general
method for cognitive model evaluation and improvement. In M. Ikeda, K. D. Ashley, T.-W.
Chan (Eds.) Proceedings of the 8th International Conference on Intelligent Tutoring Sys-
tems, 164-175. Berlin: Springer-Verlag.

3. Corbett, Albert T., and John R. Anderson.(1994) "Knowledge tracing: Modeling the acquisi-
tion of procedural knowledge." User modeling and user-adapted interaction 4.4 (1994):
253-278.

4. Embretson, S. E. (1998). A cognitive design system approach to generating valid tests: Ap-
plication to abstract reasoning. Psychological Methods, 3(3), 380-396.

5. Gierl, M. J., Leighton, J. P., & Hunka, S. M. (2007). Using the attribute hierarchy method to
make diagnostic inferences about examinees' cognitive skills.

6. Leighton, J. P., Gierl, M. J., & Hunka, S. M. (2004). The attribute hierarchy method for
cognitive assessment: A variation on Tatsuoka's rule-space approach. Journal of Education-
al Measurement, 41, 205-236.

7. Mislevy, R. J., Steinberg, L. S., & Almond, R. G. (2002). Design and analysis in task-based
language assessment. Language Testing, 19(4), 477-496.

8. Pardos, Zachary A., and Neil T. Heffernan.(2010) "Navigating the parameter space of
Bayesian Knowledge Tracing models: Visualizations of the convergence of the Expectation
Maximization algorithm." In EDM, pp. 161-170. 2010.

9. Sheehan, K. M. (1997). A tree-based approach to proficiency scaling and diagnostic assess-
ment. Journal of Educational Measurement, 34(4), 333-352.

10. Tatsuoka, K. K. (1983), Rule space: an approach for dealing with misconceptions based on
item response theory. Journal of Educational Measurement, 20: 345–354.

11. Tatsuoka, K. K. (1995). Architecture of knowledge structures and cognitive diagnosis. In P.
D. Nichols, S. F. Chipman & R. L. Brennan (Eds.), Cognitively diagnostic assessment (pp.
327-359). Hillsdale, NJ: Erlbaum

