
SNIF TOOL: Sniffing for Patterns in Continuous Streams
∗

Abhishek Mukherji, Elke A. Rundensteiner, David C. Brown, Venkatesh Raghavan
Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA, USA.

{mukherab | rundenst | dcb | venky }@cs.wpi.edu

ABSTRACT

Continuous time-series sequence matching, specifically, match-
ing a numeric live stream against a set of predefined pattern
sequences, is critical for domains ranging from fire spread
tracking to network traffic monitoring. While several al-
gorithms exist for similarity matching of static time-series
data, matching continuous data poses new, largely unsolved
challenges including online real-time processing requirements
and system resource limitations for handling infinite streams.
In this work, we propose a novel live stream matching frame-
work, called n-Snippet Indices Framework (in short, SNIF),
to tackle these challenges. SNIF employs snippets as the
basic unit for matching streaming time-series. The insight
is to perform the matching at two levels of granularity: bag
matching of subsets of snippets of the live stream against
prefixes of the patterns, and order checking for maintain-
ing successive candidate snippet bag matches. We design
a two-level index structure, called SNIF index, that sup-
ports these two modes of matching. We propose a family
of online two-level prefix matching algorithms that trade off
between result accuracy and response time. The effective-
ness of SNIF to detect patterns has been thoroughly tested
through experiments using real datasets from the domains
of fire monitoring and sensor motes. In this paper, we also
present a study of SNIF’s performance, accuracy and toler-
ance to noise compared against those of the state-of-the-art
Continuous Query with Prediction (CQP) approach.

Categories and Subject Descriptors

H.2.8 [Database Application]: Data mining

General Terms

Design, Performance, Reliability

∗This work was partly supported by National Science Foun-
dation under grants IIS 0414567, SGER 0633930 and CRI
0551584.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’08, October 26–30, 2008, Napa Valley, California, USA.
Copyright 2008 ACM 978-1-59593-991-3/08/10 ...$5.00.

Keywords

Streaming Time-series, Similarity Queries, Prefix Matching

1. INTRODUCTION

1.1 Time-Series Processing over Streams
The recent technological advances in sensor networks and

mobile devices produce high volume data streams. Applica-
tions such as environmental monitoring of hazardous waste
and poisonous attack clouds, network traffic monitoring and
tracking web click stream require on-the-fly matching of
streaming time-series sequences to a set of known patterns.
Continuous time-series matching poses several research chal-
lenges [8, 9, 12, 16, 25].

A live stream is defined as a potentially infinite series of
relational records. A time-series is a sequence of real num-
bers representing values from some given domain at specific
points in time, also called data sequences. A live stream
composed of time-series data is called a streaming time-
series [8, 9].

According to [3], the processing of queries over stream-
ing time-series is more complex than traditional static time-
series for the following reasons. First, the elements in a
live stream must be processed online due to the real-time
requirements of the applications. The data tends to be con-
tinuously appended to the end of the live stream. Thus, to
keep up with the high input rates, the most recent elements
typically must be processed before the next elements arrive.
In contrast, in static time-series stored in a database, there is
no limit on the processing time. Second, the streaming time-
series are assumed to have infinite lengths, and hence cannot
be stored in a database in their entirety. Since static time-
series are finite, algorithms for processing them can access
the whole sequences either sequentially or by preprocessing
them into some indexed form for faster access. Third, any
portion of the streaming time-series obtained previously can-
not be assumed to be available at a later time. Since stream-
ing time-series have infinite lengths, the data obtained in the
far past must either be explicitly stored by the system in a
compressed form or otherwise simply discarded. In contrast,
in traditional static time-series database, the entire time-
series can be retrieved at any time. Thus multiple passes
can be performed.

To further complicate the problem, continuous similarity
matching over a live stream may need to decide on matching
intermittently while only partially knowing the live stream.
Also the data sources may be noisy and gaps between the
live stream and the pattern sequence may arise.

369

1.2 Our Proposed Solution: SNIF
In this paper, we propose n-Snippet Indices Framework

(in short SNIF) for efficiently matching a streaming time-
series against a set of numeric pattern sequences. As the
live stream is infinite we work with chunks of data from the
live stream. Based on the notion of n-Grams [6, 18, 14], orig-
inally introduced for textual information retrieval, we intro-
duce the concepts of n-snippets and m-snippetCollections as
the foundation for our matching framework. The insight is
to match small snippets of the live stream against prefixes of
the patterns. The longer the pattern prefixes are identified
to be similar to the live stream, the better the confirmation
of the match becomes.

In our framework, the live stream matching is performed
using two layers of matching, namely, bag matching for quick
matching of sets of snippets while allowing partial disor-
der and order checking for maintaining the sequence of the
match at this more coarse-grain level. The bag matching step
performs approximate matching of small chunks of the live
stream data to quickly discard subsequences of pattern se-
quences within the live stream that definitely did not match.
The order checking step is analogous to subsequently stitch-
ing the adjacent subsequences to discover which of the pat-
tern sequences match the live stream and incrementally com-
puting how closely each such potential candidate matches.
SNIF can perform range queries as well as nearest neigh-
bor searches. We design a two-level index structure, called
the SNIF index, that supports these two layers of matching.
In an offline step, the pattern sequences are preprocessed
and then loaded into this SNIF index. During the online
live stream matching step streaming time-series is matched
on-the-fly against the indexed pattern sequences.

1.3 Contributions
The main contributions of this paper are as follows:

1. We abstract the Continuous time-series sequence match-
ing problem into a formally defined Prefix matching
problem and propose a snippet granularity matching
solution that extends well known n-grams [6], origi-
nally applied to text matching, to matching numeric
time-series data. The approach gains from the efficient
query processing capabilities of n-grams, while preserv-
ing the essence of approximate similarity measures es-
tablished over the years for matching of numeric data.

2. We define a two-layered progressive matching tech-
nique for numeric time-series data: Bag Matching for
early filtering of patterns followed by Order Checking
for refined checking of false positives to precisely match
prefixes over n-snippets.

3. SNIF combines all the features desired in Continuous
time-series matching such as:

(a) An efficient two-level index facilitating matching
against patterns having different lengths.

(b) A flexible framework giving the user the choice to
plug in any domain-specific similarity measure at
the snippet granularity.

(c) Incremental matching storing the tiny portion (≪
pattern length) of the infinite live stream.

4. SNIF is implemented inside the data stream engine
CAPE [20]. Our experiments demonstrate that:

(a) SNIF is efficient and effective in identifying pat-
terns on real datasets of fire monitoring [24], and
Sensor Motes [21] datasets;

(b) SNIF outperforms the state-of-the-art CQP [8] in
CPU costs as well as match accuracy;

(c) SNIF performs robustly under considerable amounts
(up to 20%) of randomly introduced noise in the
live stream data.

The rest of this paper is organized as follows. Section
2 presents the background and the matching problem def-
inition. We introduce in Section 3 the proposed solution
while Section 4 describes the matching framework. Section
5 presents evaluation while Section 6 reviews related work.
Section 7 summarizes our work.

2. PRELIMINARIES

2.1 Assumptions

Symbols Definitions
SID Sequence with its unique identifier ID

Len(S) Length of a sequence S (SL or SP)
S[i] ith data value in the sequence S

S[i : j] The sub-sequence of S from ith to jth

data value, inclusive for any i, j ∈ I ; i ≤ j.
D(S1, S2) Distance between sequences S1 and S2 based

on a chosen distance measure.

Table 1: List of notation used

Without loss of generality, we assume that all time-series
are one-dimensional, i.e., each entry is of the form S[t], where
S[t] is the data value at time t. We also assume that all time-
series are sampled at equidistant time intervals. If originally
they were sampled at unequal intervals, then we interpolate
the values to make them equally intervaled. We further as-
sume that the first sample is taken at time 0. A time-series S
is finite if it extends only up to a finite length L ≥ 0 (Len(S)
= L), denoted as 〈 S[0], S[1], S[2],. . . , S[L] 〉. A time-series
S is infinite if no such L exists.

2.2 Problem Definition
A pattern sequence SP is a finite sequence of time-series

data, such as a sequence of sensor readings that records the
characteristic behavior during a phenomenon (such as a fire
event). Given a library of such pattern sequences, similarity
queries find those pattern sequences from a library that are
most similar to a query sequence SQ, given by the user.
Many similarity measures are possible, for instance weighted
Euclidean distance [15], time warping [13], and wavelets [4].

Definition 1. Given a library LibP of N pattern sequences,
〈 SP0, SP1, . . ., SPN−1 〉, each having the same length L, a
pattern SPi is said to be the Nearest Neighbor of the query
sequence SQ if for all other SPj , j 6= i, D(SQ, SPi) < D(SQ,
SPj). Similarly, the k−Nearest Neighbors (NN) is a set of
size k NN of the top k patterns in LibP ranked by their
distance from SQ.

The above assumes that both the query sequence and the
pattern sequences are finite and static. In a streaming en-
vironment, a live stream replaces the fixed finite query se-
quence SQ. The pattern sequences SPi also need not be
of same lengths. In the static sequence matching scenario

370

SQ and SP are available in full to be compared against each
other, while in a live streaming scenario the query sequences
SQ need to be extracted out of the ever growing live stream
SL.

A live stream, denoted as SL, is an infinite time-series
data sequence to which new data entries are continuously
appended at every time unit. SL consists of a sequence of
data values collected starting at time 0 until the current
time tc, denoted as SL[0:t] = SL[0], SL[1], ..., SL[tc]. A
subsequence of SL of length l ending at a time ts is denoted
by SL[ts-l+1: ts]. At any time ts, the distance between the
live stream SL and a pattern sequence SPi, having length
Li, is denoted as D(SL[ts-Li+1:ts], SPi). The definition of a
similarity query changes to accomodate the dynamic nature
of the live stream.

Definition 2. Given a current time tc ≥ 0, a pattern SPi

is the Nearest Neighbor of SL at tc if for all other patterns
SPj , j 6= i, D(SL[tc-Li+1:tc], SPi) < D(SL[tc-Lj+1:tc], SPj).
Similarly, to find the k-Nearest Neighbors of SL, at time tc

all the patterns are ranked by their distances from SL and
the top k are output.

Pattern sequences

SP

L0

L1

Lk

…..

…..

Live stream

SL

Query sequences

SQ extracted from

SL

Pattern sequences

SP

L0

L1

Lk

…..

…..

Live stream

SL

Query sequences

SQ extracted from

SL

Figure 1: Query sequences over live stream

Real-time continuous time-series matching technique must
aim at facilitating early detection of the patterns within the
live stream. For critical applications such as the detection
of fire patterns, the ability to find a complete pattern of
the overall fire event is a little too late, i.e., the fire would
have come and burned down. Notice in Figure 1 that for
the different length values Li of patterns, several suffixes
of the live stream of the form SL[tc-Li+1:tc] are used as
the query sequence, tc being the current timestamp. The
suffixes of SL are continuously matched against the prefixes
of the patterns SP aiming for early detection of the match.
Thus we match several query sequences against the library
of patterns now. Rather than requiring to collect the full
pattern length of data from the live stream, we propose to
incrementally match the live stream against the prefixes of
the patterns. We call this prefix matching (Figure 2). The
longer the prefix of the pattern matched with the portion of
the live stream the better the confirmation of the match.

Definition 3. Given a live stream SL matched against a
library Lib of patterns SPi, continuous time-series similarity
query using prefix matching is accomplished by maintaining,
for each pattern SPi of Length Li in the Lib, SQ suffixes ς
extracted from SL of the form 〈SL[tc:tc], SL[tc-1: tc], . . .,
SL[tc-Li+1:tc]〉 and prefixes ̺ of each pattern SPi of the
form 〈SPi[0:0], SPi[0:1], . . ., SPi[0:Li-1]〉 such that D(ςj , ̺j)

P17

P35

P2

Score(P17)

Score(P35)

Score(P2)

P21 Score(P21)

Live stream

T T+1

P17

P35

P2

Score(P17)

Score(P35)

Score(P2)

P21 Score(P21)

Live stream

T T+1

Figure 2: Prefix Matching: matching prefixes of the
patterns against the suffixes of the live stream

= D(SL[tc-j+1:tc], SPi[0:j-1]) ≤ ∆threshold, where j is the
length of the matched prefix ς and suffix ̺. Similarly, Near-
est Neighbor and k-NN for current time tc can be obtained
as the prefix of the pattern matched closely with the suffix
of SL until the current time tc.

3. SEQUENCE MATCHING USING BAG AND

ORDER SEMANTICS
In this section we first introduce the concepts of n-Snippets

and m-SnippetCollections that form the building blocks for
our match framework. Then we describe alternative match-
ing approaches using n-Snippets and m-SnippetCollections.

3.1 Snippet-based Similarity Measure
An n-snippet is our basic unit for matching. We continu-

ously extract snippets from a sequence by collecting groups
of n consecutive data values. Two adjacent snippets of size
n overlap by n-1 datapoints. Figure 3 represents a sequence
of temperature readings from sensor DAN2 taken from the
EDaFS [24] dataset.

23.0269DAN27

23.00554DAN26

22.99896DAN25

22.99248DAN24

22.98142DAN23

22.97686DAN22

22.98296DAN21

22.97265DAN20

TemperatureSensorIDTimeStamp
DAN2

0

100

200

300

400

500

600

700

800

-5 5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195

DAN2

5-Snippet 0 <0, S[0:4]>

5-Snippet 1 <1, S[1:5]>

5-Snippet 2 <2, S[2:6]>

……………… ………
23.0269DAN27

23.00554DAN26

22.99896DAN25

22.99248DAN24

22.98142DAN23

22.97686DAN22

22.98296DAN21

22.97265DAN20

TemperatureSensorIDTimeStamp
DAN2

0

100

200

300

400

500

600

700

800

-5 5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195

DAN2

5-Snippet 0 <0, S[0:4]>

5-Snippet 1 <1, S[1:5]>

5-Snippet 2 <2, S[2:6]>

……………… ………

Figure 3: Forming n-snippets from a sequence

Definition 4. An n-snippet, or henceforth also called snip-
pet, is a subsequence of n consecutive data values in a se-
quence S, represented as a tuple 〈 p , S[p : p+n-1] 〉 starting
at the pth position of S.

In our framework, a snippet need not hold the n datapoints
in their entirety. The snippet can be a reduced represen-
tation of the n datapoints capturing the essential content
of the snippet sequence. Possible representations may be
fourier coefficients, wavelets or data statistics such as aver-
age, slope, and standard deviation. While any representa-
tion can be plugged in, the best choice greatly depends on
the domain and the dataset as demonstrated in [22].

A similarity measure that is a good distinguisher between
alternate patterns in the domain is the most suitable snippet

371

representation. Moreover, the representation should ideally
eliminate noise and be inexpensive to compute. As there
is much overlap between consecutive snippets, an incremen-
tally computable measure is desirable. Moreover, the com-
bination of measures used to represent a snippet may be a
better confirmation of the match.

For our work, we chose the pair of the average and the
standard deviation of the n datapoints to form the snip-
pet representation. Both metrics are inexpensive to com-
pute even on live streams. A moving average smoothes the
data, thus eliminating some noise. We observe empirically
that this pair of metrics forms a significant distinguisher be-
tween the pattern sequences in the datasets we examined.
The standard deviation by itself is not a strong candidate
since the same standard deviation value can occur at to-
tally different temperature bandwidths. A combination of
the two metrics (average & standard deviation) as the sim-
ilarity criteria is a more reliable match measure than either
taken alone. This reduces distance computation costs as we
need to match only the two data statistics instead of n data
values (assuming n ≥ 2).

To summarize, an n-snippet of sequence S, starting at pth

position, is henceforth represented as 〈p, (Avg(S[p : p+n-
1]), Stdev(S[p : p+n-1]))〉. For simplicity, we henceforth
use Euclidean distance over the normalized average & stdev
pair (Formula 1) to compare two snippets, though weighted
Euclidean distance or any other similarity measure could be
plugged in too.

∆(SnipA,SnipB) =
p

(AvgA − AvgB)2 + (StdevA − StdevB)2

(1)

Definition 5. A snippet pair (SnipA, SnipB) is said to
have matched if ∆(SnipA,SnipB) ≤ a user defined tolerance
∆AvgStdev.

3.2 Two Alternatives for Snippet-based Match-
ing of Sequences

We propose two strategies for snippet-based matching of
sequences, namely, bag matching and order checking. We
will note that these alternatives work irrespective of the
choice of snippet representation.

DAN2

0

100

200

300

400

500

600

700

800

-5 5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195

DAN2

DAN3

0

100

200

300

400

500

600

700

800

900

-5 5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195

DAN3
SP

SQ from SL

B1

B2

|Matched Snippets|

Max(|B1 Snippets|,|B2 Snippets|)

=

DAN2

0

100

200

300

400

500

600

700

800

-5 5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195

DAN2

DAN3

0

100

200

300

400

500

600

700

800

900

-5 5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195

DAN3
SP

SQ from SL

B1

B2

|Matched Snippets|

Max(|B1 Snippets|,|B2 Snippets|)

=

|Matched Snippets|

Max(|B1 Snippets|,|B2 Snippets|)

=

Figure 4: Bag matching of snippets over sequences

Definition 6. Bag matching is a sequence matching strat-
egy where the set of snippets of SQ snip-set(SQ), is matched
against the set of snippets of SP snip-set(SP). The match
score SBM (SQ, SP) is computed using Formula 2. The se-
quence pair (SQ, SP) is said to have matched with score
SBM (SQ, SP) if SBM (SQ,SP) is within a certain user speci-
fied threshold SColThreshold for bag match.

SBM (SQ, SP) =
|Matched n-snippets between SQ and SP |
max(|n-snippets in SQ|,|n-snippets in SP |)

(2)

Pattern Sequence DAN2

0

100

200

300

400

500

600

700

800

20 30 40 50 60 70

Time (Sec)

T
e

m
p

e
ra

tu
re

 (
F

)

DAN2

Pattern Sequence DAN3

0

100

200

300

400

500

600

700

800

900

20 30 40 50 60 70

Time (Sec)

T
e

m
p

e
ra

tu
re

 (
F

)

DAN3

=

∑ρCj x ν[j]

∑ρCj

[1 | 1 | 0 | 1 | 0]

p1 p2 p3 p4 p5

p1 p2 p3 p4 p5
p1 p2 p3 p4 p5SP

SQ from SL

Match Node (ρ, ν [1: ρ], Ѕ)

Pattern Sequence DAN2

0

100

200

300

400

500

600

700

800

20 30 40 50 60 70

Time (Sec)

T
e

m
p

e
ra

tu
re

 (
F

)

DAN2

Pattern Sequence DAN3

0

100

200

300

400

500

600

700

800

900

20 30 40 50 60 70

Time (Sec)

T
e

m
p

e
ra

tu
re

 (
F

)

DAN3

=

∑ρCj x ν[j]

∑ρCj

=

∑ρCj x ν[j]

∑ρCj

=

∑ρCj x ν[j]

∑ρCj

[1 | 1 | 0 | 1 | 0]

p1 p2 p3 p4 p5p1 p2 p3 p4 p5

p1 p2 p3 p4 p5p1 p2 p3 p4 p5
p1 p2 p3 p4 p5p1 p2 p3 p4 p5SP

SQ from SL

Match Node (ρ, ν [1: ρ], Ѕ)

Figure 5: Order checking of snippets over sequences

Intuitively, we consider SQ and SP matched if they have
enough snippets in common. See Figure 4 for an example.

In bag matching there is no notion of sequence matching
as the order of occurrence of the snippets is not considered.
For this, we introduce the notion of order checking.

Definition 7. Order checking is defined as a sequence match-
ing step where the order of occurrence of terms (here, snip-
pets or collections of snippets) within sequences is checked.
The order checking score is maintained in a match store for
each possible prefix ̺ρ of a pattern SPi, the match score
can be computed up to any position ρ in the pattern using
Formula 3. A match store is a triplet 〈ρ, ν[1:ρ], Sρ

OC〉 with:

1. Match Position ρ - Position of current snippet up to
which SPi has been matched above the threshold.

2. Match Vector ν[1:ρ] - A vector recording ∆(SnipA,SnipB)
(≤ ∆AvgStdev) but only if the snippets within SL oc-
cur in the original order of SPi; SnipA ǫ SQ and SnipB

ǫ SPi.

3. Match Score Sρ
OC - Cummulative score of the indi-

vidual scores stored in the Match Vector ν up to the
Match Position ρ.

Sρ
OC(SQ,SPi) =

Pρ

j=1
Cj × ν[j]

Pρ

j=1
Cj

(3)

In Formula 3, Cj is the weight associated with snippet
at position j, ν[j] is the ∆(SnipA,SnipB) score at position j.
An auxiliary structure called match store maintains the SOC

score. As shown in Figure 5, SQ is said to have matched with
SP if the strict order of the snippets is maintained between
them. In other words, the order checking score Sρ

OC(SQ, SPi)
being within a certain user-specified threshold is a measure
of the extent of match between the (SQ, SPi) pair. However,
the strict ordering of terms is a rather stringent condition
whereas in practice an approximate match as opposed to
an exact match may be more realistic. Our solution takes
advantage of the best of both strategies as explained in the
following section.

3.3 Integrated Bag and Order Matching
On the one hand, we would like to perform a bag match

allowing some local disorder among the snippets. On the
other hand, we would like to assure that the order within
the sequences is mostly maintained. To facilitate this we
now introduce another layer of granularity between indi-
vidual snippets and complete sequences. We call it an m-
SnippetCollection or simply a collection. Forming collections
of m consecutive snippets out of a sequence S divides S into
⌈(Len(S)/m+n-1)⌉ groups of consecutive snippets. Each
snippet collection consists of m+n-1 consecutive data val-
ues. Two consecutive collections overlap by just n-1 data
values, where n is the snippet size.

372

… …
| Snip(B1) ∩Snip(B2) |

Max(|Snip(B1)|,|Snip(B2)|)

SB3SB2SB1

321

SB3SB2SB1

321 ∑i Wi x SB[i]

∑i Wi

II. Order checking of

collections of snippets

I. Bag matching of snippets

Figure 6: Two layers of matching

Instead of conducting either bag matching or order check-
ing at the snippet level, we now propose to integrate these
methods into a two-layered matching technique (as illus-
trated in Figure 6):

1. Bag matching across snippets within a collection of m
consecutive snippets, and

2. order checking across the matched m-snippetCollections
of snippets for a sequence.

This arrangement achieves our goal of allowing local dis-
order while still maintaining overall order of the sequences.
The bag match score for each matching collection pair is
passed on to its position in the match vector for computa-
tion of the order checking score for the sequence.

An order match between a SQ and a particular pattern
SPi is established only if the consecutive collections of snip-
pets of SQ are found in exactly the same order as that of
collections of snippets in SPi. Similar to order checking over
snippets, here also we make use of a match store for each SPi

to maintain the match with slight modifications, namely, ρ

is now the position of the current collection up to which the
SPi, The match vector ν[1:ρ] records the bag matching scores
of the collections in the order they occur in the original SPi.

An example of a match store is 〈 3,〈0.98|1.0|0.89〉, 0.95 〉.
Here 3 denotes the match position ρ. 〈0.98|1.0|0.89〉 denotes
the scores of the first 3 consecutive collections of SPi, and
0.95 is S3

OC computed according to Formula 3. The value of
ρ for a SPi can vary from 0 to ⌊Len(SP)÷(m+n-1)⌋, i.e., the
number of collections the SPi can be divided into.

n determines the degree of smoothing. To preserve the
significant patterns yet be able to eliminate noise, n needs
to be small compared to the sequence length (n ≪ Len(S)).
Setting n = 1 corresponds to no smoothing, whereas, setting
a large n value may cause over-smoothing. Hence, smooth-
ing over a small number of data values, in our case 3 ≤ n ≤
8 has been found to be a good choice.

m is the degree of allowed disorder in the snippets while
still calling it a match. Ideally we would avoid the choice
of extreme values for m. m =1 means order checking over
individual snippet, whereas, m = Len(S) (i.e., equal to the
size of the sequence) will mean bag matching of all the snip-
pets in the sequence. Hence, for almost all domains we will
keep low value of m (say 3 ≤ m ≤ 30) compared to sequence
sizes (m ≪ Len(S)).

4. LIVE STREAM MATCHING
SNIF performs the matching of the live stream SL against

the set of patterns SP in two phases:

1. Off-line Preprocessing Phase: Each SP is scanned once
and snippets as well as collections are extracted. They
are then loaded into a two-level index structure. The
index is cleaned by removing approximate duplicates
during this index construction process.

2. On-line Live Stream Matching Phase: As new data
values continuously arrive at SL, live snippets (LS) are
incrementally extracted from it analogous to snippet
extraction from each SP . Each LS probes the first level
of the index to perform bag matching over a collection
worth of data. The high-ranked collections then probe
the second level of the index to perform order checking
to output the potential SP candidates.

4.1 Preprocessing: Designing Indexes for Bag-
and Order- based Matching

One of the greatest challenges of the live stream matching
problem is that the two layers of our proposed matching
technique need to be performed on-the-fly between the live
stream SL and each of the pattern sequences SP . We propose
to store the pattern sequences SP in a hierarchical structure
composed of two inverted indices (for each match layer).
An inverted index reduces the memory required to store the
patterns, allows quick lookup and, as an inherent feature,
returns matches ordered by frequency counts.

We first define the terms occurrence list and inverted in-
dex. For a term (here snippets or collections), an occurrence
list consists of the identifier of SP and the list of offsets where
the term occurs within SP . An inverted index consists of a
map between the terms (here snippets or collections) and
their occurrence list. The two indices are shown in Figures
7 and 8.

…<Snip186>

…<Snip12>

……

…<Snip61>

…<Snip1> SCol1 <o1,o2,..,oi>

SCol2 <o1,o2,..,oj>

SCol13 <o1,o2,..,ov>

SCol76 <o1,o2,..,ol>

SCol83 <o1,o2,..,of> SCol240 <o1,o2,..,oz>

SCol43 <o1,o2,..,os>

SCol13 <o1,o2,..,op>

n-Snippets Occurrence list for n-Snippets

…<Snip186>

…<Snip12>

……

…<Snip61>

…<Snip1> SCol1 <o1,o2,..,oi>

SCol2 <o1,o2,..,oj>

SCol13 <o1,o2,..,ov>

SCol76 <o1,o2,..,ol>

SCol83 <o1,o2,..,of> SCol240 <o1,o2,..,oz>

SCol43 <o1,o2,..,os>

SCol13 <o1,o2,..,op>

n-Snippets Occurrence list for n-Snippets

Figure 7: n-Snippet Index

The front-end inverted index, also called the snippet index
(Figure 7), uses snippets as indexing terms. For each snip-
pet it maintains an occurrence list that contains information
about the occurrence of the snippet within the collections.
The occurrence list information corresponds to a vector 〈
SColID,〈 o1,o2,..,oi 〉 〉, i.e., the identifier of the snippet col-
lection in which the snippet exists along with each of the off-
sets oi within the collection where the snippet occurs. This
information is used for bag matching of snippets to report
what fraction of a collection has matched.

The back-end inverted index (Figure 8) uses the identifier
of the collections as indexing terms. For each collection, it
maintains an occurrence list that contains information about
the occurrence of the collection within SP . The occurrence
list information is 〈 SID, 〈 o1,o2,..,oi 〉 〉 where SID is the
identifier of the SP in which the collection exists along with
each of the offsets within the SP where the collection occurs.

373

…
<SnipCol240>

…
<SnipCol43>

……

…
<SnipCol86>

…<SnipCol1> Sp1 <o1,o2,..,oi>

Sp2 <o1,o2,..,oj>

Sp23 <o1,o2,..,ov>

Sp36 <o1,o2,..,ol>

Sp21 <o1,o2,..,of> Sp40 <o1,o2,..,oz>

Sp34 <o1,o2,..,os>

Sp15 <o1,o2,..,op>

m-SnippetCollections Occurrence list for m-SnippetCollections

…
<SnipCol240>

…
<SnipCol43>

……

…
<SnipCol86>

…<SnipCol1> Sp1 <o1,o2,..,oi>

Sp2 <o1,o2,..,oj>

Sp23 <o1,o2,..,ov>

Sp36 <o1,o2,..,ol>

Sp21 <o1,o2,..,of> Sp40 <o1,o2,..,oz>

Sp34 <o1,o2,..,os>

Sp15 <o1,o2,..,op>

m-SnippetCollections Occurrence list for m-SnippetCollections

Figure 8: m-SnippetCollection Index

The back-end index, also called the m-SnippetCollection in-
dex, is used for order checking of collections within SP .

B+ Tree on
n-Snippets

B+ Tree on

m-SnipCols

2 Levels of Inverted Indices

…

SCol_j <o1,o2,..,of>

SCol_j: Unique Identifier of
the Collections of snippets

Oi : Offset where snippet
occurs in SCol_j

SP_m: Unique Identifier of
the Pattern Sequence

Oj : Offset where Collection
occurs in SP_m

SP_m <o1,o2,..,ok>

…DAN2

0

100

200

300

400

500

600

700

800

-5 4

1
3

2
2

3
1

4
0

4
9

5
8

6
7

7
6

8
5

9
4

1
0
3

1
1
2

1
2
1

1
3
0

1
3
9

1
4
8

1
5
7

1
6
6

1
7
5

1
8
4

1
9
3

DAN2

DAN4

0

100

200

300

400

500

600

700

800

900

1000

-5 4

1
3

2
2

3
1

4
0

4
9

5
8

6
7

7
6

8
5

9
4

1
0
3

1
1
2

1
2
1

1
3
0

1
3
9

1
4
8

1
5
7

1
6
6

1
7
5

1
8
4

1
9
3

DAN4

DAN1_R2

0

100

200

300

400

500

600

700

800

900

-5 5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9
5

1
0
5

1
1
5

1
2
5

1
3
5

1
4
5

1
5
5

1
6
5

1
7
5

1
8
5

1
9
5

DAN1_R2

DFF10

0

50

100

150

200

250

300

350

400

450

-5 4

1
3

2
2

3
1

4
0

4
9

5
8

6
7

7
6

8
5

9
4

1
0
3

1
1
2

1
2
1

1
3
0

1
3
9

1
4
8

1
5
7

1
6
6

1
7
5

1
8
4

1
9
3

DFF10

DFF9

0

50

100

150

200

250

300

350

400

450

-5 4

1
3

2
2

3
1

4
0

4
9

5
8

6
7

7
6

8
5

9
4

1
0

3

1
1

2

1
2

1

1
3

0

1
3

9

1
4

8

1
5

7

1
6

6

1
7

5

1
8

4

1
9

3

DFF9

SP

B+ Tree on
n-Snippets

B+ Tree on

m-SnipCols

2 Levels of Inverted Indices

…

SCol_j <o1,o2,..,of>

SCol_j: Unique Identifier of
the Collections of snippets

Oi : Offset where snippet
occurs in SCol_j

SP_m: Unique Identifier of
the Pattern Sequence

Oj : Offset where Collection
occurs in SP_m

SP_m <o1,o2,..,ok>

…

B+ Tree on
n-Snippets

B+ Tree on

m-SnipCols

2 Levels of Inverted Indices

…

SCol_j <o1,o2,..,of>SCol_j <o1,o2,..,of>

SCol_j: Unique Identifier of
the Collections of snippets

Oi : Offset where snippet
occurs in SCol_j

SP_m: Unique Identifier of
the Pattern Sequence

Oj : Offset where Collection
occurs in SP_m

SP_m <o1,o2,..,ok>SP_m <o1,o2,..,ok>

…DAN2

0

100

200

300

400

500

600

700

800

-5 4

1
3

2
2

3
1

4
0

4
9

5
8

6
7

7
6

8
5

9
4

1
0
3

1
1
2

1
2
1

1
3
0

1
3
9

1
4
8

1
5
7

1
6
6

1
7
5

1
8
4

1
9
3

DAN2

DAN4

0

100

200

300

400

500

600

700

800

900

1000

-5 4

1
3

2
2

3
1

4
0

4
9

5
8

6
7

7
6

8
5

9
4

1
0
3

1
1
2

1
2
1

1
3
0

1
3
9

1
4
8

1
5
7

1
6
6

1
7
5

1
8
4

1
9
3

DAN4

DAN1_R2

0

100

200

300

400

500

600

700

800

900

-5 5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9
5

1
0
5

1
1
5

1
2
5

1
3
5

1
4
5

1
5
5

1
6
5

1
7
5

1
8
5

1
9
5

DAN1_R2

DFF10

0

50

100

150

200

250

300

350

400

450

-5 4

1
3

2
2

3
1

4
0

4
9

5
8

6
7

7
6

8
5

9
4

1
0
3

1
1
2

1
2
1

1
3
0

1
3
9

1
4
8

1
5
7

1
6
6

1
7
5

1
8
4

1
9
3

DFF10

DFF9

0

50

100

150

200

250

300

350

400

450

-5 4

1
3

2
2

3
1

4
0

4
9

5
8

6
7

7
6

8
5

9
4

1
0

3

1
1

2

1
2

1

1
3

0

1
3

9

1
4

8

1
5

7

1
6

6

1
7

5

1
8

4

1
9

3

DFF9

SP

DAN2

0

100

200

300

400

500

600

700

800

-5 4

1
3

2
2

3
1

4
0

4
9

5
8

6
7

7
6

8
5

9
4

1
0
3

1
1
2

1
2
1

1
3
0

1
3
9

1
4
8

1
5
7

1
6
6

1
7
5

1
8
4

1
9
3

DAN2

DAN4

0

100

200

300

400

500

600

700

800

900

1000

-5 4

1
3

2
2

3
1

4
0

4
9

5
8

6
7

7
6

8
5

9
4

1
0
3

1
1
2

1
2
1

1
3
0

1
3
9

1
4
8

1
5
7

1
6
6

1
7
5

1
8
4

1
9
3

DAN4

DAN1_R2

0

100

200

300

400

500

600

700

800

900

-5 5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9
5

1
0
5

1
1
5

1
2
5

1
3
5

1
4
5

1
5
5

1
6
5

1
7
5

1
8
5

1
9
5

DAN1_R2

DFF10

0

50

100

150

200

250

300

350

400

450

-5 4

1
3

2
2

3
1

4
0

4
9

5
8

6
7

7
6

8
5

9
4

1
0
3

1
1
2

1
2
1

1
3
0

1
3
9

1
4
8

1
5
7

1
6
6

1
7
5

1
8
4

1
9
3

DFF10

DFF9

0

50

100

150

200

250

300

350

400

450

-5 4

1
3

2
2

3
1

4
0

4
9

5
8

6
7

7
6

8
5

9
4

1
0

3

1
1

2

1
2

1

1
3

0

1
3

9

1
4

8

1
5

7

1
6

6

1
7

5

1
8

4

1
9

3

DFF9

DAN2

0

100

200

300

400

500

600

700

800

-5 4

1
3

2
2

3
1

4
0

4
9

5
8

6
7

7
6

8
5

9
4

1
0
3

1
1
2

1
2
1

1
3
0

1
3
9

1
4
8

1
5
7

1
6
6

1
7
5

1
8
4

1
9
3

DAN2

DAN4

0

100

200

300

400

500

600

700

800

900

1000

-5 4

1
3

2
2

3
1

4
0

4
9

5
8

6
7

7
6

8
5

9
4

1
0
3

1
1
2

1
2
1

1
3
0

1
3
9

1
4
8

1
5
7

1
6
6

1
7
5

1
8
4

1
9
3

DAN4

DAN1_R2

0

100

200

300

400

500

600

700

800

900

-5 5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9
5

1
0
5

1
1
5

1
2
5

1
3
5

1
4
5

1
5
5

1
6
5

1
7
5

1
8
5

1
9
5

DAN1_R2

DFF10

0

50

100

150

200

250

300

350

400

450

-5 4

1
3

2
2

3
1

4
0

4
9

5
8

6
7

7
6

8
5

9
4

1
0
3

1
1
2

1
2
1

1
3
0

1
3
9

1
4
8

1
5
7

1
6
6

1
7
5

1
8
4

1
9
3

DFF10

DFF9

0

50

100

150

200

250

300

350

400

450

-5 4

1
3

2
2

3
1

4
0

4
9

5
8

6
7

7
6

8
5

9
4

1
0

3

1
1

2

1
2

1

1
3

0

1
3

9

1
4

8

1
5

7

1
6

6

1
7

5

1
8

4

1
9

3

DFF9

SP

Figure 9: Building the hierarchical two-level index

The index structure is supplemented by a B+-tree struc-
ture called Avg-StdevSortedTree (ASTree) of the snippets
present in the front-end index. It is sorted on the snippet
similarity measure values.

The snippets and snippetCollections are extracted from
SP and loaded in the index during preprocessing. Every
time we collect m number of snippets, they are grouped
together and given a unique collection identifier. The snip-
pets are loaded into the snippet inverted index, called front-
end index, as during matching it is matched against the
snippets of the live stream. In a similar manner, the m-
SnippetCollections are loaded into the collection inverted in-
dex, called the back-end index, as this is not directly probed
by SL.

During live stream matching, first, a range search would
be performed on the ASTree to extract similar (based on
the similarity measure) snippets. The snippets would result
in multiple (likely redundant) front-end index probes. To
avoid this, we reduce the index size by clustering the snip-
pets on the similarity measure values using some third party
clustering tools [10].

To summarize, the preprocessing phase consists of three
tasks:

1. Extracting snippets and collections from each SP .

2. Clustering snippets and associating with a cluster iden-
tifier (CID).

3. Loading the two levels of the index.

4.2 Live Stream Matching Phase
Using the two-level index structure, the live stream match-

ing is divided into two layers of matching:

1. Snippet index lookup for bag matching of snippets to
determine which and how much of a given collection is
matched, and

2. Collection index lookup for order checking of the col-
lections to determine which SP and how long has the
SP matched.

These two abstract layers of matching make it possible to
match the live stream against SP of different lengths.

4.2.1 n-Snippet Index Lookup

As new data is being appended to SL, live snippets LS are
extracted from SL (see Section 3.1). LS identifiers cannot di-
rectly probe the n-Snippet index. As an intermediate step,
the similarity measure values (here, average and standard
deviation) of LS are used to perform a range query over the
ASTree. The retrieved identifier of a snippet is then used to
probe the n-Snippet index to retrieve the potential collec-
tions to which LS belongs. The matching phase uses auxil-
iary structures for recording the matches at the two layers.
The structure called Collections-Latest-m-LS , records each
extracted LS and the list of the collections corresponding to
it.

As the input stream is infinite, the question arises for how
many such live snippets LS we need to maintain the can-
didate collections? As the name suggests, we propose to
maintain the collection of Collections-Latest-m-LS for the
m current LS, i.e., equal to the count of snippets in each
collection of a SP . For example, we discard LSi and its
corresponding list of collections as LSi+m is extracted, and
so on, for any general ith LS. This in turn means that we
need to store just the latest m+n-1 data points of SL. If a
time-series data point uses ’b’ bits, then (m+n-1)× b bits of
memory is required to store the live stream portion used in
SNIF matching.

In our case, each of the Collections of SP and also the
Collections-Latest-m-LS are of size m. To compute the frac-
tion of bag matching, we maintain the frequency count of
each collection existing in the list of Collections-Latest-m-
LS across the latest m LS . We utilize another auxiliary
structure called FrequencyCount-Latest-m-LS to record the
counts. For each collection in the collection list, the score
is the ratio between its frequency count across m LS and
the value m. Finding all m snippets of a collection, called a
complete match, corresponds to the count m/m = 1.

The process of bag matching is illustrated using the two
snapshots in Figure 10. Say, for our example, m = 26 and
n = 5. As each live snippet LS is extracted from the live
stream SL, it probes the front-end index and extracts candi-
date collections. These collections are listed with the prob-
ing LS in the Collections-Latest-m-LS . When we have m
LS we can perform the frequency count of each collection
listed in Collections-Latest-m-LS and either create an entry
in the FrequencyCount-Latest-m-LS with its count or update
an existing entry. The two figures show bag matching steps
for live snippets 1 to 26 and 2 to 27. In Figure 10 as we tran-
sition from Snapshot 1 to Snapshot 2 , when LS27 arrives,
LS1 gets eliminated. The frequency counts for each collec-
tion can be incrementally computed by taking into account
the outgoing LS1 and the incoming LS27.

4.2.2 m-SnippetCollection Index Lookup

For the order checking step, the back-end index is looked
up by the collection identifiers to fetch their corresponding
occurrence lists. Out of the collections listed in FrequencyCount-
Latest-m-LS only the ones with count scores above the user
defined threshold SColThreshold are used to look up the

374

Live Stream

|66.94|62.97|58.51|52.94|47.81|43.65|40.02|……..……..|32.26|30.4|28.69|27.27|26.06|25.12|24.35|23.79|23.45|23.12|23.07|

time Live Stream

|66.94|62.97|58.51|52.94|47.81|43.65|40.02|……..……..|32.26|30.4|28.69|27.27|26.06|25.12|24.35|23.79|23.45|23.12|23.07|

time

<LS1, 23.56,0.53><LS1, 23.56,0.53>
<LS2, 23.97,0.78><LS2, 23.97,0.78>

<LS3, 24.56,1.05><LS3, 24.56,1.05>

<LS4, 25.32,1.38><LS4, 25.32,1.38>
<LS26, 56.43, 6.95><LS26, 56.43, 6.95>

………

n-Snippets Inverted Index Lookupn-Snippets Inverted Index Lookup

Frequency count over Latest m (=26) Live Snippets

LS26

SCol2

SCol142

SCol1

SCol44

SCol119

SCol339

LS26

SCol2

SCol142

SCol1

SCol44

SCol119

SCol339

LS26

SCol2

SCol142

SCol1

SCol44

SCol119

SCol339
…..

LS2

SCol1

SCol3

SCol12

SCol23

SCol221

SCol21
…..

LS2

SCol1

SCol3

SCol12

SCol23

SCol221

SCol21
…..

LS2

SCol1

SCol3

SCol12

SCol23

SCol221

SCol21

LS2

SCol1

SCol3

SCol12

SCol23

SCol221

SCol21

Collections of Latest m (=26) Live Snippets

…..

…..

…..

…..

…..

…..

SCol351

SCol221

LS1

SCol1

SCol22

SCol36

SCol142

SCol351

SCol221

LS1

SCol1

SCol22

SCol36

SCol142

SCol351

SCol221

LS1

SCol1

SCol22

SCol36

SCol142

…………

4SCol36

11SCol22

18SCol2

21SCol142

24SCol1

Count

(out of 26)

SCol ID

…………

4SCol36

11SCol22

18SCol2

21SCol142

24SCol1

Count

(out of 26)

SCol ID
Bag Matching

|Matched Snippets|

Max(|B1 Snippets|,|B2 Snippets|)

Live Stream

|66.94|62.97|58.51|52.94|47.81|43.65|40.02|……..……..|32.26|30.4|28.69|27.27|26.06|25.12|24.35|23.79|23.45|23.12|23.07|

time Live Stream

|66.94|62.97|58.51|52.94|47.81|43.65|40.02|……..……..|32.26|30.4|28.69|27.27|26.06|25.12|24.35|23.79|23.45|23.12|23.07|

time

<LS1, 23.56,0.53><LS1, 23.56,0.53>

<LS2, 23.97,0.78><LS2, 23.97,0.78>

<LS3, 24.56,1.05><LS3, 24.56,1.05>

<LS4, 25.32,1.38><LS4, 25.32,1.38>
<LS26, 56.43, 6.95><LS26, 56.43, 6.95>

………

n-Snippets Inverted Index Lookupn-Snippets Inverted Index Lookup

Frequency count over Latest m (=26) Live Snippets

LS26

SCol2

SCol142

SCol1

SCol44

SCol119

SCol339

LS26

SCol2

SCol142

SCol1

SCol44

SCol119

SCol339

LS26

SCol2

SCol142

SCol1

SCol44

SCol119

SCol339
…..

LS2

SCol1

SCol3

SCol12

SCol23

SCol221

SCol21
…..

LS2

SCol1

SCol3

SCol12

SCol23

SCol221

SCol21
…..

LS2

SCol1

SCol3

SCol12

SCol23

SCol221

SCol21

LS2

SCol1

SCol3

SCol12

SCol23

SCol221

SCol21

Collections of Latest m (=26) Live Snippets

…..

…..

…..

…..

…..

…..

Bag Matching

LS27

SCol53

SCol142

SCol2

SCol42

SCol34

SCol40

LS27

SCol53

SCol142

SCol2

SCol42

SCol34

SCol40

LS27

SCol53

SCol142

SCol2

SCol42

SCol34

SCol40

…………

3SCol36

10SCol22

19SCol2

21SCol142

23SCol1

Count

(out of 26)

SCol ID

…………

3SCol36

10SCol22

19SCol2

21SCol142

23SCol1

Count

(out of 26)

SCol ID

<LS27, 57.83, 7.65><LS27, 57.83, 7.65>

|Matched Snippets|

Max(|B1 Snippets|,|B2 Snippets|)

Figure 10: Bag matching in progress: Snapshot 1, and Snapshot 2

back-end index. By probing the back-end index the can-
didates SP are obtained from the occurrence lists.

Figure 11 illustrates the process of order checking us-
ing the back-end index. Say, the SColThreshold = 0.65.
Out of the collections in the FrequencyCount-Latest-m-LS ,
the unshaded ones are highly ranked, i.e., having SBM ≥
SColThreshold and are used to look up the back-end index.
They are SCol1, SCol142 and SCol2. The shaded ones are
below the threshold. From SP and position information of
the occurrence list the match for each candidate SP can be
recorded in the SP match stores. Given the SP Threshold =
0.85, looking at the match stores in Figure 11, the highly
ranked are unshaded, namely, S3

P1, S2
P6, S3

P6, and S4
P3),i.e.

having SOC ≥ SP Threshold. Only a high-ranked SP will be
reported as a candidate match.

The individual collection score is the result of bag match-
ing between the collection and the latest m LS . At the next
layer, while reporting a match for a SP , the order of the
collections is checked. A score for a collection is added to
a ν[1:ρ] of a SP only if that collection is at a position p ≤
(ρ + 1) and with a score above the SColThreshold. These
SP match stores are also incrementally evaluated and main-
tained just like the FrequencyCount-Latest-m-LS .

24SCol1

Count

(out of 26)

SCol ID

…..

21SCol142

18SCol2

11SCol22

4SCol36

….. SP6

{<0.98|1.0|0.89>, 3 , 0.95} \

{<1.0|.8|0.9>, 3 , 0.9} \{<1.0|0.9>, 2 , 0.95} {<1.0|.8|0.9>, 3 , 0.9} \{<1.0|0.9>, 2 , 0.95}

{<0.8|0.7|0.8>, 3 ,0.76} {<0.8|0.7|0.7|0.9>, 4 , 0.875} \{<0.8|0.7|0.8>, 3 ,0.76} {<0.8|0.7|0.7|0.9>, 4 , 0.875} \

……. …………………………………

SP1

SP3

{<0.7|0.7|0.8>, 3 ,0.73} {<0.7|0.7|0.7|0.9>, 4 , 0.75} \SP5

Potential

SP

SP Match Node

(ν [1: ρ], ρ, Ѕ)

order checking

Potential

SP

SP Match Node

(ν [1: ρ], ρ, Ѕ)

order checking

m-SnippetCollection Index Lookupm-SnippetCollection Index Lookup

Frequency Count over Latest m (=26) Live Snippets

S=
∑p Wp x ν[p]

∑p Wp

S=
∑p Wp x ν[p]

∑p Wp

S=
∑p Wp x ν[p]

∑p Wp

Figure 11: Order Checking using Collection Index
Lookup

Next we discuss alternative approaches for incremental
evaluation of SP match stores. First, while several SP matches
can be formed, a mechanism is required for pruning adhoc
matches and false positives. We propose to use another
threshold, we call Slower

P Threshold (< SP Threshold) to dis-
card SP matches that have SOC < Slower

P Threshold. Second,
many collections, especially adjacent collections within a SP

share similar snippets. For this reason multiple collections
within a SP may have high scores in the latest m LS . There
are several options how best to address this. One may main-
tain just a single ν[1:ρ] for a SP based on either the best
match score (best SOC value) or the extent of the match
(the ρ value). Alternatively, multiple match vectors can be
maintained for each SP . We found that maintaining just
the single ν[1:ρ] for a candidate SP works well for our two
experimental datasets. However, clearly this is a heuristic
and, in general, multiple ν[1:ρ] allows any one of those to
become the best choice later. There is a trade off between
the response time and result accuracy. Hence, there needs
to be an upper bound on the maximum number of match
vectors to be maintained per SP .

We propose four variations of the live stream matching
according to the number of match vectors maintained per
SP . The variations allow the user the capability to choose
between the two conflicting characteristics of result accuracy
versus response time. The variations are:

1. Best 1 : Only a single match vector is maintained per
SP based on the match score.

2. Multiple 1 per position: Multiple matches for a SP but
only 1 per position of collection in the SP

3. Best k : The top-k match vectors are maintained per
SP based on the match score.

4. Best k with 1 per position: Multiple match stores main-
tained as a combination of best k and multiple 1 per
position.

We list the complete algorithm for the live stream match-
ing step in Algorithm 1.

5. EVALUATION
In this section we study the performance, the accuracy and

the robustness of SNIF matching framework by a thorough
comparative study against the state-of-the-art Continuous
Query with Prediction (in short, CQP) proposed by Gao et.
Al [9].

System Implementation. SNIF and CQP are both im-
plemented in java over an existing continuous stream pro-
cessing engine, CAPE [20]. For CQP implementation [11]
FFT package was used. Experiments were conducted on
an Intel(R) Pentium(R) machine with processor speed 1.70
GHz and 2GB memory.

375

Algorithm 1 Live Stream Matching Algorithm

Input: The 2-level indices, Live stream sequence SL

Output: Potential pattern sequences SP and their respec-
tive scores

1: Range search on ASTree.
2: SC[][] = φ
3: counter = 0;
4: for each n tuples in SL do
5: Form snippets LSi =< LSid, Avg, Stdev >
6: counter++
7: for each LSi do
8: // find the set of matched pattern snippets
9: SC[i] = φ

10: for PSj ← RangeSearch(ASTree, LSi) do
11: // find a set of snippetCollections
12: SC[i] = SC[i]∪ FrontEndIndexLookUp(PSj)
13: if counter == m then
14: OList[] = φ
15: for each SCj ∈ SC[][] do
16: if FREQUENCY COUNT(SCJ, SC[][]) ≥

ScolThreshold then
17: // Determine the occurrence list of all patterns
18: // (and its corresponding offsets) in which SCj

19: // exists of the form < SP1, offsetP1 >, . . . <
SPi, offsetsPi >

20: OList[j] ← BackEndIndexLookUp(SCj)
21: for each OList[j] ∈ OList[] do
22: for each SPi ∈ OList[j] do
23: MatchStores(SPi)
24: if MatchScore(SPi) > SP Threshold then
25: return SP as candidate
26: Remove SC[0] from SC[][]

Real Data Sets. The experiments were conducted on
2 different real datasets, namely EDaFS [24] fire dataset
and the sensor network motes dataset [21]. The EDaFS
dataset contains temperature, smoke CO readings recorded
during several live fire tests conducted in NIST fire labs to
study smouldering and flaming fires. Motes dataset [21] con-
sists of 4 groups of sensor measurements (i.e., light intensity,
humidity, temperature, battery voltages) collected using 48
Berkeley Mote sensors at different locations in a lab, over a
period of a month. Streams are heterogeneous streams, i.e.,
temperature shows a weak daily cycle and a lot of bursts,
whereas humidity does not have any regular pattern.

Pattern Sequences. We use a collection of pattern se-
quences of various lengths, namely 200∼300, 500∼600 and
700∼800. Each collection consists of 50∼60 patterns which
are extracted from each of the two real datasets. The pat-
tern sequences are maintained in a two-layered index along
with its auxiliary tree structure (ASTree).

We have designed three sets of experiments. First, we
measure and compare the average CPU execution time of the
proposed algorithms versus the state-of-the-art CQP. Figure
12 identifies that the SNIF algorithms execute at least 5 folds
faster than CQP for all the three pattern lengths. The in-
crease in pattern length drastically reduces the performance
of CQP. Our two-level indexing strategy facilitates our SNIF
algorithms to show better performance even for longer pat-
tern lengths.

In the second set of experiments, we compare the accu-
racy of the different algorithms based on the match score

����

��
��
��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

����

�
�
�
�

���� ��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

CQP

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

A
v
er

ag
e

C
P

U
 C

o
st

s
(m

se
c)

Pattern Lengths

Average CPU Costs with Different Pattern Lengths

200~300 500~600 700~800

B1
M1perP

B5
B5_1perP

 0

Figure 12: Comparing Average CPU costs of SNIF
algorithms against CQP

measured on a scale from 0 to 1, with the perfect match
score as 1. To faciliate this comparison we introduce error
in the live stream using the error model, Errsqrt, proposed
in CQP. In Errsqrt, the absolute error increases in the or-

der of O(
√

k), which is defined as Errsqrt = a * RAND *√
k, where k is the prediction step, RAND is a uniformly

distributed random variable having values between -0.5 to
+0.5, a is the error control which can scale up the prediction
error as needed. In our experiments a is set to be 1. The
actual Euclidean distances and the distances from the CQP
algorithm are normalized and subtracted from 1 to compare
against the match scores of the SNIF algorithms. In Fig-
ure 13 we clearly see that longer the sequence is subjected
to error the less accurate of a match it is. In our experi-
ments, the match score is a function of the algorithm tested
and the portion of sequence subjected to error (equivalent
to the prediction length for CQP). For all three pattern sets
(200∼300, 500∼600, 700∼800), the SNIF algorithms sustain
their match scores. While CQP matches deteriorate with
longer predictions.

In the third set of experiments, we measure the robustness
of our proposed algorithms against random noise. We ex-
amine three pairs of the snippet size n and collection size m,
namely, (n=1, m=10), (n=5, m=10) and (n=5, m=3). For
each pair we set the corresponding sizes for the pattern se-
quences and the live stream. We introduce different amounts
of noise in the live stream ranging from 0% up to 20% by
randomly dropping data values from them. We observe that
for a given live stream, the match score is a function of
the noise level and the (snippet size, collection size) pair.
We find in Figure 14.A that snippet size set to 1 means no
smoothing and the SNIF algorithms lose their accuracy be-
yond 5% noise level. On the contrary, setting moderate sizes,
snippet size = 5 & collection size = 10 (Figure 14.B) truly
brings out the robustness of the SNIF algorithms. Moreover,
Figure 14.C having short collection sizes while maintaining
the snippet size = 5, makes the SNIF algorithm vulnerable
to the noise beyond 8 % error. Therefore, moderate snippet
size and collection size make SNIF a robust stream matching
algorithm.

6. RELATED WORK
For static time-series data, numerous algorithms [1, 2, 7,

23, 19, 5] have been proposed for a variety of similarity
matching queries. However, similarity matching over con-
tinuous streams still lacks a generic approach that can be
used across domains.

376

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 100 150 200 250 300

R
e

la
ti
v
e

 M
a

tc
h

 S
c
o

re
s
 (

P
e

rf
e

c
t

M
a

tc
h

 =
 1

)

Sequence Lengths subjected to Square Root Error / Prediction Length

ActualEuclidean

Best_1

Multi_1_per_position_per_Sp

Best_5

Best_5_with_1_per_position_per_Sp

CQP
 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 100 200 300 400 500 600

R
e

la
ti
v
e

 M
a

tc
h

 S
c
o

re
s
 (

P
e

rf
e

c
t

M
a

tc
h

 =
 1

)

Sequence Lengths subjected to Square Root Error / Prediction Length

ActualEuclidean

Best_1

Multi_1_per_position_per_Sp

Best_5

Best_5_with_1_per_position_per_Sp

CQP
 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 100 200 300 400 500 600 700 800

R
e

la
ti
v
e

 M
a

tc
h

 S
c
o

re
s
 (

P
e

rf
e

c
t

M
a

tc
h

 =
 1

)

Sequence Lengths subjected to Square Root Error / Prediction Length

ActualEuclidean

Best_1

Multi_1_per_position_per_Sp

Best_5

Best_5_with_1_per_position_per_Sp

CQP

(A) Length 200∼300 (B) Length 500∼600 (C) Length 700∼800

Figure 13: Comparing accuracy of SNIF algorithms against CQP

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

A
v
e

ra
g

e
 M

a
tc

h
 S

c
o

re
 (

o
u

t
o

f
1

)

Noise Level (% Dropped Data)

Actual Error

TA (Motes)

TB (Motes)

TC (Motes)

TD (Motes)
 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

A
v
e

ra
g

e
 M

a
tc

h
 S

c
o

re
 (

o
u

t
o

f
1

)

Noise Level (% Dropped Data)

Actual Error

TA (Motes)

TB (Motes)

TC (Motes)

TD (Motes)
 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

A
v
e

ra
g

e
 M

a
tc

h
 S

c
o

re
 (

o
u

t
o

f
1

)

Noise Level (% Dropped Data)

Actual Error

TA (Motes)

TB (Motes)

TC (Motes)

TD (Motes)

(A) n = 1 & m = 10 (B) n = 5 & m = 10 (C) n = 5 & m = 3

Figure 14: Robustness of the SNIF algorithms to Noise Levels ranging from 0% up to 20% for different
combinations of the Snippet Size (n) and the Collection Size (m).

Gao and Wang [8] propose a prediction-based matching
technique called Continuous Query with Prediction (in short,
CQP). CQP monitors the streams to search patterns that
are relevant and solves Nearest Neighbor and h-Near Neigh-
bor queries (h being the distance tolerance) for whole match-
ing. The already arrived data is used to predict future sub-
sequences. They pre-compute the distances between the
query sequence and the predicted subsequences employing
Fast Fourier Transform (FFT). When the actual data ar-
rives, prediction error and predicted distances is used to
filter false positives. Their experiments show performance
gains over a naive FFT approach with reasonable prediction
errors. However, as admitted by the authors, in our experi-
mental study we did not find the approach useful under large
prediction errors such as when the live sensor streams have
abrupt changes and high noise levels. CQP faces obvious
overheads of performing on-the-fly FFT computations and
adjusting the prediction error before every next batch pro-
cessing. Moreover, their experimental results are based on
synthetic data, hence CQPś applicability to real data is un-
known. In our work, we compare our solution to this CQP
approach and demonstrate superiority of our approach in
performance and match accuracy.

Gao et. Al [9] propose another sequence matching method
using prefetching which solves the k-Nearest Neighbor queries.
Prefetching transforms the query sequences, extracted from
the live stream, into lower-dimensional points, and stores
them to disk in a multi-dimensional index. For new arriv-
ing data points, k-nearest query sequences are searched from
the database. The arrived data values are used to predict
k-NN candidates for the near future. The multidimensional
index and the amortized disk reads handle a large number
of query sequences. The prefetching solves k-NN for only

fixed length patterns and it relies on a fixed tolerance of the
pattern sequences, which is less applicable in real scenarios.

Kontaki et. Al [16] propose the IDC-index for stream-
ing time-series matching in which DFT computations are
performed incrementally over the streaming sequences. An
R*-tree storing the dimensionality-reduced points is main-
tained for the streaming time-series data. Application of
computationally expensive FFT over the live stream and si-
multaneously building an index structure requires a response
time longer than desired by critical real-time applications.
To avoid frequent on-the-fly updates to the R*-tree, they
propose a deferred update policy.

Han et. Al [12] present techniques for ranked subsequence
matching using time warping, that finds top-k matches. They
introduce minimum-distance matching-window pair (mdmwp)
as a lower bound between the pattern subsequences and a
query sequence. Based on the mdmwp-distance, they de-
velop a ranked subsequence matching algorithm to prune
false positives. Their method uses DTW [13] which suffers
from the dimensionality curse. They also require all the
data values for distance computation. Also, DTW does not
satisfy the triangle inequality, so that spatial indexing tech-
niques cannot be applied.

Overall, the state-of-the-art stream sequence matching al-
gorithms have been extensions to the well-established static
sequence matching techniques. Most reuse the dimension-
ality reduction as used for static time-series which are ex-
pensive to compute on-the-fly. These limitations motivate
us to explore new avenues. One such matching technique,
namely, n-Gram matching using inverted-index is yet to be
explored for sequence time-series matching.

n-gram [6, 17, 18] based inverted index is a very popu-
lar and efficient information retrieval technique. Significant

377

work has been done in enhancement of n-grams [18, 14].
Kim et. Al [14], propose a two-level n-gram inverted in-
dex. Their proposed index has shown significant improve-
ment in the query performance while preserving the advan-
tages of the n-gram inverted index. However, the scope of
n-gram is restricted to text matching. In this work, we ex-
tend n-grams to apply to numeric time-series data, calling it
n-Snippets and develop approximate matching methods for
prefix matching over the live streaming data.

7. CONCLUSION
In this paper, we abstract the continuous time-series se-

quence matching problem into a prefix matching problem
and propose a generic snippet-based framework. We call it
the n-Snippet Indices Framework (in short, SNIF). We in-
troduce the concepts of n-snippets and m-snippetCollections
for numeric data. We also propose to apply two abstract lay-
ers of matching, namely, bag matching and order checking.
The framework addresses challenges of the streaming envi-
ronment, namely, noise elimination, incremental evaluation,
and efficient CPU utilization.

We demonstrate the efficiency and effectiveness of SNIF
in matching live streams to sets of patterns having different
lengths. We also compare SNIF to the state-of-the-art CQP
[8] approach and demonstrate superiority of our approach in
performance and match accuracy. We further demonstrate
the robustness of SNIF to various noise levels. We success-
fully test the framework over two distinct datasets.

8. REFERENCES
[1] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient

similarity search in sequence databases. In FODO,
pages 69–84, 1993.

[2] R. Agrawal, K.-I. Lin, H. S. Sawhney, and K. Shim.
Fast similarity search in the presence of noise, scaling,
and translation in time-series databases. In VLDB,
pages 490–501, 1995.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In PODS, pages 1–16, 2002.

[4] K.-P. Chan, A. W.-C. Fu, and C. T. Yu. Haar
wavelets for efficient similarity search of time-series:
With and without time warping. IEEE Trans. Knowl.
Data Eng., 15(3):686–705, 2003.

[5] L. Chen and R. T. Ng. On the marriage of lp-norms
and edit distance. In VLDB, pages 792–803, 2004.

[6] J. D. Cohen. Recursive hashing functions for n-grams.
ACM Trans. Inf. Syst., 15(3):291–320, 1997.

[7] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos.
Fast subsequence matching in time-series databases.
In Proceedings 1994 ACM SIGMOD Conference,
Mineapolis, MN, pages 419–429, 1994.

[8] L. Gao and X. S. Wang. Continually evaluating
similarity-based pattern queries on a streaming time
series. In SIGMOD Conference, pages 370–381, 2002.

[9] L. Gao, Z. Yao, and X. S. Wang. Evaluating
continuous nearest neighbor queries for streaming time
series via pre-fetching. In CIKM, pages 485–492, 2002.

[10] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and
L. O’Callaghan. Clustering data streams: Theory and
practice. IEEE Trans. Knowl. Data Eng.,
15(3):515–528, 2003.

[11] T. Hammond, C. F. Gerald, and P. O. Wheatley.
Algorithm used from Applied Numerical Analysis.
Addison Wesley, 1994.

[12] W.-S. Han, J. Lee, Y.-S. Moon, and H. Jiang. Ranked
subsequence matching in time-series databases. In
VLDB, pages 423–434, 2007.

[13] E. J. Keogh and M. J. Pazzani. Scaling up dynamic
time warping to massive dataset. In PKDD, pages
1–11, 1999.

[14] M.-S. Kim, K.-Y. Whang, J.-G. Lee, and M.-J. Lee.
n-gram/2l: A space and time efficient two-level
n-gram inverted index structure. In VLDB, pages
325–336, 2005.

[15] S.-W. Kim, D.-H. Park, and H.-G. Lee. Efficient
processing of subsequence matching with the euclidean
metric in time-series databases. Inf. Process. Lett.,
90(5):253–260, 2004.

[16] M. Kontaki, A. N. Papadopoulos, and
Y. Manolopoulos. Adaptive similarity search in
streaming time series with sliding windows. Data
Knowl. Eng., 63(2):478–502, 2007.

[17] J. H. Lee and J. S. Ahn. Using n-grams for korean
text retrieval. In SIGIR, pages 216–224, 1996.

[18] E. Miller, D. Shen, J. Liu, and C. Nicholas.
Performance and scalability of a large-scale n-gram
based information retrieval system. Journal of Digital
Information, 2000.

[19] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
neighbor queries. In SIGMOD Conference, pages
71–79, 1995.

[20] E. A. Rundensteiner, L. Ding, T. M. Sutherland,
Y. Zhu, B. Pielech, and N. Mehta. Cape: Continuous
query engine with heterogeneous-grained adaptivity.
In VLDB, pages 1353–1356, 2004.

[21] J. Sun, S. Papadimitriou, and C. Faloutsos.
Distributed pattern discovery in multiple streams.

[22] A. S. Varde, E. A. Rundensteiner, C. Ruiz,
M. Maniruzzaman, and R. D. S. Jr. Learnmet:
learning domain-specific distance metrics for plots of
scientific functions. Multimedia Tools Appl.,
35(1):29–53, 2007.

[23] C. Wang and X. S. Wang. Supporting content-based
searches on time series via approximation. In SSDBM,
pages 69–81, 2000.

[24] J. W. Woycheese, R. Venkatesh, and K. Mihyun.
Experiment database for fire science, database
architecture 0.9, Aug. 2004.

[25] H. Wu, B. Salzberg, G. C. Sharp, S. B. Jiang,
H. Shirato, and D. Kaeli. Subsequence matching on
structured time series data. In SIGMOD ’05:
Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, pages 682–693,
New York, NY, USA, 2005. ACM.

378

