
A Web-based Authoring Tool for Intelligent

Tutors: Blending Assessment and Instructional

Assistance

Leena Razzaq1, Mingyu Feng1, Neil T. Heffernan1, Kenneth R. Koedinger2,
Brian Junker2, Goss Nuzzo-Jones1, Michael A. Macasek1, Kai P.
Rasmussen1, Terrence E. Turner1, and Jason A. Walonoski1

1 Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts,
USA

2 Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania, USA
assistments@wpi.edu

Middle school mathematics teachers are often forced to choose between assist-
ing students’ development and assessing students’ abilities because of limited
classroom time available. To help teachers make better use of their time, a
web-based system, called the Assistment system, was created to integrate as-
sistance and assessment by offering instruction to students while providing
a more detailed evaluation of their abilities to the teacher than is possible
under current approaches. An initial version of the Assistment system was
created and used in May, 2004 with approximately 200 students and over
1000 students currently use it once every two weeks. The hypothesis is that
Assistments can assist students while also assessing them. This chapter de-
scribes the Assistment system and some preliminary results.

1 Introduction

Limited classroom time available in middle school mathematics classes com-
pels teachers to choose between time spent assisting students’ development
and time spent assessing students’ abilities. To help resolve this dilemma,
assistance and assessment are integrated in a web-based system called the As-
sistment3 System that will offer instruction to students while providing a more
detailed evaluation of their abilities to the teacher than is possible under cur-
rent approaches. The plan is for students to work on the Assistment website
for about 20 minutes per week. As building intelligent tutoring systems can be
very costly [15], the Office of Naval Research provided funding to reduce those

3 The term Assistment was coined by Kenneth Koedinger and blends Assisting and
Assessment.

mfeng
Text Box
Razzaq, Heffernan, Koedinger, Feng, Nuzzo-Jones, Junker, Macasek, Rasmussen, Turner & Walonoski (to appear). Blending Assessment and Instructional Assistance. To appear in Nadia Nedjah, et al (Eds) in Intelligent Educational Machines within the Intelligent Systems Engineering Book Series (see http://www.isebis.eng.uerj.br/). Springer is the anticipated publisher.



2 Razzaq et al.

costs. We reported on the substantial reductions in time needed to build intel-
ligent tutoring systems with the tools we have built.4 The Assistment system
is an artificial intelligence program and each week when students work on the
website, the system ”learns” more about the students’ abilities and thus, it
can hypothetically provide increasingly accurate predictions of how they will
do on a standardized mathematics test. The Assistment System is being built
to identify the difficulties individual students - and the class as a whole - are
having. It is intended that teachers will be able to use this detailed feedback
to tailor their instruction to focus on the particular difficulties identified by
the system. Unlike other assessment systems, the Assistment technology also
provides students with intelligent tutoring assistance while the assessment
information is being collected.

An initial version of the Assistment system was created and tested in May,
2004. That version of the system included 40 Assistment items. There are now
over 700 Assistment items. The key feature of Assistments is that they provide
instructional assistance in the process of assessing students. The hypothesis
is that Assistments can do a better job of assessing student knowledge lim-
itations than practice tests or other on-line testing approaches by using a
”dynamic assessment” approach. In particular, Assistments use the amount
and nature of the assistance that students receive as a way to judge the extent
of student knowledge limitations.

The rest of this chapter covers 1) the web-based architecture we used
that students and teachers interact with, 2) the Builder application that we
use internally to create this content and finally 3) a report on the designing
of the content and the evaluation of the assistance and assessment that the
Assistment system provides.

2 The Extensible Tutor Architecture

The eXtensible Tutor Architecture (XTA) is a framework that controls the
interface and behaviors of our intelligent tutoring system via a collection of
modular units. These units conceptually consist of a curriculum unit, a prob-
lem unit, a strategy unit, and a logging unit. Each conceptual unit has an
abstract and extensible implementation allowing for evolving tutor types and
content delivery methods. The XTA is represented by the diagram given in
Figure 1, illustrating the actual composition of the units. This diagram shows
the relationships between the different units and their hierarchy. Within each

4 This research was made possible by the US Dept of Education, Institute of Edu-
cation Science, ”Effective Mathematics Education Research” program Grant No.
R305K03140, the Office of Naval Research Grant No. N00014-03-1-0221, NSF
CAREER award to Neil Heffernan, and the Spencer Foundation. Author Razzaq
was funded by the National Science Foundation under Grant No. 0231773. All
the opinions in this article are those of the authors, and not those of any of the
funders.



Blending Assessment and Instructional Assistance 3

unit, the XTA has been designed to be highly flexible in anticipation of future
tutoring methods and interface layers. This was accomplished through encap-
sulation, abstraction, and clearly defined responsibilities for each component.
These software engineering practices allowed us to present a clear developmen-
tal path for future components. That being said, the current implementation
has full functionality in a variety of useful contexts.

2.1 Curriculum Unit

The curriculum unit can be conceptually subdivided into two main pieces:
the curriculum itself, and sections. The curriculum is composed of one or
more sections, with each section containing problems or other sections. This
recursive structure allows for a rich hierarchy of different types of sections and
problems.

Progress within a particular curriculum, and the sections of which is it
composed, are stored in a progress file - an XML meta-data store that indexes
into the curriculum and the current problem (one progress file per student per
curriculum).

The section component is an abstraction for a particular listing of prob-
lems. This abstraction has been extended to implement our current section
types, and allows for future expansion of the curriculum unit. Currently exist-
ing section types include ”Linear” (problems or sub-sections are presented in
linear order), ”Random” (problems or sub-sections are presented in a pseudo-
random order), and ”Experiment” (a single problem or sub-section is selected
pseudo-randomly from a list, the others are ignored). Plans for future section
types include a ”Directed” section, where problem selection is directed by the
student’s knowledge model [2].

2.2 Problem Unit

The problem unit represents a problem to be tutored, including questions,
answers, and relevant knowledge-components required to solve the problem.
For instance pseudo-tutors are a hierarchy of questions connected by correct
and incorrect answers, along with hint messages and other feedback. Each of
these questions are represented by a problem composed of two main pieces:
an interface and a behavior.

The interface definition is interpreted by the runtime and displayed for
viewing and interaction to the user. This display follows a two-step process,
allowing for easy customization of platform and interface specification. The in-
terface definition consists of high-level interface elements (”widgets”), which
can have complex behavior (multimedia, spell-checking text fields, algebra
parsing text fields). These ”high-level” widgets have a representation in the
runtime composed of ”low-level” widgets. ”Low-level” widgets are widgets
common to many possible platforms of interface, and include text labels, text



4 Razzaq et al.

Fig. 1. Abstract unit diagram

fields, images, radio buttons, etc. These ”low-level” widgets are then con-
sumed by an interface display application. Such applications consume ”low-
level” widget XML, and produce an interface on a specific platform. The
event model (described below) and relationship of ”high-level” to ”low-level”
widgets allow a significant degree of interface customizability even with the
limitations of HTML. Other technologies, such as JavaScript and streaming
video are presently being used to supplement our interface standard. Future
interface display applications are under consideration, such as Unreal Tour-
nament for Warrior Tutoring [12], and Macromedia Flash for rich content
definition.

The behaviors for each problem define the results of actions on the inter-
face. An action might consist of pushing a button or selecting a radio button.
Examples of behavior definitions are state graphs, cognitive model tracing, or
constraint tutoring, defining the interaction that a specific interface definition
possesses. To date, state graph or pseudotutor definitions have been imple-
mented in a simple XML schema, allowing for a rapid development of pseudo
tutors [16]. We have also implemented an interface to the JESS (Java Expert
System Shell) production system, allowing for full cognitive model behaviors.
A sample of the type of cognitive models we would wish to support is outlined
in Jarvis et al [9]. The abstraction of behaviors allows for easy extension of
both their functionality and by association their underlying XML definition.

Upon user interaction, a two-tiered event model (see Figure 2) is used
to respond to that interaction. These tiers correspond to the two levels of



Blending Assessment and Instructional Assistance 5

widgets described above, and thus there are ”high-level” actions and ”low-
level” actions. When the user creates an event in the interface, it is encoded
as a ”low-level” action and passed to the ”high-level” interface widget. The
”high-level” interface widget may (or may not) decide that the ”low-level”
action is valid, and encode it as a ”high-level” action. An example of this is
comparing an algebra text field (scripted with algebraic equality rules) with a
normal text field by initiating two ”low-level” actions such as entering ”3+3”
and ”6” in each one. The algebra text field would consider these to be the
same ”high-level” action, whereas a generic text field would consider them
to be different ”high-level” actions. ”High-level” actions are processed by the
interpreted behavior and the interface is updated depending on the behavior’s
response to that action. The advantage of ”high-level” actions is that they
allow an interface widget or content developer to think in actions relevant to
the widget, and avoid dealing with a large number of trivial events.

2.3 Strategy Unit

The strategy unit allows for high-level control over problems and provides flow
control between problems. The strategy unit consists of tutor strategies and
the agenda. Different tutor strategies can make a single problem behave in
different fashions. For instance, a scaffolding tutor strategy arranges a number
of problems in a tree structure, or scaffold. When the student answers the
root problem incorrectly, a sequence of other problems associated with that
incorrect answer is queued for presentation to the student. These scaffolding
problems can continue to branch as the roots of their own tree. It is important
to note that each problem is itself a self-contained behavior, and may be an
entire state graph/pseudo-tutor, or a full cognitive tutor.

Other types of tutor strategies already developed include message strate-
gies, explain strategies, and forced scaffolding strategies. The message strategy
displays a sequence of messages, such as hints or other feedback or instruc-
tion. The explain strategy displays an explanation of the problem, rather than
the problem itself. This type of tutoring strategy would be used when it was
already assumed that the student knew how to solve the problem. The forced
scaffolding strategy forces the student into a particular scaffolding branch, dis-
playing but skipping over the root problem. The concept of a tutor strategy is
implemented in an abstract fashion, to allow for easy extension of the imple-
mentation in the future. Such future tutor strategies could include dynamic
behavior based on knowledge tracing of the student log data. This would allow
for continually evolving content selection, without a predetermined sequence
of problems.

This dynamic content selection is enabled by the agenda. The agenda is a
collection of problems arranged in a tree, which have been completed or have
been queued up for presentation. The contents of the agenda are operated
upon by the various tutor strategies, selecting new problems from sections



6 Razzaq et al.

Fig. 2. Network architecture and event model diagram.

(possibly within sections) within a curriculum to append and choosing the
next problem to travel to [7].

2.4 Logging Unit

The final conceptual unit of the XTA is the logging unit with full-featured
relational database connectivity. The benefits of logging in the domain of ITS
have been acknowledged, significantly easing data mining efforts, analysis, and
reporting [14]. Additionally, judicious logging can record the data required to
replay or rerun a user’s session.

The logging unit receives detailed information from all of the other units
relating to user actions and component interactions. These messages include
notification of events such as starting a new curriculum, starting a new prob-
lem, a student answering a question, evaluation of the student’s answer, and
many other user-level and framework-level events.

Capturing these events has given us an assortment of data to analyze for
a variety of needs. User action data captured allows us to examine usage-
patterns, including detection of system gaming (superficially going through
tutoring content without actually trying to learn) [7]. This data also enables
us to quickly build reports for teachers on their students, as well as giving a
complete trace of student work. This trace allows us to replay a user’s session,
which could be useful for quickly spotting fundamental misunderstandings on



Blending Assessment and Instructional Assistance 7

the part of the user, as well as debugging the content and the system itself
(by attempting to duplicate errors).

The logging unit components are appropriately networked to leverage the
benefits of distributing our framework over a network and across machines.
The obvious advantage this provides is scalability.

2.5 System Architecture

The XTA provides a number of levels of scalability. To allow for performance
scalability, care was taken to ensure a low memory footprint. It is anticipated,
based on simple unit testing, that thousands of copies of the XTA could run
on a single machine. More importantly, the individual units described above
are separated by network connections (see Figure 2). This allows individual
portions of the XTA to be deployed on different computers. Thus, in a server
context, additional capacity can be added without software modification, and
scalability is assured.

The runtime can also transform with little modification into a client appli-
cation or a server application instantiated over a web server or other network
software launch, such as Java WebStart. Both types of applications allow for
pluggable client interfaces due to a simple interface and event model, as de-
scribed in the interface unit. A client side application contains all the network
components described above (Figure 2) as well as content files required for
tutoring, and has the capacity to contact a remote logging unit to record stu-
dent actions. Running the XTA in a server situation results in a thin client for
the user (at present either HTML or Java WebStart), which operates with the
interface and event model of the server. Thus the server will run an instance of
the XTA for every concurrent user, illustrating the need for a small memory
footprint. The XTA instances on the server contact a centralized logging unit
and thus allow for generated reports available through a similar server [4].

2.6 Methods

The XTA has been deployed as the foundation of the Assistments Project [12].
This project provides mathematics tutors to Massachusetts students over the
web and provides useful reports to teachers based on student performance and
learning. The system has been in use for three years, and has had thousands
of users. These users have resulted in over 1.3 million actions for analysis and
student reports [4]. To date, we have had a live concurrency of approximately
50 users from Massachusetts schools. However, during load testing, the system
was able to serve over 500 simulated clients from a single J2EE/database
server combination. The primary server used in this test was a Pentium 4 with
1 gigabyte of RAM running Gentoo Linux. Our objective is to support 100,000
students across the state of Massachusetts. 100,000 students divided across 5
school days would be 20,000 users a day. Massachusetts schools generally have
7 class periods, which would be roughly equivalent to supporting 3,000 users



8 Razzaq et al.

concurrently. This calculation is clearly based on estimations, and it should
be noted that we have not load tested to this degree.

Tutors that have been deployed include scaffolding state diagram pseudo-
tutors with a variety of strategies (see Figure 3 for a pseudo-tutor in progress).
We have also deployed a small number of JESS cognitive tutors for specialized
applications. It should be noted that the tutors used in the scaling test de-
scribed above were all pseudo-tutors, and it is estimated that a much smaller
number of JESS tutors could be supported.

In summary, the launch of the XTA has been successful. The configuration
being used in the Assistments project is a central server as described above,
where each student uses a thin HTML client and data is logged centrally.
The software has been considered stable for several months, and has been
enthusiastically reviewed by public school staff. Since September 2004, the
software has been in use at least three days a week over the web by a number
of schools across central Massachusetts. This deployment is encouraging, as
it demonstrates the stability and initial scalability of the XTA, and provides
significant room to grow.

Fig. 3. Pseudo-tutor in progress.

The larger objective of this research was to build a framework that could
support 100,000 students using ITS software across the state of Massachusetts.
We’re encouraged by our initial results from the Assistments Project, which
indicate that the XTA has graduated from conceptual framework into a usable
platform (available at http://www.assistments.org). However, this test of the
software was primarily limited to pseudo-tutors, though model-tracing tutors
are supported. One of the significant drawbacks of model-tracing tutors in a



Blending Assessment and Instructional Assistance 9

server context is the large amount of resources they consume. This resource
consumption would prohibit scaling to the degree that is described in our
results. A partial solution to this might be the support of constraint-based
tutors [10], which could conceivably take fewer resources, and we are presently
exploring this concept. These constraint tutors could take the form of a simple
JESS model (not requiring an expensive model trace), or another type of
scripting language embedded in the state-graph pseudo-tutors.

Other planned improvements to the system include dynamic curriculum
sections, which will select the next problem based on the student’s perfor-
mance (calculated from logged information). Similarly, new tutor strategies
could alter their behavior based on knowledge tracing of the student log data.
Also, new interface display applications are under consideration, using the
interface module API. As mentioned, such interfaces could include Unreal
Tournament, Macromedia Flash, or a Microsoft .NET application. We believe
the customizable nature of the XTA could make it a valuable tool in the
continued evolution of Intelligent Tutoring Systems.

3 The Assistment Builder

The foundation of the Assistment architecture is the content representation,
an XML (eXensible Markup Language) schema that defines each problem.
A problem consists of an interface definition and behavior definition. The
interface definition provides a collection of simple widgets to be displayed to
the student. The behavior definition is a representation of the state graph and
its transitions, or a cognitive model (e.g. JESS rules). Many types of behaviors
are possible within the representation and architecture. These two parts of
the representation are consumed by the runtime Assistment architecture, and
presented to the student over the web. Student actions are then fed back to
the representation, and compared with the state graph or used to model trace.

3.1 Purpose of the Assistment Builder

The XML representation of content provides a base for which we can rapidly
create specific pseudo-tutors. We sought to create a tool that would provide
a simple web-based interface for creating these pseudo-tutors. Upon content
creation, we could rapidly deploy the tutor across the web, and if errors were
found with the tutor, bug-fixing or correction would be quick and simple.
Finally, the tool had to be usable by someone with no programming experience
and no ITS background. This applied directly to our project of creating tutors
for the mathematics section of the Massachusetts Comprehensive Assessment
System (MCAS) test [10]. We wanted the teachers in the public school system
to be able to build pseudo-tutors. These pseudo-tutors are often referred to
as Assistments, but the term is not limited to pseudo-tutors.



10 Razzaq et al.

A secondary purpose of the Assistment Builder was to aid the construction
of a Transfer Model. A Transfer Model is a cognitive model construct divorced
from specific tutors. The Transfer Model is a directed graph of knowledge
components representing specific concepts that a student could learn. These
knowledge components are then associated with a specific tutor (or even sub-
question within that tutor) so that the tutor is associated with a number of
knowledge components. This allows us to maintain a complex cognitive model
of the student without necessarily involving a production rule system. It also
allows analysis of student performance in the context of the Transfer Model,
resulting in knowledge tracing [2] and other useful methods. The simplest
way to ”mark” tutors in a Transfer Model is to associate the tutors (or their
sub-questions) with knowledge components when the tutors are created. The
Transfer Model created by the Assistment team is used to classify 8th grade
mathematics items and has approximately 90 knowledge components. Over
the six months since the inception of the Assistment Builder, nearly 1000
individual problems have thus far been associated with these 90 knowledge
components.

3.2 Assistments

The basic structure of an Assistment is a top-level question that can then
branch to scaffolding questions based on student input. The Assistment
Builder interface uses only a subset of the full content XML representation,
with the goal of producing simple pseudo-tutors. Instead of allowing arbitrary
construction of question interfaces there are only five widget choices available
to a content creator. These are radio-buttons, pull-down menus, checkboxes,
text-fields, and algebra text fields that automatically evaluate mathematical
expressions. The state graphs for each question are limited to two possible
states. An arc occurs between the two states when the end-user answers a
question properly. The student will remain in the initial state until the ques-
tion is answered properly or skipped programmatically.

The scaffolding questions mentioned above are all queued as soon as a user
gets the top-level question incorrect, or requests help in the form of a hint (for
either event, the top-level question is skipped). Upon successfully completing
the displayed scaffolding question the next is displayed until the queue is
empty. Once the queue is empty, the problem is considered complete. This
type of linear Assistment can be easily made with our tool, by first creating
the main item and then the subsequent scaffolding questions. When building
an Assistment a user may also add questions that will appear when a specific
incorrect answer is received. This allows branches to be built that tutor along
a ”line of reasoning” in a problem, which adds more generality than a simple
linear Assistment. Many Assistment authors also use text feedback on certain
incorrect answers. These feedback messages are called buggy messages. Buggy
messages address the specific error made, and match common or expected
mistakes.



Blending Assessment and Instructional Assistance 11

Content creators can also use the Assistment Builder to add hint messages
to problems, providing the student with hints attached to a specific scaffolding
question. This combination of hints, buggy messages, and branched scaffolding
questions allow even the simple state diagrams described above to assume a
useful complexity. Assistments constructed with the Assistment Builder can
provide a tree of scaffolding questions branched from a main question. Each
question consists of a customized interface, hint messages and bug messages,
along with possible further branches.

3.3 Web Deployment

We constructed the Assistment Builder as a web application for accessibility
and ease of use. A teacher or content creator can create, test, and deploy an
Assistment without installing any additional software. Users can design and
test their Assistments and then instantly deploy them. If further changes or
editing are needed the Assistment can be loaded into the builder, modified,
and then redeployed across all the curriculums that make use of the tutor.
By making the Assistment Builder available over the web, there is no need
for users to update any software if a new feature is added. They reap the
benefits of any changes made to the system as soon as they log on. By storing
created Assistments locally on our servers, allowing end-users to easily create
a curriculum and assign it to a class for use by students is a simple task.

3.4 Features

Though there are many significant improvements to be made to the Assist-
ment Builder’s user interface, it is usable and reasonably easy to learn. When
users first begin to use the Assistment Builder they will be greeted by the
standard blank skeleton question. The initial blank skeleton question will be
used to create the root question. The user will enter the question text, im-
ages, answers, and hint messages to complete the root question. After these
steps the appropriate scaffolding is added. The question layout is separated
into several views the Main View, All Answer View, Correct Answer View, In-
correct Answer View, Hints View, and Transfer Model View. Together these
views allow users to highly customize their questions and their subsequent
scaffolding.

Initially the user is presented with the Main View (see Figure 4). In this
view question text, correct answers, and images can be added to the question.
Additionally the user can add new scaffolding off of the current question, and
specify if they would like the answers to be in a sorted or random order. The
Main View is designed to gather the absolute minimum information needed
to generate a question.

Upon completion of the items in the Main View the user then has the op-
tion to move to other views in order to further refine the question. Typically
the next view to complete is the All Answer View. In the All Answers View



12 Razzaq et al.

the user has the option to add additional correct answers as well as incor-
rect answers. The incorrect answers serve two purposes. First, they allow a
teacher to specify the answers students are likely to choose incorrectly and
provide feedback in the form of a message or scaffolding. Second, the user can
populate a list of answers for multiple choice questions. The user now has the

Fig. 4. The Assistment builder - initial question, one scaffold and incorrect answer
view.

option to specify a message to be displayed for an incorrect answer or the
option to scaffold. If the scaffolding option is chosen a new question block
will appear indented below the current question. In the Hints View messages
can be created that will be presented to the student when a hint is requested.
Hints can consist of text, an image, or both. Multiple hint messages can be
entered; one message will appear per hint request in the order that they are
listed in this view. The final view is the Transfer Model View (see Figure 5).
In this view the user has the option of specifying one or more skills that are
associated with this particular question.

As mentioned above there are two methods of providing scaffolding ques-
tions: either by selecting Ask Next Line of Questioning from the Main View



Blending Assessment and Instructional Assistance 13

Fig. 5. Transfer model view.

or specify scaffolding on a specific incorrect answer. In utilizing either of these
methods a new skeleton question will be inserted into the correct position be-
low the current question. Creating a scaffolding question is done in the exact
manner as the root question. After saving the Assistment the tutor is ready
to be used. An Assistment can be modified at any time by loading it into
the Assistment Builder and changing its properties accordingly. A completed
running Assistment can be seen in Figure 6.

3.5 Methods

To analyze the effectiveness of the Assistment Builder, we developed a system
to log the actions of an author. While authors have been constructing items
for nearly six months, only very recently has the Assistment Builder had the
capability to log actions.

Each action is recorded with associated meta-data, including author,
timestamps, the specific series of problems being worked on, and data specific
to each action. These actions were recorded for a number of Assistment au-
thors over several days. The authors were asked to build original items and
keep track of roughly how much time spent on each item for corroboration.
The authors were also asked to create ”morphs,” a term used to indicate a
new problem that had a very similar setup to an existing problem. ”Morphs”
are usually constructed by loading the existing problem into the Assistment
Builder, altering it, and saving it with a different name. This allows rapid
content development for testing transfer between problems. We wanted to
compare the development time for original items to that of ”morphs” [10].
To test the usability of the Assistment Builder, we were able to provide the
software to two high-school teachers in the Worcester, Massachusetts area.
These teachers were computer literate, but had no previous experience with
intelligent tutoring systems, or creating mathematics educational software.
Our tutorial consisted of demonstrating the creation of a problem using the
Assistment Builder, then allowing the teachers to create their own with an



14 Razzaq et al.

Fig. 6. An Assistment running.

experienced observer to answer questions. Finally, we allowed them to author
Assistments on their own, without assistance.

3.6 Results and analysis

Prior to the implementation of logging within the Assistment Builder, we
obtained encouraging anecdotal results of the software’s use. A high-school
mathematics teacher was able to create 15 items and morph each one, resulting
in 30 Assistments over several months. Her training consisted of approximately
four hours spread over two days in which she created 5 original Assistments
under supervision. While there is unfortunately no log data to strengthen this
result, it is nonetheless encouraging.

The logging data obtained suggests that the average time to build an en-
tirely new Assistment is approximately 25 minutes. Entirely new Assistments
are those that are built using new content and not based on existing mate-
rial. This data was acquired by examining the time that elapsed between the
initialization of a new problem and when it was saved. Creation times for
Assistments with more scaffolds naturally took longer than those with fewer



Blending Assessment and Instructional Assistance 15

scaffolds. Experience with the system also decreases Assistment creation time,
as end-users who are more comfortable with the Assistment Builder are able
to work faster. Nonetheless, even users who were just learning the system were
able to create Assistments in reasonable time. For instance, Users 2, 3, and 4
(see Table 1) provide examples of end-users who have little experience using
the Assistment Builder. In fact, some of them are using the system for the
first time in the examples provided.

Table 1. Full Item Creation

Username Number of scaffolds Time elapsed (min)

User1 10 35
User1 2 23
User2 3 45
User2 2 31
User2 0 8
User3 2 21
User4 3 37
User4 0 15
User5 4 30
User5 2 8
User5 4 13
User5 4 35
User5 3 31
User5 2 24

Average: 25.4 minutes

We were also able to collect useful data on morph creation time and Assist-
ment editing time. On average morphing an Assistment takes approximately
10-20 minutes depending on the number of scaffolds in an Assistment and the
nature of the morph. More complex Assistment morphs require more time
because larger parts of an Assistment must be changed. Editing tasks usually
involve minor changes to an Assistment’s wording or interface. These usually
take less than a minute to locate and fix.

3.7 Future Work

In our continuing efforts to provide a tool that is accessible to even the most
novice users we are currently working on two significant enhancements to the
Assistment Builder. The first enhancement is a simplified interface that is
both user-friendly and still provides the means to create powerful scaffolding
pseudo-tutors. The most significant change to the current interface is the ad-
dition of a tab system that will allow the user to clearly navigate the different
components of a question. The use of tabs allows us to present the user with



16 Razzaq et al.

only the information related to the current view, reducing the confusion that
sometimes takes place in the current interface.

The second significant enhancement is a new question type. This question
type will allow a user to create a question with multiple inputs of varying type.
The user will also be able to include images and Macromedia Flash movies.
Aside from allowing multiple answers in a single question, the new question
type allows a much more customizable interface for the question. Users can
add, in any order, a text component, a media component, or an answer com-
ponent. The ability to place a component in any position in the question will
allow for a more ”fill in the blank” feel for the question and provide a more
natural layout. This new flexibility will no longer force questions into the text,
image, answer format that is currently used.

4 Content Development and Usage

In December of 2003, we met with the Superintendent of the Worcester Public
Schools in Massachusetts, and were subsequently introduced to the three math
department heads of 3 out of 4 Worcester middle schools. The goal was to get
these teachers involved in the design process of the Assistment System at an
early stage. The main activity done with these teachers was meeting about one
hour a week to do ”knowledge elicitation” interviews, whereby the teachers
helped design the pedagogical content of the Assistment System.

4.1 Content Development

The procedure for knowledge elicitation interviews went as follows. A teacher
was shown a Massachusetts Comprehensive Assessment System (MCAS) test
item and asked how she would tutor a student in solving the problem. What
kinds of questions would she ask the student? What hints would she give?
What kinds of errors did she expect and what would she say when a student
made an expected error? These interviews were videotaped and the interviewer
took the videotape and filled out an ”Assistment design form” from the knowl-
edge gleaned from the teacher. The Assistment was then implemented using
the design form. The first draft of the Assistment was shown to the teacher to
get her opinion and she was asked to edit it. Review sessions with the teachers
were also videotaped and the design form revised as needed. When the teacher
was satisfied, the Assistment was released for use by students. For instance,
a teacher was shown a MCAS item on which her students did poorly, such as
item number 19 from the year 2003, which is shown in Figure 7. About 15
hours of knowledge elicitation interviews were used to help guide the design
of Assistments.

Figure 8 shows an Assistment that was built for item 19 of 2003 shown
above. Each Assistment consists of an original item and a list of scaffolding
questions (in this case, 5 scaffolding questions). The first scaffolding question



Blending Assessment and Instructional Assistance 17

Fig. 7. Item 19 from the 2003 MCAS.

appears only if the student gets the item wrong. Figure 8 shows that the
student typed ”23” (which happened to be the most common wrong answer
for this item from the data collected). After an error, students are not allowed
to try the item further, but instead must then answer a sequence of scaffolding
questions (or ”scaffolds”) presented one at a time.5 Students work through
the scaffolding questions, possibly with hints, until they eventually get the
problem correct. If the student presses the hint button while on the first
scaffold, the first hint is displayed, which would have been the definition of
congruence in this example. If the student hits the hint button again, the hint
describes how to apply congruence to this problem. If the student asks for
another hint, the answer is given. Once the student gets the first scaffolding
question correct (by typing AC), the second scaffolding question appears.

If the student selected 1/2 * 8x in the second scaffolding question, a buggy
message would appear suggesting that it is not necessary to calculate area.
(Hints appear on demand, while buggy messages are responses to a particular
student error). Once the student gets the second question correct, the third
appears, and so on. Figure 8 shows the state of the interface when the student
is done with the problem as well as a buggy message and two hints for the
4th scaffolding question.

About 200 students used the system in May 2004 in three different schools
from about 13 different classrooms. The average length of time was one class
period per student. The teachers seemed to think highly of the system and, in
particular, liked that real MCAS items were used and that students received
instructional assistance in the form of scaffolding questions. Teachers also like
that they can get online reports on students’ progress from the Assistment web
site and can even do so while students are using the Assistment System in their
classrooms. The system has separate reports to answer the following questions
about items, student, skills and student actions: Which items are my students

5 As future work, once a predictive model has been built and is able to reliably de-
tect students trying to ”game the system” (e.g., just clicking on answer) students
may be allowed to re-try a question if they do not seem to be ”gaming”. Thus,
studious students may be given more flexibility.



18 Razzaq et al.

Fig. 8. An Assistment show just before the student hits the ”done” button, showing
two different hints and one buggy message that can occur at different points.



Blending Assessment and Instructional Assistance 19

finding difficult? Which items are my students doing worse on compared to
the state average? Which students are 1) doing the best, 2) spending the most
time, 3) asking for the most hints etc.? Which of the approximately 90 skills
that we are tracking are students doing the best/worst on? What are the exact
actions that a given student took?

The three teachers from this first use of the Assistment System were im-
pressed enough to request that all the teachers in their schools be able to use
the system the following year. Currently that means that about 1,000 students
are using the system for about 20 minutes per week for the 2004-2005 school
year. Two schools have been using the Assistment System since September.
A key feature of the strategy for both teacher recruitment and training is to
get teachers involved early in helping design Assistments through knowledge
elicitation and feedback on items that are used by their students.

We have spent considerable time observing its use in classrooms; for in-
stance, one of the authors has logged over 50 days, and was present at over
300 classroom periods. This time is used to work with teachers to try to im-
prove content and to work with students to note any misunderstandings they
sometimes bring to the items. For instance, if it is noted that several students
are making similar errors that were not anticipated, the Assistment Builder
can be logged into and a buggy message added that addresses the students’
misconception.

4.2 Database Reporting

The Assistment system produces reports individually for each teacher. These
reports can inform the teacher about 1) ”Which of the 90 skills being tracked
are the hardest? 2) Which of the problems are students doing the poorest at
and 3) reports about individual students. Figure 9 shows the ”Grade book”
report that shows for each student the amount of time spent in the system, the
number of items they did, and their total score. Teachers can click on refresh
and get instant updates. One of the common uses of this report is to track
how many hints each student is asking for. We see that ”Mary” has received
a total of 700 over the course of 4 hours using the system, which suggests to
teachers Mary might be using the system’s help too much, but at this point
it is hard to tell, given that Mary is doing poorly already.

4.3 Analysis of data to determine whether the system reliably

predicts MCAS performance

One objective the project had was to analyze data to determine whether
and how the Assistment System can predict students’ MCAS performance.
In Bryant, Brown and Campione [2], they compared traditional testing
paradigms against a dynamic testing paradigm. In the dynamic testing
paradigm a student would be presented with an item and when the student
appeared to not be making progress, would be given a prewritten hint. If the



20 Razzaq et al.

Fig. 9. The grade book report.

student was still not making progress, another prewritten hint was presented
and the process was repeated. In this study they wanted to predict learning
gains between pretest and posttest. They found that static testing was not as
well correlated (R = 0.45) as with their ”dynamic testing” (R = 0.60).

Given the short use of the system in May, 2004, there was an opportunity
to make a first pass at collecting such data. The goal was to evaluate how well
on-line use of the Assistment System, in this case for only about 45 minutes,
could predict students’ scores on a 10-item post-test of selected MCAS items.
There were 39 students who had taken the post-test. The paper and pencil
post-test correlated the most with MCAS scores with an R-value of 0.75.

A number of different metrics were compared for measuring student knowl-
edge during Assistment use. The key contrast of interest is between a static
metric that mimics paper practice tests by scoring students as either correct
or incorrect on each item, with a dynamic assessment metric that measures
the amount of assistance students need before they get an item correct. MCAS
scores for 64 of the students who had log files in the system were available.
In this data set, the static measure did correlate with the MCAS, with an R-
value of 0.71 and the dynamic assistance measure correlates with an R-value
of -0.6. Thus, there is some preliminary evidence that the Assistment System
may predict student performance on paper-based MCAS items.

It is suspected that a better job of predicting MCAS scores could be done
if students could be encouraged to take the system seriously and reduce ”gam-
ing behavior”. One way to reduce gaming is to detect it [1] and then to notify
the teacher’s reporting session with evidence that the teacher can use to ap-
proach the student. It is assumed that teacher intervention will lead to reduced
gaming behavior, and thereby more accurate assessment, and higher learning.



Blending Assessment and Instructional Assistance 21

The project team has also been exploring metrics that make more specific
use of the coding of items and scaffolding questions into knowledge compo-
nents that indicate the concept or skill needed to perform the item or scaffold
correctly. So far, this coding process has been found to be challenging, for in-
stance, one early attempt showed low inter-rater reliability. Better and more
efficient ways to use student data to help in the coding process are being
sought out. It is believed that as more data is collected on a greater variety of
Assistment items, with explicit item difficulty designs embedded, more data-
driven coding of Assistments into knowledge components will be possible.

Tracking student learning over time is of interest, and assessment of stu-
dents using the Assistment system was examined. Given that there were ap-
proximately 650 students using the system, with each student coming to the
computer lab about 7 times, there was a table with 4550 rows, one row for
each student for each day, with an average percent correct which itself is av-
eraged over about 15 MCAS items done on a given day. In Figure 10, average
student performance is plotted versus time. The y-axis is the average percent
correct on the original item (student performance on the scaffolding questions
is ignored in this analysis) in a given class. The x-axis represents time, where
data is bunched together into months, so some students who came to the lab
twice in a month will have their numbers averaged. The fact that most of the
class trajectories are generally rising suggests that most classes are learning
between months.

Fig. 10. Average student performance is plotted over time.

Given that this is the first year of the Assistment project, new content
is created each month, which introduces a potential confounder of item diffi-
culty. It could be that some very hard items were selected to give to students in
September, and students are not really learning but are being tested on easier
items. In the future, this confound will be eliminated by sampling items ran-



22 Razzaq et al.

domly. Adding automated applied longitudinal data analysis [7] is currently
being pursued.

4.4 Analysis of data to determine whether the system effectively

teaches.

The second form of data comes from within Assistment use. Students poten-
tially saw 33 different problem pairs in random order. Each pair of Assistments
included one based on an original MCAS item and a second ”morph” intended
to have different surface features, like different numbers, and the same deep
features or knowledge requirements, like approximating square roots. Learn-
ing was assessed by comparing students’ performance the first time they were
given one of a pair with their performance when they were given the second of
a pair. If students tend to perform better on the second of the pair, it indicates
that they may have learned from the instructional assistance provided by the
first of the pair.

To see that learning happened and generalized across students and items,
both a student level analysis and an item level analysis were done. The hy-
pothesis was that students were learning on pairs or triplets of items that
tapped similar skills. The pairs or triplet of items that were chosen had been
completed by at least 20 students.

For the student level analysis there were 742 students that fit the crite-
ria to compare how students did on the first opportunity versus the second
opportunity on a similar skill. A gain score per item was calculated for each
student by subtracting the students’ score (0 if they got the item wrong on
their first attempt, and 1 if they got it correct) on their 1st opportunities from
their scores on the 2nd opportunities. Then an average gain score for all of
the sets of similar skills that they participated in was calculated. A student
analysis was done on learning opportunity pairs seen on the same day by a
student and the t-test showed statistically significant learning (p = 0.0244).
It should be noted that there may be a selection effect in this experiment in
that better students are more likely to do more problems in a day and there-
fore more likely to contribute to this analysis. An item analysis was also done.
There were 33 different sets of skills that met the criteria for this analysis. The
5 sets of skills that involved the most students were: Approximating Square
Roots (6.8% gain), Pythagorean Theorem (3.03% gain), Supplementary An-
gles and Traversals of Parallel Lines (1.5% gain), Perimeter and Area (Figure
11)(4.3% gain) and Probability (3.5% gain). A t-test was done to see if the
average gain scores per item were significantly different than zero, and the
result (p = 0.3) was not significant. However, it was noticed that there was
a large number of negative average gains for items that had fewer students
so the average gain scores were weighted by the number of students, and the
t-test was redone. A statistically significant result (p = 0.04) suggested that
learning should generalize across problems. The average gain score over all
of the learning opportunity pairs is approximately 2%. These results should



Blending Assessment and Instructional Assistance 23

Fig. 11. A perimeter and area learning opportunity pair.

be interpreted with some caution as some of the learning opportunity pairs
included items that had tutoring that may have been less effective. In fact, a
few of the pairs had no scaffolding at all but just hints.

4.5 Experiments

The Assistment System allows randomized controlled experiments to be car-
ried out. At present, there is control for the number of items presented to a
student, but soon the system will be able to control for time, as well. Next,
two different uses of this ability are described.

Do different scaffolding strategies affect learning?

The first experiment was designed as a simple test to compare two different
tutoring strategies when dealing with proportional reasoning problems like
item 26 from the 2003 MCAS: ”The ratio of boys to girls in Meg’s chorus is
3 to 4. If there are 20 girls in her chorus, how many boys are there?” One
of the conditions of the experiment involved a student solving two problems
like this with scaffolding that first coached them to set up a proportion. The
second strategy coached students through the problem but did not use the
formal notation of a proportion. The experimental design included two items
to test transfer. The two types of analyses the project is interested in fully
automating is 1) to run the appropriate ANOVA to see if there is a difference
in performance on the transfer items by condition, and 2) to look for learning
during the condition, and see if there is a disproportionate amount of learning
by condition.

Two types of analyses were done. First, an analysis was done to see if there
was learning during the conditions. 1st and 2nd opportunity was treated as a
repeated measure and to look for a disproportionate rate of learning due to
condition (SetupRatio vs. NoSetup). A main effect of learning between first



24 Razzaq et al.

and second opportunity (p = 0.05) overall was found, but the effect of condi-
tion was not statistically significant (p = 0.34). This might be due to the fact
that the analysis also tries to predict the first opportunity when there is no
reason to believe those should differ due to controlling condition assignment.
Given that the data seems to suggest that the SetupRatio items showed learn-
ing a second analysis was done where a gain score (2nd opportunity minus 1st
opportunity) was calculated for each student in the SetupRatio condition, and
then a t-test was done to see if the gains were significantly different from zero
and they were (t = 2.5, p = 0.02), but there was no such effect for NoSetup.

The second analysis done was to predict each student’s average perfor-
mance on the two transfer items, but the ANOVA found that even though
the SetupRatio students had an average score of 40% vs. 30%, this was not a
statistically significant effect.

In conclusion, evidence was found that these two different scaffolding
strategies seem to have different rates of learning. However, the fact that
setting up a proportion seems better is not the point. The point is that it is
a future goal for the Assistment web site to do this sort of analysis automat-
ically for teachers. If teachers think they have a better way to scaffold some
content, the web site should send them an email as soon as it is known if their
method is better or not. If it is, that method should be adopted as part of a
”gold” standard.

Are scaffolding questions useful compared to just hints on the

original question?

An experiment was set up where students were given 11 probability items.
In the first condition, the computer broke each item down into 2-4 steps (or
scaffolds) if a student got the original item wrong. In the other condition, if
a student made an error they just got hints upon demand. The number of
items was controlled for. When students completed all 11 items, they saw a
few items that were morphs to test if they could do ”close”-transfer problems.

The results of the statistical analysis were showing a large gain for those
students that got the scaffolding questions, but it was discovered that there
was a selection-bias. There were about 20% less students in the scaffolding
condition that finished the curriculum, and those students that finished were
probably the better students, thus making the results suspect. This selection
bias was possible due to a peculiarity of the system that presents a list of
assignments to students. The students are asked to do the assignments in
order, but many students choose not to, thus introducing this bias. This will
be easy to correct by forcing students to finish a curriculum once they have
started it. For future work, a new experiment to answer this question, as well
as several other questions, will be designed and analyzed.



Blending Assessment and Instructional Assistance 25

4.6 Survey of students’ attitudes

At the end of the 2004-2005 school year, the students using the Assistment
system participated in a survey. 324 students participated in the survey and
they were asked to rate their attitudes on statements by choosing Strongly
Agree, Agree, Neither Agree nor Disagree, Disagree or Strongly Disagree.
The students were presented with statements such as ”I tried to get through
difficult problems as quickly as possible,” and ”I found many of the items
frustrating because they were too hard.” The statements addressed opinions
about subjects such the Assistment system, math, and using the computer.

We wanted to find out what survey questions were correlated with initial
percent correct and learning in the Assistment system. The responses to ”I
tried to get through difficult problems as quickly as possible,” were negatively
correlated with learning in the Assistment system (p = -0.122). The responses
to ”When I grow up I think I will use math in my job,” were positively
correlated with learning in the Assistment system (p = 0.131). Responses to
statements such as ”I am good at math,” ”I work hard at math,” and ”I like
math class,” were all positively correlated with students’ percent correct in
September (at the beginning of Assistment participation).

We believe that the survey results point to the importance of student
motivation and attitude in mastering mathematics. For future work, we plan
to examine ways to increase student motivation and keep them on task when
working on Assistments.

5 Summary

The Assistment System was launched and presently has 6 middle schools using
the system with all of their 8th grade students. Some initial evidence was
collected that the online system might do a better job of predicting student
knowledge because items can be broken down into finer grained knowledge
components. Promising evidence was also found that students were learning
during their use of the Assistment System. In the near future, the Assistment
project team is planning to release the system statewide in Massachusetts.

References

1. Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Erlbaum.
2. Anderson, J. R., Corbett, A. T., Koedinger, K. R., and Pelletier, R. (1995).

Cognitive tutors: Lessons learned. The Journal of the Learning Sciences, 4 (2),
167-207.

3. Anderson, J.R., and Pelletier, R. (1991). A development system for model-
tracing tutors. In Proceedings of the International Conference of the Learning
Sciences, 1-8.



26 Razzaq et al.

4. Baker, R.S., Corbett, A.T., Koedinger, K.R. (2004) Detecting Student Misuse
of Intelligent Tutoring Systems. Proceedings of the 7th International Conference
on Intelligent Tutoring Systems, 531-540.

5. Campione, J.C., Brown, A.L., and Bryant, N.R. (1985). Individual differences in
learning and memory. In R.J. Sternberg (Ed.). Human abilities: An information-
processing approach, 103-126. New York: W.H. Freeman.

6. Feng, Mingyu, Heffernan, N.T. (2005). Informing Teachers Live about Student
Learning: Reporting in the Assistment System. Submitted to the 12th Annual
Conference on Artificial Intelligence in Education 2005, Amsterdam

7. Heffernan, N. T. and Croteau, E. (2004) Web-Based Evaluations Showing Dif-
ferential Learning for Tutorial Strategies Employed by the Ms. Lindquist Tutor.
Proceedings of 7th Annual Intelligent Tutoring Systems Conference, Maceio,
Brazil. Pages 491-500.

8. Jackson, G.T., Person, N.K., and Graesser, A.C. (2004) Adaptive Tutorial Di-
alogue in AutoTutor. Proceedings of the workshop on Dialog-based Intelligent
Tutoring Systems at the 7th International conference on Intelligent Tutoring
Systems. Universidade Federal de Alagoas, Brazil, 9-13.

9. Jarvis, M., Nuzzo-Jones, G. and Heffernan. N. T. (2004) Applying Machine
Learning Techniques to Rule Generation in Intelligent Tutoring Systems. Pro-
ceedings of 7th Annual Intelligent Tutoring Systems Conference, Maceio, Brazil.
Pages 541-553

10. Koedinger, K. R., Aleven, V., Heffernan. T., McLaren, B. and Hockenberry, M.
(2004) Opening the Door to Non-Programmers: Authoring Intelligent Tutor
Behavior by Demonstration. Proceedings of 7th Annual Intelligent Tutoring
Systems Conference, Maceio, Brazil. Pages 162-173

11. Koedinger, K. R., Anderson, J. R., Hadley, W. H., and Mark, M. A. (1997).
Intelligent tutoring goes to school in the big city. International Journal of Ar-
tificial Intelligence in Education, 8, 30-43.

12. Livak, T., Heffernan, N. T., Moyer, D. (2004) Using Cognitive Models for
Computer Generated Forces and Human Tutoring. 13th Annual Conference
on (BRIMS) Behavior Representation in Modeling and Simulation. Simulation
Interoperability Standards Organization. Arlington, VA. Summer 2004

13. Mitrovic, A., and Ohlsson, S. (1999) Evaluation of a Constraint-Based Tutor
for a Database Language. Int. J. on Artificial Intelligence in Education 10 (3-4),
pp. 238-256.

14. Mostow, J., Beck, J., Chalasani, R., Cuneo, A., and Jia, P. (2002c, October 14-
16). Viewing and Analyzing Multimodal Human-computer Tutorial Dialogue: A
Database Approach. Proceedings of the Fourth IEEE International Conference
on Multimodal Interfaces (ICMI 2002), Pittsburgh, PA, 129-134.

15. Murray, T. (1999). Authoring intelligent tutoring systems: An analysis of the
state of the art. International Journal of Artificial Intelligence in Education,
10, pp. 98-129.

16. Nuzzo-Jones, G., Walonoski, J.A., Heffernan, N.T., Livak, T. (2005). The eX-
tensible Tutor Architecture: A New Foundation for ITS. In C.K. Looi, G. Mc-
Calla, B. Bredeweg, and J. Breuker (Eds.) Proceedings of the 12th Artificial
Intelligence In Education, 902-904. Amsterdam: ISO Press.

17. Razzaq, L., Feng, M., Nuzzo-Jones, G., Heffernan, N.T., Koedinger, K. R.,
Junker, B., Ritter, S., Knight, A., Aniszczyk, C., Choksey, S., Livak, T., Mer-
cado, E., Turner, T.E., Upalekar. R, Walonoski, J.A., Macasek. M.A., Ras-



Blending Assessment and Instructional Assistance 27

mussen, K.P. (2005). The Assistment Project: Blending Assessment and As-
sisting. In C.K. Looi, G. McCalla, B. Bredeweg, and J. Breuker (Eds.) Pro-
ceedings of the 12th Artificial Intelligence In Education, 555-562. Amsterdam:
ISO Press.

18. Rose, C. P. Gaydos, , A., Hall, B. S., Roque, A., K. VanLehn, (2003), Over-
coming the Knowledge Engineering Bottleneck for Understanding Student Lan-
guage Input , Proceedings of AI in Education.

19. Singer, J. D. and Willett, J. B. (2003). Applied Longitudinal Data Analysis:
Modeling Change and Occurrence. Oxford University Press, New York.

20. Turner, T.E., Macasek, M.A., Nuzzo-Jones, G., Heffernan, N.T, Koedinger, K.
(2005). The Assistment Builder: A Rapid Development Tool for ITS. In C.K.
Looi, G. McCalla, B. Bredeweg, and J. Breuker (Eds.) Proceedings of the 12th
Artificial Intelligence In Education, 929-931. Amsterdam: ISO Press.




