Jaql: A Scripting Language for Large Scale
Semi-Structured Data Analysis

Kevin Beyer
Vuk Ercegovac
Rainer Gemulla
Andrey Balmin
Mohamed Eltabakh
Fatma Ozcan
Eugene Shekita

IBM Almaden Research Center
650 Harry Road, San Jose CA, 95120

ABSTRACT
Jaql is a declarative scripting language for enterprise data analysis powered by a scalable runtime that leverages Hadoop’s MapReduce parallel programming framework. Jaql is used in IBM’s Cognos Consumer Insight [6], the announced InfoSphere BigInsights [3], as well as several research projects. Through these interactions and use-cases, we have focused on the following core design principles: (1) a flexible data model, (2) reusability, (3) varying levels of abstraction, and (4) scalability. The data model is inspired by JSON and can be used to represent data that varies from flat, relational tables to collections of semi-structured documents. To support the various phases of data analysis, Jaql is able to operate without knowledge of the schema of the data; queries can evolve towards partial or rigid schema definitions over time. Reusability is provided through the use of higher-order functions, and by packaging related functions and their required resources into modules. While Jaql is declarative, it is built from layers that vary in their level of abstraction. Higher levels allow concise specification of logical operations (e.g., join), while lower levels blend in physical aspects (e.g., hash join or MapReduce job). We have exposed such functionality so that it is easier to add new operators or to pin down an execution plan for greater control. Finally, Jaql automatically rewrites scripts to use Hadoop’s MapReduce for parallel data processing, when possible. Our experimental results illustrate that Jaql scales well for real and synthetic workloads and highlights how access to lower-level operators enabled us to parallelize typically sequential flows for scalably analyzing large datasets.

1. INTRODUCTION
The overwhelming trend towards digital services, combined with cheap storage, has generated massive amounts of data that enterprises need to effectively gather, process, and analyze. Techniques from the data warehousing and high-performance computing communities are invaluable for many enterprises. However, oftentimes their cost or complexity of scale-up discourages the accumulation of data without an immediate need [9]. As valuable knowledge may nevertheless be buried in this data, related and complementary technologies have been developed. Examples include Google’s MapReduce [11], its open-source implementation Apache Hadoop [15], and Microsoft’s Dryad [18]. These systems are conducive to the “collect first, ask questions later” principle. Web-centric enterprises, which were both developers and early adopters of such scale-up architectures, quickly recognized the value of higher-level languages within this environment, as evidenced by Google’s Sawzall [33], Microsoft’s DryadLINQ [42], Yahoo’s work on Apache Pig [30], and Facebook’s work on Apache Hive [38].

Traditional enterprises are increasingly experimenting with—and, in some cases, relying on—such scale-up architectures. In this context, Jaql is used most notably by IBM in several products, including Cognos Consumer Insights [6] and the announced BigInsight’s [3] for building data centric applications and for ad hoc data analysis. The workloads from these products, as well as from various research projects are diverse and range from analyzing internal data sources for intranet search [2], cleansing and integrating multiple external data sources for the financial and government sectors [35, 1], developing and using models through Monte Carlo simulation [41], monitoring network data for security purposes [25], analyzing both transaction and system log data, and employing collaborative filtering techniques to predict customer behavior [28] [10]. Such use cases guided the development of the Jaql language and its processing system.

In this paper, we describe the Jaql (JSON Query Language) project [16], which at its core consists of two main components: (1) Jaql, a declarative scripting language for enterprise data analysis, and (2) the Jaql system, which includes the query compiler and processing subsystems. We refer to all three—the project, the language, and the system—as Jaql and disambiguate only when needed. Jaql is used to develop data processing flows that are executed in parallel on Hadoop’s MapReduce implementation, when possible. Jaql is influenced by Pig [30], Hive [38], DryadLINQ [42], and others, but has a unique focus on the following combination of core design principles: (1) a flexible data model, (2) reusable and modular scripts, (3) the ability to specify scripts at varying levels of abstraction, henceforth referred to as physical transparency, and (4) scalable query processing.

We now summarize how Jaql addresses its design goals.

Flexible Data Model: Jaql’s data model is based on JSON, a simple text format and standard (RFC 4627). As a result, Jaql’s data model is sufficiently flexible to handle semi-structured documents, which are often found in the early, exploratory stages of data analysis (such as logs), as well as the structured records that are often produced after data cleansing stages. Jaql is able to process data without or with only partial schema information, which is also useful for exploration. For enhanced efficiency, Jaql can en-
force and exploit rigid schema information for both type checking and improved performance. In addition, since JSON was designed for data interchange, there is a low impedance mismatch between Jaql and user-defined functions written in a variety of languages.

Reusability and Modularity: Jaql blends ideas from programming languages along with flexible data typing to enable encapsulation, composition, and ultimately, reusability and modularity. Borrowing from functional languages, Jaql supports lazy evaluation and higher-order functions, i.e., functions are treated as first-class data types. Jaql is able to work with expressions for which the schema is unknown or only partially known. Consequently, users only need to be concerned with the portion of data that is relevant to their task. Finally, many related functions and their corresponding resources can be bundled together into modules, each with their own namespace.

Physical Transparency: Jaql exposes every internal physical operators as functions in the language, and allows users to combine various levels of abstraction within a single Jaql script. Thus the convenience of a declarative language is judiciously combined with precise control over query execution, when needed. Such low-level control is somewhat controversial but provides Jaql with two important benefits. First, low-level operators allow users to pin down a query evaluation plan, which is particularly important for well-defined tasks that are run regularly. After all, query optimization remains a challenging task even for a mature technology such as an RDBMS. This is evidenced by the widespread use of the optimizer “hints”. Although useful, such hints only control a limited set of query execution plan features (such as join orders and access paths). Jaql’s physical transparency goes further in that it allows full control over the execution plan.

The second advantage of physical transparency is that it enables **bottom-up extensibility**. By exploiting Jaql’s powerful function support, users can add functionality or performance enhancements (such as a new join operator) and use them in queries right away. No modification of the query language or the compiler in necessary. The Jaql rewriter exploits this design principle to compile high-level declarative expressions to lower-level function calls, which also have a valid representation in Jaql’s syntax. This well-known compiler design pattern is called **source-to-source compilation** (see [23] for an example) and, to the best of our knowledge, Jaql is the first data processing language that exploits this technique and makes it available to users.

In summary, physical transparency offers users a complete spectrum of control--declarative expressions are preferable when they work, hints cover the common lapses in optimization, and physical transparency offers direct access an Jaql plan when needed.

Scalability: Jaql is designed to parallelize scripts over collections of relatively small semi-structured objects distributed among a cluster of commodity servers. The achieved scalability is essential for both large datasets and expensive per-object computations. By focusing on such collections, many of the innovations developed for shared nothing databases are applicable. Some of these techniques—such as parallel scan, repartitioning, and parallel aggregation—are also present in MapReduce, along with fault-tolerance and dynamic scheduling to circumvent hardware and software failures. Given a script, Jaql translates it into an evaluation plan consisting of MapReduce jobs and, when necessary, intermediate sequential steps. Results in Section 6 show that Jaql scales well and illustrates how physical transparency enabled us to parallelize typically sequential flows for scalably analyzing large datasets.

The remainder of the paper is organized as follows. We review related work in Section 2. Jaql’s data model and schema is described in Section 3. We discuss the Jaql language in Section 4, and the system implementation in Section 5. Section 6 contains the experimental results. Finally, we conclude in Section 7.

2. RELATED WORK

Many systems, languages, and data models have been developed to process massive data sets, giving Jaql a wealth of technologies and ideas to build on. In particular, Jaql’s design and implementation draw from shared nothing databases [12, 37], MapReduce [11], declarative query languages, functional and parallel programming languages, the nested relational data model, and XML. While Jaql has features in common with many systems, we believe that the combination of features in Jaql is unique. In particular, Jaql’s use of (higher-order) functions is a novel approach to physical transparency, providing precise control over query evaluation.

Jaql is most similar to the data processing languages and systems that were designed for scaled-out architectures such as MapReduce and Dryad [18]. In particular, Pig Latin [30], Hive [38], and DryadLINQ [42] have many design goals and features in common. Pig Latin is a dynamically typed query language with a flexible, nested relational data model and a convenient, script-like syntax for developing data flows that are evaluated using Hadoop’s MapReduce. Hive uses a flexible data model and MapReduce but its syntax is based on SQL, and it is statically typed. Microsoft’s Scope [7] has similar features as Hive, except that it uses Dryad as its parallel runtime. In addition to physical transparency, Jaql differs from these systems in three main ways. First, Jaql scripts are reusable due to (higher-order) functions. Second, Jaql is more composable: all language features can be equally applied to any level of nested data. Finally, Jaql’s data model supports partial schema, which assists in transitioning scripts from exploratory to production phases of analysis. In particular, users can contain such changes to schema definitions without a need to modify existing queries or reorganize data.

While SQL, Jaql, and Pig Latin are distinct data processing languages, Microsoft’s LINQ [24], Google’s FlumeJava [8], and the Cascading project [5] offer a programmatic approach. We focus on LINQ, due to its tighter integration with the host language (e.g., C#). LINQ embeds a statically typed query language in a host programming language, providing users with richer encapsulation and tooling that one expects from modern programming environments. DryadLINQ is an example of such an embedding that uses the Dryad system for its parallel runtime. Jaql functionality differs in three main ways. First, Jaql is a scripting language and lightweight so that users can quickly begin to explore their data. Second, Jaql exploits partial schema instead of a programming language type system. Finally, it is not clear whether DryadLINQ allows its users to precisely control evaluation plans to the same degree that is supported by Jaql’s physical transparency.

Sawzall[33] is a statically-typed programming language for Google’s MapReduce, providing domain specific libraries to easily express the logic of a single MapReduce job. In comparison, Jaql scripts can produce data flows composed of multiple MapReduce jobs.

A key ingredient for reusability is for functions to be polymorphic, often through table-valued parameters [19]. Examples of systems that support such functionality include AsterData’s SQL/MapReduce [13] and Oracle’s pipelined table functions [31]. AT&T’s Daytona [14] is a proprietary system that efficiently manages and processes massive flat files using SQL and procedural language features. NESL [4] is a parallel programming language that specializes on nested data. In contrast, Jaql is designed to process semi-structured, self-describing data and its support for
higher-order functions offer more options for reusability. RDBMS and native XML data management systems offer a wide range of flexibility for processing semi-structured data and have had a significant influence on Jaql's design. For reusability, Jaql includes many of the features found in XQuery [40] such as functions and modules/namespaces. However, we are not aware of an XQuery implementation that also supports higher-order functions. In addition, except for DB2's PureXML [17] and MarkLogic Server [27], most XQuery systems have not been implemented for shared-nothing architectures. Finally, Jaql's physical transparency is a significant departure from such declarative technology.

3. DATA MODEL AND SCHEMA

Jaql was designed to process large collections of semi-structured and structured data. In this section, we describe Jaql's data model, called JDM, and schema language.

3.1 Data Model

Jaql uses a very simple data model: a JDM value is either an atom, an array, or a record. Most common atomic types are supported, including strings, numbers, nulls, and dates. Arrays and records are compound types that can be arbitrarily nested. In more detail, an array is an ordered collection of values and can be used to model data structures such as vectors, lists, sets, or bags. A record is an unordered collection of name-value pairs—called fields—and can model structs, dictionaries, and maps.

Despite its simplicity, JDM is very flexible. It allows Jaql to operate with a variety of different data representations for both input and output, including delimited text files, JSON files, binary files, Hadoop's sequence files, relational databases, key-value stores, or XML documents.

Textual Representation. Figure 1 shows the grammar for the textual representation of JDM values. The grammar unambiguously identifies each data type from the textual representation. For example, strings are wrapped into quotation marks ("text"), numbers are represented in decimal or scientific notation (10.5), and booleans and null values are represented as literals (true). As for compound types, arrays are enclosed in brackets ([1,2]) and records are enclosed in curly braces ({"a":1, "b":false}). Note that JDM textual representation is a part of Jaql grammar, thus we use terms JDM value and Jaql value interchangeably. Also note that this representation closely resembles JSON, a popular and standardized text format for data exchange. In fact, Jaql’s grammar and JDM subsume JSON: Any valid JSON instance can be read by Jaql. The converse is not true, however, as JDM has more atomic types. This resemblance has multiple advantages. While JSON was designed for JavaScript, it has been found useful as a format for data exchange between programs written in many different programming languages, including C, C++, C#, Java, Python, and Ruby, to name just a few. Due to its closeness to JSON, Jaql can readily exchange data with all those languages.

Example 1 Consider a hypothetical company KnowItAll, Inc. that maintains a repository of documents. The following is an excerpt in JDM's textual representation.

```json
[{ uri: "http://www.acme.com/prod/1.1reviews",
  content: "Widget 1.1 review by Bob ...",
  meta: { author: "Bob",
          contentType: "text",
          language: "EN" } },

{ uri: "file:///mnt/data/docs/memo.txt",
  content: "The first memo of the year ...",
  meta: { author: "Alice",
          language: "EN" } }]
```

Figure 1: Grammar for textual representation of Jaql values.

Relationship to other data models. Jaql’s data model consciously avoids many complexities that are inherent in other semi-structured data models, such as the XQuery Data Model (XDM) and the Object Exchange Model (OEM). For example, Jaql’s data model does not have node identity or references. As a consequence, Jaql does not have to deal with multiple equality semantics (object and value) and Jaql values are always trees (not graphs). These properties not only simplify the Jaql language, but also facilitate parallelization.

3.2 Schema

Jaql’s ability to operate without a schema, particularly in conjunction with self-describing data, facilitates exploratory data analysis because users can start working with the data right away, without knowing its complete type. Nevertheless, there are many well-known advantages to schema specification, including static type checking and optimization, data validation, improved debugging, and storage and runtime optimization. For these reasons, Jaql allows and exploits schema specifications. Jaql’s schema and schema language are inspired by XML Schema [39], RELAX NG [34], JSON schema [21], and JSONR [20]. The schema information does not need to be complete and rigid because Jaql supports partial schema specification.

Jaql uses a simple pattern language to describe schemas, see Figure 2. The schema of an atomic type is represented by its name, e.g., boolean or string. The schema of an array is represented by using a list of schemas in brackets, e.g., [boolean, string]. Optionally, usage of ... indicates that the last array element is repeatable, e.g., [string, double ...]. The schema of records are defined similarly, e.g., {uri: string} describes a record with a single field uri of type string. Question marks indicate optionality (for fields) or nullability (otherwise). We refer to a schema as regular if it can be represented with the part of the language just described. Regular schemas give a fairly concise picture of the actual types in the data. In contrast, irregular schemas make use of wildcards—such as nonnull or any for values of arbitrary type, * for fields of arbitrary name, or omission of a field’s type—or specify different alternative schemas (using |). In general, irregular schemas are more vague about the data. The simplest irregular
schema is any; it matches any value and is used in the absence of schema information.

Example 2 The excerpt of the KnowItAll data shown in Example 1 conforms to the following regular schema:

```
[ { uri: string, content: string, meta: { author: string, contentType?: string?, language: string } } ... ],
```

where ? marks optional fields. This schema is unlikely to generalize to the entire dataset, but the following irregular schema may generalize:

```
[ { uri: string, content: any, meta: {*: string} } ... ].
```

The ability to work with regular and irregular schemas allows Jaql to exploit schema information in various degrees of detail. In contrast to many other languages, Jaql treats schema as merely a constraint on the data: A data value (and its type) remains the same whether or not its schema is specified. This makes it possible to add schema information—whether partial or complete—as it becomes available without changing the data type or any of the existing Jaql code. For example, initial screening of the KnowItAll dataset might be performed using schema `[*]`, which indicates that the data is a collection of arbitrary records. When in later phases, as more and more information becomes available, the schema is refined to say, `[{uri: string,*}...],` all existing code can be reused as is, but will benefit from static type checking and increased efficiency. In contrast, refinement of schema often requires a change of data type, and consequently query, in many other languages. For example, a dataset of arbitrary records is modeled as `[(fields:map)...]` in Pig Latin [30] and LINQ [24], which both support flexible map containers that can store heterogeneous data. When information about field uri becomes available, it is propagated by pulling uri out of fields. The schema and data type becomes `[(uri: string, fields:map)...]` and all references to uri in the query have to be modified.

4. LANGUAGE

This section describes the core features of the Jaql language. A series of examples is used to emphasize how the language meets its design goals of flexibility, reusability, and physical transparency.

4.1 A Simple Example

Jaql is a scripting language. A Jaql script is simply a sequence of statements, and each statement is either an import, an assignment, or an expression. The following example describes a simple task and its Jaql implementation.

Example 3 Consider a user who wants to gain some familiarity with the KnowItAll data by learning which fields are present and with what frequency.

Figure 3 shows a conceptual data flow that describes this task. The data flow consists of a sequence of "operators"; example data is shown at various intermediate points. The read operator loads raw data—in this case from Hadoop's Distributed File System (HDFS)—and converts it into Jaql values. These values are processed by the countFields subflow, which extracts field names and computes their frequencies. Finally, the write operator stores the result back into HDFS.

This task is accomplished by the following Jaql script:

```jaql
import myrecord;

countFields = fn(records) {
  records
define
  \(\text{-- transform myrecord::names($)}\)

  \(\text{-- expand} \)

  \(\text{-- group by key = $ as values} \)

  \(\text{-- into } \{ \text{name: key, num: count(values) } \} \)

  \(\text{-- write( hdfs("fields.dat")) }\)
```

Lines 1–13 in the example script correspond directly to the conceptual data flow of Figure 3. Jaql uses a pipe syntax (→) which was inspired by Unix pipes. The pipe syntax explicitly shows the data flow in a Jaql script, making it easier to read and debug. We chose this syntax to avoid defining variables (as in Pig Latin[30]), or WITH clauses (as in SQL), for every computational step. The pipe syntax is also more readable than the functional notation (as in XQuery[40]), when a series of functions are invoked back to back.

In Example 3, read, hdfs, countFields, and write are functions; their composition and invocation constitutes an expression. The remaining part of the script concerns countFields. Line 1 is an import statement that imports several record-related functions from the myrecord module. Lines 3–9 constitute the assignment that defines the countFields function, which is discussed in detail in the Section 4.3.

4.2 Core Expressions

Jaql has several expressions for manipulating data collections, including transform, expand, filter, join, sort, group by, multi-input group by (equivalent to Pig's co-group [30]), merge, tee, and split. Note that some of these expressions (such as join, group by, filter) can be found in database management systems, while others (such as transform, merge, tee, split) are typical for ETL engines. A complete discussion of these expressions is beyond the scope of this paper, but see [16].

This section illustrates some of the core expressions using our running example. Consider lines 4–8 of Example 3 as well as the corresponding data shown in Figure 3. The transform expression applies a function (or projection) to every element of an array. It has the form \(e_1 \rightarrow \text{transform } e_2\), where \(e_1\) is an expression that describes the input array, and \(e_2\) describes the transformation. In lines 4 and 5 of the example, \(e_1\) refers to the records variable, and \(e_2\) invokes the names function from the myrecord module. The invocation makes use of Jaql's default iteration variable \(r\); most expressions allow renaming this variable using the each keyword. For example, \(\rightarrow \text{transform each } r \text{ myrecord::names(r)}\) illustrates how \(r\) can be renamed to \(r\). The names function itself...
takes as input a record and produces an array of field names (represented as strings). The output after `transform` is shown Figure 3(b). The `expand` expression in line 6 unnests the array of field names, cf. Figure 3(c).

The subsequent group by expression counts the number of occurrences of each distinct field name. In contrast to SQL's `GROUP BY`, Jaql's group by expression allows arbitrary Jaql values as grouping key (including arrays and records) and does not necessarily perform aggregation. The grouping key and array of all values in the group are accessible via iteration variables. In the example, these variables are named `key` and `values`. The expression in the `into` clause is used to construct the result of the group by. Here, we construct a record with two fields name and `num`, the latter by applying the `count` aggregate function to `values`. As with the grouping key, the result of aggregation can be an arbitrary Jaql value.

Jaql treats all its expressions uniformly. In particular, there is no distinction between "small" expressions (such as additions) and "large" expressions (such as a group by). As a consequence, all expressions can be used at both the top-level and within nested structures. Jaql is similar to XQuery [40] and LINQ [24] in this respect, but differs from Pig Latin [30] and Hive [38] which provide little support for manipulating nested structures without prior unnesting. Limiting the language to operate on mostly the top level or two may simplify the implementation and early learning of the language but becomes tedious when manipulating richer objects.

4.3 Functions

Functions are first-class values in Jaql, i.e., they can be assigned to a variable, passed as parameters, or used as a return value. Functions are the key ingredient for *reusability*: Any Jaql expression can be encapsulated in a function, and a function can be parameterized in powerful ways. Also, functions provide a principled and consistent mechanism for *physical transparency* (see Section 4.5).

In Example 3, the `countFields` function is defined on lines 3–9 and invoked on line 12. In Jaql, named functions are created by constructing a `lambda function` and assigning it to a variable. Lambda functions are created via the `fn` expression; in the example, the resulting function value is assigned to the `countFields` variable. The function has one parameter named `record`. Although not shown, parameters can be constrained by a schema when desired.

Jaql makes heavy usage of the `pipe symbol` `->` in its core expressions. Although this symbol has multiple interpretations in Jaql, the expression to the left of `->` always provides the context for what is on the right-hand side. Thus, `e1 -> e2` can be read as "`e1` flows into `e2". Lines 12 and 13 in the example script show a case where the right-hand side is not a core expression but a function invocation. In this case, the left-hand side is bound to the first argument of the function, i.e., `e -> f(...)` is equivalent to `f(e,...)`. This interpretation unifies core expressions and function invocations in that input expressions can occur up front. User-defined functions thus integrate seamlessly into the language syntax.

To see this, compare the Jaql expressions

\[
\text{read}(e_1) \rightarrow \text{transform} \quad e_2 \rightarrow \text{myudf()} \rightarrow \text{group by} \quad e_3
\]

to the equivalent but arguably harder-to-read expression

\[
\text{myudf}($\text{read}(e_1)$) \rightarrow \text{transform} \quad e_2 \rightarrow \text{group by} \quad e_3
\]

4.4 Extensibility

Jaql's set of built-in functions can be extended with *user-defined functions* (UDF) and *user-defined aggregates* (UDA), both of which can be written in either Jaql or an external language. Such functions have been implemented for a variety of tasks, ranging from simple string manipulation (e.g., `split`) to complex tasks such as information extraction (e.g., via System T [22]) or statistical analysis (e.g., via R and SPSS\(^2\)). As mentioned before, the exchange of data between Jaql and user code is facilitated by Jaql's use of a JSON-based data model.

Example 4

Continuing from Example 3, suppose that the user wants to extract names of products mentioned in the `content` field. We make use of a UDF that, given a document and a set of extraction rules, uses System T for information extraction. The following Jaql script illustrates UDF declaration and invocation:

```java
1. system = javaudf("com.ibm.ext.SystemTWrapper");
2. 3. read( hdfs("docs.dat") )
4. -> transform { author: $.meta.author,
5. products: system($.content, rules );
6.}

When run on the example data, the script may produce

```
{ author: "Bob", products: ["acme: ["Widget 1.1","...",
knowledge: ["Service xyz",...]] },
{ author: "Alice", products: ["..."],
}
```

Example 4 illustrates how functions and semi-structured data are often used in Jaql. The `javaudf` function shown on line (1) is an example of a function that returns a function that is parameterized by a Java class name `c`, and when invoked, knows how to bind invocation parameters and invoke the appropriate method of `c`. As a result, Jaql does not distinguish between native Jaql functions and external UDFs and UDAs—both can be assigned to variables, passed as parameters, and returned from functions.

The sample result from Example 4 illustrates a common usage pattern—per string (e.g., `.content`). SystemT enriches each record with extracted data. In this case, the SystemT `rules` field contains multiple products produced by multiple companies (e.g., "acme" and "knowitall"). More generally, the extracted information includes additional attributes, such as where in the original input it was found. As a result, the relatively "flat" input data is transformed into more nested data. Often, the script shown in Example 4 is followed by additional steps that filter, transform or further classify the extracted data—Jaql's composability is crucial to support such manipulation of nested data.

Functions that are implemented using external programs are similarly used by Jaql. The `externalFn` function wraps the invocation of an external program into a function, which can then be assigned to a variable and invoked just like any other function. The support for external programs include several other notable features. First, data must be serialized to and from the external process. For this, Jaql's I/O capability is re-used so that data can be converted flexibly between Jaql and the format that the external program expects. Second, the protocol by which Jaql interacts with the external program has been abstracted and made pluggable. Two protocols have been implemented to inter-operate with programs: (1) bulk invocation and (2) value invocation. With bulk invocation, Jaql sends all data to the program while using a second thread to asynchronously consume the program's output. While efficient, a complication with bulk invocation is that the external program must consume all data, which makes it cumbersome to send just a projection of the data to the program, then correlate its result back to the original data. For such cases, per-value invocation is used to synchronously send

a value to the program and receive its output. For both protocols, Jaql re-uses the same process for as long as it can. Bulk invocation is supported in Hadoop (e.g., Hadoop Streaming), Pig and Hive whereas value invocation is supported for UDF’s. Neither system unifies push and pull into a single abstraction, which lets Jaql users easily switch between various implementations.

4.5 Physical Transparency

Physical transparency—i.e., the exposure of lower-level abstractions in the language—enables bottom-up extensibility to get functionality first and abstraction later. The sophisticated Jaql user can add a new run-time operator by means of a new (perhaps higher-order) function. The new operator can be used immediately, without requiring any changes to Jaql internals. If the operator turns out to be important enough to the Jaql community, a Jaql developer can add new syntax, rewrites, statistics, or access methods to Jaql itself. In a traditional database system design, all of these tasks must be accomplished before new run-time functionality is exposed, which makes adding new operators a daunting task.

Example 5 Consider a log dataset that resembles many Apache HTTP Server error logs or Log4J Java application logs. This dataset contains a sequence of log records with the following schema:

{ date: date, id: long, host: string, logger: string, status: string, exception?: string, msg?: string, stack?: string }

The data in our example log is stored in a text file and originally intended for human consumption. The log records are generated in increasing date order, so the files are sorted by the timestamp. There are two types of log entries in the file based on the status field: a single line ‘success’ record or a multi-line ‘exception’ record. All records have the first five fields separated by a comma. When the status is ‘exception’, the next line contains the type of exception and a descriptive message separated by a colon. The next several lines are the stack trace.

To form a single logical record, multiple consecutive lines need to be merged into single record. The following script uses Jaql’s built-in tumbling window facility to glue the exception lines with the standard fields to create a single line per record for easy processing in later steps:

1. read(lines('log'))
2. -> tumblingWindow(stop = fn(next) isHeader(next))
3. -> transform cleanRec($)
4. -> write(lines('clean'));

The read in line (1) reads the file as a collection of lines. Next in line (2), the function tumblingWindow is a higher-order function that takes an ordered input and a predicate to define the points where the window breaks. The isHeader function returns true when the next line starts with a timestamp and has at least 5 fields. The cleanRec function combines the header and all the exception lines into a single line by escaping the newlines in the stack trace.

Order-sensitive operations like tumbling windows are notoriously more difficult to parallelize than multi-set operations. At this stage, Jaql is not clever enough to automatically parallelize this script, so it runs sequentially. For small logs, this is acceptable, but for large logs we clearly need to do better. A user of a traditional database system might make a feature request and wait several years for a solution to be delivered. Physical transparency allows the power user to implement a solution at a lower level of abstraction.

Example 6 Imagine somebody found a way to run tumbling windows in parallel. Perhaps not supporting the full generality of the built-in windowing support, but enough to solve the problem at hand. Then we could use this function as a replacement for the original function. The following script is very similar to the previous one, but the read and tumblingWindow have been composed into a single function, tumblingWindow, that runs in parallel:

ptumblingWindow(lines('log'), isHeader)
  -> transform cleanRec($)
  -> write(lines('clean'));

The new script remains at a fairly high level, even though it is exploiting low-level operations via tumblingWindow.

The key to ptumblingWindow’s implementation is split manipulation. Ordinarily, Hadoop is responsible for partitioning an input into splits and assigning each split to a single map task. Fortunately, Hadoop’s API’s are very flexible, making it easy to re-define how a given input is partitioned into splits. For tumblingWindow, we directly access the splits and manipulate them using Jaql to redefine the splits so that the semantics of tumblingWindow are preserved. Each task processes its split and peeks at the next split to handle the case where a partial, logical record spans a split boundary.

While the implementation of tumblingWindow consists of a handful of simple functions, these functions access very low-level Hadoop API’s so is unlikely to be understood by the casual user. The level of abstraction that is needed is comparable to directly programming a MapReduce job. However, physical transparency enabled a solution to the problem and functions allowed these details to be hidden in the implementation of the top-level tumblingWindow function. In addition, tumblingWindow is sufficiently abstract so that it can be applied to any collection. Using features like the ones described here, we have built parallel enumeration, sliding windows, sampling, and various join algorithms, to name a few.

4.6 Error Handling

Errors are common place when analyzing large, complex data sets. A non-exhaustive list of errors includes corrupt file formats, dynamic type errors, and a myriad of issues in user-defined code that range from simple exceptions, to more complicated issues such as functions that run too long or consume too much memory. The user must be able to specify how such errors effect script evaluation and what feedback the system must supply to improve analysis.

Jaql handles errors by providing coarse-grained control at the script level and fine-grained control over individual expressions. For coarse-grained control, core expressions (e.g., transform, filter) have been instrumented to adhere to an error policy. The policies thus far implemented control if a script is aborted when there is: (1) any error, or (2) more than k errors. When an error occurs, the input to the expression is logged, and in the case where errors are permitted, the expression’s output is skipped.

For fine-grained control, the user can wrap an arbitrary expression with catch, fence, or timeout functions. The catch function allows an error policy to be specified on a specific expression instead of at the script level. The fence function evaluates its input expression in a forked process. Similar to externalFn, Jaql sends and receives data in bulk to the forked process or per value. The
timeout function places a limit on how long its input expression can run. If exceeded, an exception is thrown.

Since fine-grained error handling is implemented using Jaql functions, composing them and having them work in parallel using MapReduce comes for free. Consider the following expression:

```
read(hdfs("docs.dat"))
-> transform mapReduceFn(Expr(fence(Expr(fn(r) myudf(r.content)), 5990), $.uri));
```

This expression is evaluated as a parallel scan (e.g., a Map-only job). Each map task (e.g., parent process) processes a partition of the input and evaluates myudf in a child process that it forks (once per map task). Each invocation of myudf is passed an input record, $r$, and limited to 5 seconds. If an exception occurs or the operation times out, the script-level error policy is used and $.uri is logged.

5. SYSTEM IMPLEMENTATION

At a high-level, the Jaql architecture depicted in Figure 4 is similar to most database systems. Scripts are passed into the system from the interpreter or an application, compiled by the parser and rewrite engine, and either explained or evaluated over data from the I/O layer. Jaql modules provide organization and abstraction over reusable components, which are introspected during compilation. Scripts may bind variables to values, or more often to expressions that serve as temporary views. This section describes the major components of the architecture, starting from the lowest layer.

5.1 I/O Layer

The storage layer is similar to a federated database. Rather than requiring data to be loaded into a system-specific storage format based on a pre-defined schema, the storage layer provides an API to access data in-situ in other systems, including local or distributed file systems (e.g., Hadoop’s HDFS, IBM’s GPFS), database systems (e.g., DB2, HBase), or from streamed sources like the Web. Unlike federated databases, however, most of the accessed data is stored within the same cluster and the API describes data partitioning, which enables parallelism with data affinity during evaluation. Jaql derives much of this flexibility from Hadoop’s I/O API.

Jaql reads and writes many common file formats (e.g., delimited files, JSON text, Hadoop Sequence files). Custom adapters are easily written to map a data set to or from Jaql’s data model. The input can even simply be values constructed in the script itself.

Input / output descriptors are open-ended structures used to describe storage objects that are passed to the read and write functions, among others. A descriptor is a record with a simple schema: {adapter: string, *: any}. The adapter field refers to an internal adapter object: a Java class name in our implementation.

The remaining fields are interpreted by the adapter. Most HDFS files use the default Hadoop adapter, which extends the input descriptor to include a format and converter field. The format field refers to a Hadoop InputFormat class that provides access to HDFS files or other storage objects; the converter translates the Java objects into Jaql’s data model. Converters may expect additional parameters in the descriptor, e.g., information needed to decode lines in the file. Similar functionality is provided for OutputFormats.

The descriptors exemplify the power of irregular schemas. The read function simply requires a record with an adapter field. Because the descriptor often provides parameters for several objects, like an adapter and a converter, the descriptor schemas do not form a type hierarchy. Instead they are more like mixin types, using multiple inheritance to mix the fields needed for each of the objects. The default result schema {any...} of a read is also irregular; it produces an array of values. However, the adapter may refine the result schema. This flexibility in descriptors and results allows users to quickly implement access to new storage objects.

5.2 Evaluation

Jaql relies on Hadoop’s MapReduce infrastructure to provide parallelism, elasticity, and fault tolerance for long-running jobs on commodity hardware. Briefly, MapReduce is a parallel programming framework that breaks a job into map and reduce tasks. Each map task scans a partition of an input data set—e.g., an HDFS file spread across the cluster—and produces a set of key-value pairs. If appropriate, the map output is partially reduced using a combine task. The map output is redistributed across the cluster by key so that all values with the same key are processed by the same reduce task. Both the combine and reduce tasks are optional.

Unlike traditional databases, MapReduce clusters run on less reliable hardware are significantly less controlled; for example MapReduce jobs by definition include significant amounts of user code with their own resource consumption, including processes and temporary files. Hence, MapReduce nodes are significantly less stable than a DBA managed database system, which means that nodes frequently require a reboot to clean out remnants from previous tasks. As a result, the system replicates input data, materializes intermediate results, and restarts failed tasks as required.

The Jaql interpreter begins evaluation of the script locally on the computer that compiled the script, but spawns interpreters on remote nodes using MapReduce. A Jaql script may directly invoke MapReduce jobs using the mapReduceFn function of Jaql, but more often a Jaql script is rewritten into one or more MapReduce jobs, as described in Section 5.3.2.

The mapReduceFn function is higher-order; it expects input/output descriptors, a map function, and an optional reduce function. Jaql includes a similar function, mrAggregate, that is specialized for running algebraic aggregate functions\(^4\) in parallel using MapReduce. MrAggregate requires an aggregate parameter that provides a list of aggregates to compute. During evaluation of mapReduceFn or mrAggregate, Jaql instructs Hadoop to start a MapReduce job, and each map (reduce) task starts a new Jaql interpreter to execute its map (reduce) function.

Of course, not everything can be parallelized, either inherently or because of limitations of the current Jaql compiler. Therefore, some parts of a script are run on the local computer. For example, access to files in the local file system obviously must run locally.

5.3 Compiler

The Jaql compiler automatically detects parallelism in a Jaql script and translates it to a set of MapReduce jobs. The rewrite

\(^4\)Algebraic aggregation functions are those that can be incrementally evaluated on partial data sets, such as sum or count. As a result, we use combinators to evaluate them.
engine generates calls to mapReduceFn or mrAggregate, moving the appropriate parts of the script into the map, reduce, and aggregate function parameters. The challenge is to peel through the abstractions created by variables, higher-order functions, and the I/O layer. This section describes the salient features used during the translation.

5.3.1 Internal Representation

Like the internal representation of many programming languages, the Jaql parser produces an abstract syntax tree (AST) where each node, called an Expr, represents an expression of the language (i.e., an operator). The children of each node represent its input expressions. Other AST nodes include variable definitions and references, which conceptually create cross-links in the AST between each variable reference and its definition. Properties associated with every Expr guide the compilation. The most important properties are described below.

Each Expr defines its result schema, be it regular or irregular, based on its input schemas. The more complete the schema, the more efficient Jaql can be. For example, when the schema is fully regular, storage objects can record structural information once and avoid repeating it with each value. However, even limited schema information is helpful; e.g., simply knowing that an expression returns an array enables streaming evaluation in our system.

An Expr may be partitionable over any of its array inputs, which means that the expression can be applied independently over partitions of its input: $e(I,...) \equiv \forall i \in I \, e(P,\ldots)$. In the extreme, an Expr may be mappable over an input, which means that the expression can be applied equally well to individual elements: $e(I,...) \equiv \forall i \in I \, e([],\ldots)$. These properties are used to determine whether MapReduce can be used for evaluation. The transform and expand expressions are mappable over their input. Logically, any expression that is partitionable should also be mappable, but there are performance reasons to distinguish these cases. For example, the lookup function in a hash-join is only partitionable over its probe input because we do not want to load the build array for every probe value.

Most expressions are purely functional, meaning that they evaluate each input expression once to produce their value and they do not have any external effects. However, an Expr may be non-deterministic (e.g., randomNumber) or side-effecting (e.g., write), which restricts the types of rewrites performed by the system. An Expr may also declarate that it selectively or repeatedly evaluates child expressions.

An Expr may deny remote evaluation. For example, the mapReduceFn function itself is not allowed to be invoked from within another MapReduce job because it would blow up the number of jobs submitted and could potentially cause deadlock if there are not enough resources to complete the second job while the first is still holding resources.

An Expr may be evaluable at compile-time, given that its inputs are constants. Evaluating expressions at compile-time obviously eliminates run-time work, potentially to a large degree if the expression is inside of a loop. More importantly, constants can be freely inlined (to be later composed) without creating repeated work and they improve transparency so that important constants can be found. For example, Jaql must determine the adapter in the I/O descriptor to determine the schema of a read expression. Note that all expressions have an output schema— in many cases schemas are determined during compilation. Such schema inference is used by Jaql to improve the space efficiency of its storage formats. The idea is that if more information is known about the structure of the data, a more compact storage format can be used.

In particular, such techniques are used between the map and reduce steps, thereby reducing I/O bandwidth for both disks and network.

5.3.2 Rewrites

At present, the Jaql compiler simply consists of a heuristic rewrite engine that greedily applies approximately 40 transformation rules to the Expr tree. The rewrite engine fires rules to transform the Expr tree, guided by properties, to another semantically equivalent tree. In the future, we plan to add dynamic cost-based optimization to improve the performance of the declarative language features, but our first priority is providing physical transparency to a powerful run-time engine.

The goal of the rewrites is to peel back the abstractions created for readability and modularity, and to compose expressions separated for reusability. The engine simplifies the script, discovers parallelism, and translates declarative aspects into lower-level operators. The most important rules are illustrated in Example 7 and described below.

Example 7 Steps in rewriting a function call.

1. $f = \mathbf{fn}(x.r + r.y)$
2. $f = f(x:1,y:2)$

$\Rightarrow \mathbf{fn}(x.r + r.y)(x:1,y:2)$; // variable inline
$\Rightarrow (x:1,y:2).x + (x:1,y:2).y$; // function inline
$\Rightarrow x + y$; // constant field access
$\Rightarrow 1 + 2$; // compile-time computable

Variable inlining: Variables are defined by expressions or values. If a variable is referenced only once in a expression that is evaluated at most once, or the expression is cheap to evaluate, then the variable reference is replaced by its definition. Variable inlining opens up the possibility to compose the variable’s definition with the expressions using the variable.

Function inlining: When a function call is applied to a Jaql function, it is replaced by a block5 in which parameters become local variables: $(\mathbf{fn}(x)(e_1)(e_2) \Rightarrow (x = e_2, e_1))$. Variable inlining may further simplify the function call.

Filter push-down: Filters which do not contain non-deterministic or side-effecting functions are pushed down as low as possible in the expression tree to limit the amount of data processed. Filter pushdown through transform, join, and group by is similar to relational databases [12], whereas filter pushdown through expand is more similar to predicate pushdown through XPath expressions [32], as expand unsets its input data. For example, the following rule states that we can pushdown the predicate before a group by operator if the filter is on the grouping key.

$e_1 \rightarrow \mathbf{group} \mathbf{by} x = \mathbf{count}(\mathbf{filter}(\mathbf{forall}(x \equiv e_1 \rightarrow \mathbf{filter}(\mathbf{x} = x \\mathbf{count})))$;

Field access: When a known field of a record is accessed, the record construction and field access are composed: $\{x: e, \ldots\}$. $\Rightarrow e$. A similar rule applies to arrays. This rule forms the basis for selection and projection push-down as well. The importance of this property was a major reason to move away from XML. Node construction in XQuery includes several effects that prevent a simple rewrite rule like this: node identity, node order, parent axis, sibling axis, and changing of primitive data types when an item is inserted into a node.

5A block expression is a parenthesized sequence of expressions separated by commas, with optional local variable assignment. The result of a block is the value of its last expression.
single MapReduce job. It looks for a read followed by a second sequence of partitionable expressions, followed by a write to a distributed output. If the group is not present, a map-only job is produced. If the group is only used inside of algebraic aggregates, an mrAggregate call is produced. Otherwise, a mapReduceFn call is produced. The partitionable expressions before the group and the grouping key expression are placed in the map function. The (map function is called once to process an entire partition, not per element.) Any expressions after the aggregates and the second sequence of partitionable expressions are placed in the reduce function. The group may have multiple inputs (i.e., co-group), in which case each input gets its own map function, but still a single reduce function is created. The rewrite must consider expressions that are non-deterministic, are side-effecting, or disallow remote evaluation.

Via these and the remaining rules, scripts are conceptually translated into a directed-acyclic graph (DAG), where each node is a MapReduce job or a sequential step.

Example 8 Consider a wroteAbout dataset that contains pairs of authors and product names (similar to Example 4), and a products dataset that contains information about individual products. The wroteAbout dataset is defined as follows:

```plaintext
wroteAbout = read(hdfs("docs.dat"));
-> transform { author: $.meta.author,
products: systemt($.content, rules) }
-> transform each d (d.products -> transform { d.author, product: $ });
-> expand
```

This definition is similar to the one used in Example 4, but unnests the products array. More specifically, the inner transform produces an array of author-product pairs, which is then unnested using expand. The products dataset is defined as products = read( hdfs("products.dat") );

The following Jaql script computes two summary files for categories and authors. Lines 1–3 join the wroteAbout and products collections. Lines 5–8 count the distinct product categories mentioned by each author. Lines 10–13 count the distinct authors for each product category. The notation R[*]. is short-hand to project a field from an array of records. The cntDist function is a user-defined aggregate that computes a count of distinct values in a parallel.

1. joinedRefs = join w in wroteAbout, p in products
2. where w.product == p.name
3. into { w.author, p.* };
4. joinedRefs
5. -> group by author = $.author as R
6. -> group by prodCat = $.prodCat as R[*, prodCat]
7. into { author, n: cntDist(R[*].prodCat) }
8. -> write(hdfs("catPerAuthor"));
9. joinedRefs
10. -> group by prodCat = $.prodCat as R
11. into { prodCat, n: cntDist(R[*, author]) }
12. -> write(hdfs("authorPerCat"));

Compilation produces a DAG of three MapReduce jobs as shown in Figure 5. The DAG is actually represented internally as a block of mapReduceFn and mrAggregate calls, with edges created by data-flow dependencies, variables, and read/write conflicts. The complete compilation result is given in Example 9.

Although our current focus is on generating MapReduce jobs, Jaql should not be categorized simply as a language for MapReduce. Though Jaql should be useful for manipulating small collections (an implementation for Javascript running in a Web browser would be interesting), our focus is on large-scale data analysis. In this space, many paradigms besides MapReduce were proposed recently and in the past, e.g., Pregel for graph processing [26] or ScалАPACK for matrix computations [36]. Each of these are designed for certain specialized classes of computation. Our long-term goal is to glue many such paradigms together using Jaql, which will increase the types of nodes in the DAG. For example, we created an iterative, parallel model building function called buildModel for data-mining tasks that easily express, e.g., a parallel k-means computation.

5.4 Decomposition and Explain

Every expression knows how to decompile itself back into a semantically equivalent Jaql script. Immediately after parsing and after every rewrite fires, the Expr tree can be decompiled. The explain statement uses this facility to return the lower-level Jaql script after compilation. This process is referred to as source-to-source translation [23].

Example 9 The following is the result of explain for the script of Example 8. The list of jobs can be visualized as the DAG in Figure 5.

```plaintext
// Extract products from docs, join with access log
mapReduce { input: [{ location: 'docs.dat', type: 'hdfs' },
{ location: 'products.dat', type: 'hdfs' }],
output: HadoopTemp(),
map: [fn(docs) {
 docs
 -> transform
 { w: { author: $.meta.author,
 products: systemt($.content, rules...) }
 -> transform [$.w.product, $] },
fn(prods) (prods
 -> transform { p: $ }
 -> transform [$.p.name, $]),
reduce: fn(pname, docs, prods) (if(not isnull(pname)) {
 docs -> expand each d (prods -> transform each p { d.*, p.* })
 -> transform [$.w.author, $.p.*])
}),
// Count distinct product categories per author
mrAggregate({
inmapReduce:
output: { location: 'catPerAuthor', type: 'hdfs' },
map: fn(vals) vals -> transform [$.author, $],
aggregate: fn(author, vals) [
 vals -> transform $.prodCat -> cntDist()],
final: fn(author, aggs) { author, n: aggs[0] },
}),
// Count distinct authors per product category
mrAggregate({
inmapReduce:
output: { location: 'authorPerCat', type: 'hdfs' },
```
map: fn(vals) vals -> transform [$prodCat, $], aggregate: fn(author, vals)
  [vals -> transform $.prodCat -> cntDist() ],
final: fn(prodCat, aggs) { prodCat, n: aggs[0] },
})

By mandating that every Expr tree supports decompilation, we ensure that every evaluation plan is expressible in Jaql itself, thus providing physical transparency. Since the plan in Example 9 is a valid Jaql query, it can be modified with a text editor and submitted "as-is" for evaluation. In certain situations where a particular plan was required, the capability to edit the plan directly, as opposed to modifying source code, was invaluable. In addition, Example 9 illustrates how higher-order functions, like mapReduceFn, are represented in Jaql. Note that run-time operators of many database systems can be viewed as higher-order functions. For example, hash-join takes two tables as input, a key generation function for each table, and a function to construct the output. Jaql simply exposes such functionality to the sophisticated user.

Support for decompilation was instrumental in bridging Jaql to MapReduce and in implementing error handling features (see Section 4.6). The MapReduce map and reduce functions are simply Jaql functions that are serialized into a configuration file and deserialized when the MapReduce job is initialized. For error handling, the fence function simply decompiles its input, forks a child process that expects a Jaql function $f$, and sends it to the child. Since functions are part of Jaql’s data model, serialization and deserialization between child and parent is trivial.

Jaql’s strategy is for a user to start with a declarative query, add hints if needed, and move to low-level operators as a last resort. Even when a declarative query is producing the right plan, the user can use explain to get a low-level script for production use that ensures a particular plan over changing input data.

6. EXPERIMENTAL EVALUATION

In this section, we describe our experiments and summarize the results. We focused on Jaql’s scalability while exercising its features to manage nested data, compose data flows using Jaql functions, call user-defined functions, and exploit physical transparency. We considered three workloads that are based on: (1) a synthetic data set designed for XML-based systems, (2) a real workload that is used analyze intranet data sources, and (3) the log transparency. We considered three workloads that are based on: (1) a synthetic data set designed for XML-based systems, (2) a real workload that is used analyze intranet data sources, and (3) the log transparency.

Hardware: The experiments were evaluated on a 42-node IBM SystemX iDataPlex dx340. Each server consisted of two quad-core Intel Xeon E5540 64-bit 2.8GHz processors, 32GB RAM, 4 SATA disks, and interconnected using 1GB Ethernet.

Software: Each server had Ubuntu Linux (kernel version 2.6.32-24), IBM Java 1.6, Hadoop 0.20.2, and Jaql 0.5.2. Hadoop’s “master” processes (MapReduce JobTracker and HDFS NameNode) were installed on one server and another 40 servers were used as workers. Each worker was configured to run up to 4 map and 4 reduce tasks concurrently. The following configuration parameters were overridden in order to boost performance: HDFS block size was set to 64MB, sort buffer size was set to 512MB, JVM’s were re-used, speculative execution was turned off, and 4GB JVM heap space was used per task. All experiments were repeated 3 times and the average of those measurements is reported here.

6.1 Synthetic, Semi-structured Workload

We use the dataset from the TPoX benchmark (Transaction Processing over XML) [29] to illustrate several of Jaql’s features over semi-structured data. The dataset consists of financial transactions with five logical entities: Customers, each customer has a set of Accounts, each account may have Holdings and Orders issued over that account, and each account/order pair has Security types. We used the TPoX data generator [29] to generate CustAcc documents with three levels of nesting: Customer as the top level entity, one or more Account entities, and zero or more Holding entities, as the second and third levels of nesting, respectively. We used a Jaql function to convert the XML documents into Jaql’s data model while maintaining the same levels of nesting.

We used the following three queries over CustAcc documents:

Q1: For each customer, report the accounts that have holdings along with the holdings sum under each account.

read(hdfs('CustAcc')) -> sumCustAccts();

Q2: As in Q1 while restricting the reported accounts to certain category, e.g., "Business".

read(hdfs('CustAcc')) -> custCustAccts()
  -> transform each rec {
    Cust: rec.Cust,
    BusinessAccts:
      rec.Accts -> filter $.AcctCategory == "Business";
  }

Q3: As in Q1 while reporting only a sample from the accounts grouped by customers’ countries.

read(hdfs('CustAcc')) -> SampleByCountry(1000)
  -> filter $.Country == "USA";

These top-level queries are implemented using the following helper functions:

//Report customer accts w/ holdings and their sums
sumCustAccts = fn( cust ) {
  cust
  -> transform each t {
    Cust: t.Customer.id,
    Accts: holdingSums(t.Customer.Accounts)
  },
  // Sample N accounts per country.
  SampleByCountry = fn( cust, sampleSize ){
    cust
    -> transform each t {
      Accts: holdingSums(t.Customer.Accounts)
    } -> group by location = $.Country into {
      Country: location,
      Sample: {[$.Accts -> top sampleSize]}
    },
    // Sum of holdings for accounts that have holdings

Figure 6: Scale-up experiment using TPoX workload.
Jaql is used at IBM to analyze internal data sources to create specialized, high-quality indexes as described in [2]. The steps needed for this process are: (1) crawl the sources (e.g., Web servers, databases, and Lotus Notes), (2) pre-process all inputs, (3) analyze each document (Local Analysis), (4) analyze groups of documents (Global Analysis), and (5) index construction. Nutch is used for step (1) and Jaql is used for the remaining steps.

For the evaluation, we took a sample of the source data and evaluated how Jaql scales as both the hardware resources and data are proportionally scaled up. Per server, we processed 36 GB of data, scaling up to 1.4 TB for 40 servers. We focused on steps (2) and (3) since these steps manage the most data. The preprocess step (2) transforms the input into a common schema, and for Web data, resolves redirections, which requires an aggregation. The local analysis step (3) analyzes each document—key functionality includes language identification and information extraction using SystemT. These steps exercise many of Jaql’s features which range from standard data processing operators (e.g., group-by, selection, projection), to extensibility (e.g., Jaql and Java functions), and semi-structured data manipulation.

The results are shown in Figure 7. The pre-process phase (step 2) reads directly from Nutch crawler output and resolves redirections in the reducer tasks. The time needed to shuffle all data across the network dominated overall run-time, which explains why the result for scale-factor 1 was much faster—the shuffle looped back to the same machine. Most of the other steps used Map-only jobs so scaling was more predictable. The one exception was at scale factor 30 where the filters in the Local Analysis step was more selective that sample of data. Overall, the results illustrate that Jaql scales well for the given workload.

6.3 Log Processing Workload

We evaluated the scale-up performance of the record cleansing task from Section 4.5. We generated 30M records per CPU core of synthetic log data with 10% of the records representing exceptions with an average of 11 additional lines per exception record, which resulted in approximately 3.3 GB / core. We varied the number of servers from 1 to 40, which varied the number of cores from 8 to 320 and data from 26GB to 1TB. The result in Figure 8 shows that the original sequential algorithm works well for small data, but quickly gets overwhelmed. Interestingly, the parallel algorithm also runs significantly faster at small scale than at the high end (from 1 machine to 2). However, the parallel algorithm scales well from 2 to 40 machines, drastically outperforming the sequential algorithm even at a single machine because of its use of all 8 cores.

7. CONCLUSION

We have described Jaql, an extensible declarative scripting language and scalable processing system. Jaql was designed so that users have access to the system internals—highlighting our approach to physical transparency. As a result, users can add features and solve performance problems when needed. For example, we showed how tumbling windows and physical transparency can be exploited to scalably process large logs. A key enabler of physical transparency is Jaql’s use of (higher-order) functions, which addresses both composition and encapsulation so that new features can be cleanly reused.

Jaql’s design was also molded by the need to handle a wide variety of data. The flexibility requirement guided our choice of data...
model and is evident in many parts of the language design. First, all expressions can be uniformly applied to any Jaql value, whether it represents the entire collection or a deeply nested value. Second, the schema information at every expression can range from none, through partial schema, to full schema. Thus, Jaql balances the need for flexibility with optimization opportunities. The performance results illustrate that Jaql scales on a variety of workloads that exercise basic data processing operations, functions, and nested data manipulation.

Jaql is still evolving, and there are many challenges that we plan to pursue as future work. A non-exhaustive list includes: further investigation of errors handling and physical transparency, adaptive and robust optimization, exploitation of materialized views, discovery-based techniques for storage formats and partition elimination, and novel aspects for tools that assist with design as well as runtime management.

8. REFERENCES


[34] Relax NG. http://relaxng.org/.


