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ABSTRACT
Most emerging applications, especially in science domains, main-
tain databases that are rich in metadata and annotation information,
e.g., auxiliary exchanged comments, related articles and images,
provenance information, corrections and versioning information,
and even scientists’ thoughts and observations. To manage these
annotated databases, numerous techniques have been proposed to
extend the DBMSs and efficiently integrate the annotations into the
data processing cycle, e.g., storage, indexing, extended query lan-
guages and semantics, and query optimization. In this paper, we
address a new facet of annotation management, which is the dis-
covery and exploitation of the hidden corrections that may exist in
annotated databases. Such correlations can be either between the
data and the annotations (data-to-annotation), or between the anno-
tations themselves (annotation-to-annotation). We make the case
that the discovery of these annotation-related correlations can be
exploited in various ways to enhance the quality of the annotated
database, e.g., discovering missing attachments, and recommend-
ing annotations to newly inserted data. We leverage the state-of-
art in association rule mining in innovative ways to discover the
annotation-related correlations. We propose several extensions to
the state-of-art in association rule mining to address new challenges
and cases specific to annotated databases, i.e., incremental addition
of annotations, and hierarchy-based annotations. The proposed al-
gorithms are evaluated using real-world applications from the bio-
logical domain, and an end-to-end system including an Excel-based
GUI is developed for seamless manipulation of the annotations and
their correlations.

1. INTRODUCTION
Most modern applications annotate and curate their data with

various types of metadata information—usually called annotations,
e.g., provenance information, versioning timestamps, execution
statistics, related comments or articles, corrections and conflict-
related information, and auxiliary exchanged knowledge from dif-
ferent users. Interestingly, the number and size of these annotations
is growing very fast, e.g., the number of annotations is around 30x,
120x, and 250x larger than the number of data records in Data-
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Bank biological database [3], Hydrologic Earth database [4, 47],
and AKN ornithological database [5], respectively. Existing tech-
niques in annotation management, e.g., [9, 15, 17, 21, 24], have
made it feasible to systematically capture such metadata annota-
tions and efficiently integrate them into the data processing cy-
cle. This includes propagating the related annotations along with
queries’ answers [9, 15, 17, 24, 46], querying the data based on
their attached annotations [21, 24], and supporting semantic an-
notations such as provenance tracking [11, 14, 20, 43], and belief
annotations [23]. Such integration is vey beneficial to higher-level
applications as it complements the base data with the auxiliary and
semantic-rich source of annotations.

In this paper, we address a new facet of annotation management
that did not receive much attention before and has not been ad-
dressed by existing techniques. This facet concerns the discovery
and exploitation of the hidden correlations that may exist in anno-
tated databases. Given the growing scale of annotated databases—
both the base data and the annotation sets—important correlations
may exist either between the data values and the annotations, i.e.,
data-to-annotations correlations, or among the annotations them-
selves, i.e., annotations-to-annotations correlations. By systemati-
cally discovering such correlations, applications can leverage them
in various ways as motivated by the following scenarios.

Motivation Scenario 1−Discovery of Missing Attachments: As-
sume the example biological database illustrated in Figure 1. Typi-
cally, many biologists may annotate subsets of the data over time—
each scientist focuses only on few genes of interest at a time. For
example, some of the data records in Figure 1 are annotated with a
“Black Flag” annotation. This annotation may represent a scien-
tific article or a comment that is attached to these tuples. By ana-
lyzing the data, we observe that most genes having value F1 in the
Family column have an attached “Black Flag” annotation. Such
correlation suggests that gene JW0012 is probably missing this
annotation, e.g., none of the biologists was working on that gene
and thus the article did not get attached to it. However, by discov-
ering the aforementioned correlation, the system can proactively
learn and recommend this missing attachment to domain experts
for verification. Correlations may also exist among the annotations
themselves, e.g., between the “Black Flag” and the “Red Flag” an-
notations. Without discovering such correlations the database may
become “under annotated” due to these missing attachments.

Motivation Scenario 2−Annotation Maintenance under Evolv-
ing Data: Data is always evolving and new records are always
added to the database. Hence, a key question is: “For the newly
added data records, do any of the existing annotations apply to
them?”. Learning the correlations between the data and the an-
notations can certainly help in answering such question. For ex-



GID Name Seq Family Exp-Id 

JW0013 grpC TGCT… F1 101 

JW0014 groP GGTT… F6 105 

JW0015 insL GGCT… F1 105 

… … … … … 

JW0018 nhaA CGTT… F1 101 

JW0019 yaaB TGTG… F3 101 

JW0012 Yaal TTCG… F1 103 

Sequence needs to 
be shifted by 2 
bases  

JW0027 namE GTTT... F4 101 

This value is wrong 

Incorrect value 

Does not seem correct 

Newly inserted 
record 

Figure 1: Examples of Annotation-Related Correlations.

ample, the cloud-shaped comment in Figure 1 is attached to all
data records having value 101 in the Exp-Id column. Based
on this correlation, the system can automatically predict—at inser-
tion time—that this annotation also applies to the newly inserted
JW0027 tuple. Otherwise, such attachment can be easily missed
and important information is lost. Clearly, delegating such task
to end-users without providing system-level support—which is the
state of existing annotation management engines—is not a practi-
cal assumption.

Motivation Scenario 3−Annotation-Driven Exploration: The
discovered correlations may reveal information about the under-
ling data that trigger further investigation or exploration by do-
main experts. For example, as highlighted in Figure 1, the “Red
Flag” annotation semantically means invalid or incorrect data.
Since these annotations can be added by different biologists and
at different times, none of them may observe a pattern in the data.
In contrast, by discovering (and reporting) that the “Red Flag” an-
notation has strong correlation with experiment id 105, the domain
experts may re-visit the experimental setup of this wet-lab experi-
ment and may revise and re-validate all data generated from it.

These scenarios demonstrate the potential gain from capturing
the annotation-related correlations. Unfortunately, relying on do-
main experts or DB admins to manually define or capture these
correlation patterns is evidently an infeasible approach. This is be-
cause the correlations may not be known in advance, hard to cap-
ture or express, dynamically changing over time, or even not 100%
conformed. Moreover, the manual exploration process is error-
prone, will not scale to the size of modern annotated databases, and
it is a very time- and resource-consuming process. For example, the
UniProt biological database has over 150 people working as full-
time to maintain and annotate the database [6, 12]. Certainly, such
scale of investments may not be viable to many other domains and
scientific groups, e.g., it is reported in a recent science survey [49]
that 80.3% of the participant research groups do not have sufficient
fund for proper data curation. For these reasons, we argue in this
paper that the analysis and discovery of the annotation-related as-
sociations and correlations should be an integral functionality of
the annotation management engine. As a result, the correlations
can be timely discovered and maintained up-to-date, and also sys-
tematic actions can be taken based on them as highlighted by the
motivation scenarios.

In this paper, we investigate applying the well-known techniques
of association rule mining, e.g., [8, 31, 52], to the domain of anno-
tated databases. This is a new and promising domain for association

rule mining due to the following reasons:

• Many emerging applications—especially scientific
applications—maintain and rely on large-scale annotated
databases [3, 5, 6]. It is reported in [1] that the ebird or-
nithological database receives more than 1.6 million annotations
per month from scientists and bird watchers worldwide. These
applications will benefit from the proposed techniques.

• Many annotated databases go under the very expensive and
time-consuming process of manual curation, e.g., [2, 6]. The goal
from this process is to ensure that correct annotations and curation
information are attached to the data, and to enrich the annotations
whenever possible. Nevertheless as illustrated in the motivation
scenarios, the discovery of the annotation-related correlations can
help in enhancing the quality of the annotated database in an auto-
mated way. And hence, reducing the effort needed in the manual
curation process and freeing the domain scientists for their main
task, which is scientific experimentation.

• Interestingly, annotated databases stretch the traditional tech-
niques of association rule mining, and present new challenges as
discussed in Section 3. For example, the state-of-art techniques
in association rule mining fall short in efficiently handling several
new cases specific to annotated databases, i.e., they cannot perform
incremental maintenance of the discovered rules and they have to
re-process the entire database. These cases include:

(1) Generalization of Annotations: Annotations can be free-text
comments, which may differ in their values but have the same se-
mantics. And hence, discovering the correlations based on the val-
ues of the raw annotations may miss important patterns. For ex-
ample, referring to Figure 1, the correlation pattern involving the
Black Flag annotation, i.e., “Family:F1 =⇒ Black Flag”
can be detected based on the raw annotation value. This is because
all instances of the Black Flag annotation refer to the same scien-
tific article. In contrast, for the Red Flag annotation, the actual
annotations inserted by scientists have different values, and thus
no correlation pattern can detected based on the raw values. How-
ever, by generalizing the annotations to a common concept—the
Red Flag annotation in our case—we can detect the correlation pat-
ten between them and the experiment Id 105. Therefore, building
a generalization hierarchy on top of the annotations is an important
step.

(2) Integration with the Annotation Manager: We propose to
build a coherent integration between the association rule mining
module and the Annotation Manager component in contrast to the
offline mining techniques. As a result, the Annotation Manager can
take informed actions based on the discovered rules, e.g., discover
potential missing attachments and report them for verification (Mo-
tivation Scenario I), and annotate newly inserted data tuples with
existing annotations (Motivation Scenario 2). Moreover, since the
Annotation Manager cannot guarantee with 100% confidence that
the predicted attachments are correct, we propose developing a ver-
ification module that enables domain experts to verify the predicted
attachments.

(3) Incremental Maintenance under Annotation Addition: In an-
notated databases, the discovered correlations and association rules
need to be incrementally updated under two scenarios, i.e., the ad-
dition of new data tuples, and the addition of new annotations.
The former case can be handled by existing techniques that ad-
dress the incremental update of association rules, e.g., [16]. These
techniques assume that the new delta batch changes the size of the
database, i.e., the number of data tuples increases. In contrast, in



the latter case, the new annotation batches will not change the num-
ber of data tuples, instead they change the content of the tuples—
assuming the annotations are part of the tuples. Therefore, the ex-
isting incremental techniques need to be extended to handle the
latter case.

In this work, we develop an end-to-end solution that addresses
the above challenges in the context of a real-world application
and annotation repository, which is a data warehouse for the
Caenorhabditis elegans (C. elegans) Worm from biological sci-
ences. To facilitate scientists’ usage of the developed system, we
designed an Excel-based GUI—A tool that most scientists are fa-
miliar with—through which all of the proposed functionalities can
be performed.

The rest of the paper is organized as follows. In Section 2, we
present the needed background, preliminaries, and our case study.
In Sections 3, and 4, we present the techniques for the discovery
and maintenance of the annotation-related correlations, and their
exploitation, respectively. Section 5 overviews the related work
while Section 6 contains the experimental evaluation. Finally, the
conclusion remarks are included in Section 7.

2. PRELIMINARIES
In this section, we give a brief overview on annotation manage-

ment and association rule mining techniques, and then present our
case study.

2.1 Background
Annotation Management in Relational DBs: Annotation man-

agement techniques in relational databases enable end-users to at-
tach auxiliary information to the data stored in the relational ta-
bles [9, 15, 17, 21, 24, 46]. Annotations can be attached to individ-
ual table cells, rows, columns, or arbitrary sets and combinations
of them. Some systems provide a GUI through which the annota-
tions can be added [17, 25], while other systems extend the SQL
language with new commands and clauses to enable annotation ad-
dition [17, 21, 25]. For example, the work in [21] introduces a new
Add Annotation command to SQL as follows:

1- Selecting 2,000 real annotations at random and 
manually labeling them. Moreover, we created 
synthetic annotations for each category that 
include the common keywords in that category. 

 
2- Selecting 1% of the real annotations (around 

3,700) at random and classifying them using the 
trained classifier.  

 
3- Manually verifying the results, and re-labeling 

the wrong classification to refine the model.  
 
4- Repeating Steps 2 & 3 until achieving an 

acceptable accuracy. 
 

Case III (δ Addition): Updating Existing Association Rules 
Input: 
         - New annotations delta δ = {a1, a2, …, an} 
      - Set of existing association rules U = {u1, u2, …, um} 
         - Original DB 
 

Output: 
     - Updated set of association rules U’ 

         - New DB’ = DB +  δ 
 

Step1: Existing Data-to-Annotations rules 
    - For  (each rule ui having annotation “a” && δ in R.H.S)  Loop 

                - // Update the support and confidence of ui  
   - T ! The data tuples newly annotated with “a”  
   - Based on T update the  ui.supp & ui.conf 
   - Copy ui to U’                // ui is guaranteed to be valid 

        - End For 
 

Step2: Existing Annotation-to-Annotations rules 
        - For  (each rules ui where none of δ appears in L.H.S & 
                         “a” && δ in R.H.S)  Loop 
                - // Update the support and confidence of ui  

   - T ! The data tuples newly annotated with “a”  
   - Based on T update the  ui.supp & ui.conf 
   - Copy ui to U’                // ui is guaranteed to be valid 

        - End Loop 
 

    - δ’ ! annotations in δ that appear in L.H.S of some rules  
    - For  (each rule ui where any of δ’ appears in L.H.S)  Loop 

   - // Update the support and confidence of ui  
   - T ! The newly annotated data tuples having an annotation from δ’ 
   - Based on T update the  ui.supp & ui.conf 
   - If ( ui is still a valid rule) Then 
            - Copy ui to U’ 
   - End If  

        - End Loop 

Add Annotation  

[Value <text-value> | Link  <path-to-file>] 

On <sql-statement>;  

 
This command will first trigger the execution of the specified

<sql-statement> to identify the data tuples and the attributes to
which the annotation will be attached. The annotation can be pro-
vided as a text value (using the Value clause), or as a link to a file
(using the Link clause). In all of these systems, the organization of
annotations, i.e., storage scheme and indexing, is fully transparent
to end-users.

At query time, when a standard SQL query is submitted, the un-
derlying database engine will not only compute the data tuples in-
volved in the answerset, but will also compute the related annota-
tions that should be reported along with the answerset. This is not
straightforward since the data may go though complex transforma-
tions, e.g., projection, join, grouping and aggregations. Therefore,
the semantics of the query operators have been extended to manip-
ulate the data as well as their attached annotations in a systematic
way. For example, one possible semantic is to union the annota-
tions when performing grouping, joining, or duplicate elimination
over a group of tuples. According to this semantic, the SQL query
in Figure 2 produces the illustrated output—assuming duplicate an-
notations on the same tuple are eliminated.

Select Family, Count(*) As CNT 

From  Gene 

Group By Family;  

Family CNT 

F1 4 

F6 1 

F3 1 

F4 1 

Sequence needs to 
be shifted by 2 
bases  

This value is wrong 
Incorrect value 

Does not seem correct 

Sequence needs to 
be shifted by 2 
bases  

Figure 2: Automatic Propagation of Annotations at Query
Time.

Since in large-scale annotated databases, the number of reported
annotations on a single output tuple can be large, the work in [32,
50] proposed summarizing the annotations using data mining tech-
niques, e.g., clustering, classification, and text summarization, and
reporting the summarize instead of the raw annotations. The pro-
posed work of discovering the correlations in annotated databases
is complementary to the existing techniques and can be integrated
with any of the existing systems.

Association Rule Mining: Association rule mining is a well-
known problem in data mining that concerns the discovery of
correlation patterns within large datasets [8, 44, 45, 52]. An
association rule in the form of “X =⇒ Y, support = α,
confidence = β” means that the presence of the L.H.S itemset
X implies the presence of the R.H.S itemset Y (in the same trans-
action or tuple) with support equals to α and confidence equals
to β. Typically, X ∩ Y = φ, and the support is computed
as the fraction of transactions (or tuples) containing X ∪ Y rel-
ative to the database size, while the confidence is computed as
support(X ∪Y )/support(X). Therefore, given a minim support
min_supp and minimum confidence min_conf, the association rule
mining technique discovers all rules having support and confidence
above the specified min_supp and min_conf, respectively.

It has been observed in many real-world applications, that the
number of generated rules can be very large and many of them may
not be interesting. Therefore, additional measures have been pro-
posed in [31, 44], which include the lift and conviction measures.
The former is computed as support(X∪Y )

support(X) ∗ support(Y )
, and the latter

is computed as 1−support(Y )
1−confidence(X=⇒Y )

. The higher these measures,
the more interesting the rule. Another related extension to the stan-
dard association rule mining problem is the mining of multi-level
rules [44, 45]. In this extension, the technique is given a domain
generalization hierarchy over one or more attributes, and we need
to discover the association rules that may span different levels of
the hierarchy. For example, in market analysis, the items “pants”,
“shirts”, and “t-shirts” can be generalized to “clothes”. Because
of this generalization, some rules may hold at the higher level(s)
of the hierarchy which may not be true for the lower more-detailed
levels. Association rule mining has numerous applications in var-
ious domains including market analysis, biology, healthcare, envi-
ronmental sciences, and beyond [31]. The proposed work extends
these applications to the emerging domain of annotated databases.



(b) Time course of intestinal distention in C. 
elegans worms exposed to S. cerevisiae. Worms 
were exposed to RFP-marked, wildtype yeast from 
hatching and photographed on day 3 (A and D), 
day 4 (B and E), and day 5 (C and F). The 
experiment was done three times, and 60 to 75 
worms were observed over a 3-day period. (A to 
C) Anterior region of the worm; (D to F) posterior 
region of the worm. Accumulation of yeast began 
in the pharynx region (compare panels A and D) 
and proceeded to the posterior. (G to I) S. 
cerevisiae also induces vulval swelling in the 
worms. Worms exposed to S. cerevisiae (H to I) 
show abnormal vulval swelling (white circles) 
compared to the control sample grown on E. coli 
(G). Bars: A to G, 50 µm; H and I, 20 µm. (a) Caenorhabditis elegans. Lives in garden soil 

and feeds on bacteria, e.g., E. coli.  

Figure 3: Case Study: Building Data-Annotation Repository for Caenorhabditis elegans (C. elegans) Worm.

2.2 Case Study: Annotated Repository for C.
elegans Worm

Although the proposed work is applicable to annotated databases
in general, we consider one case study as an example. This case
study focuses on building a database repository for the Caenorhab-
ditis elegans (C. elegans) worm, which integrates data from multi-
ple databases and labs studying the genetics and fungal pathogen-
esis of the organism (Refer to Figure 3). Some of these sources
maintain relational databases, while other use excel sheets to store
their data. Each of the sources maintains various types of cura-
tion information and annotations related to the data records, e.g.,
images, publications, observations, corrections, and experimental
setups. In these data sources the curation information is not mod-
eled as annotations. Instead, they are modeled as regular data with
relationships to the data tuples, e.g., in the relational databases, the
images and observations are stored in separate tables linked to the
primary data tables through PK-FK constraints.

The disadvantage of this modeling scheme, i.e., modeling the an-
notations as data, is that applications lose the benefits of annotation
management. That is, annotation management tasks are entirely
delegated to end-users and higher-level applications starting from
the storage and indexing of annotations and ending by explicitly en-
coding the propagation semantics within each of the users’ queries.
Both tasks have been shown to be very complex and sophisticated.
For example, the storage and indexing mechanisms need to deal
with the combinatorial relationship between annotations and data,
e.g., annotations can be attached to single table cells (attributes),
rows, columns, arbitrary sets and combinations of them, or even at-
tached to sub-attributes [21, 24]. Moreover, manually encoding the
annotations’ propagation within each query is not only error-prune,
and lacks optimizations, but also renders even simple queries very
complex [9, 13, 26, 46]. That is why annotation management en-
gines have been proposed to efficiently and transparently manage
such complexities across applications.

To address the above limitations, we opt for leveraging our previ-
ous systems and work in annotation management [21, 50] to model
the metadata information as annotations. These systems are built
on top of PostgreSQL DBMS, and thus the repository will acquire
the benefits of both a DBMS and an annotation management en-
gine. We developed an Excel-based user interface to enable seam-
less visualization of the data as well as the annotations (See Fig-
ure 4). For the purpose of this project, the annotations are cate-
gorized into three basic types, which are: (1) Regular comments
or observations, which covers any free-text values, (2) Articles and

View annotations 
on selected data 

Query-By-Example 
(QBE) section 

New Annotation 
Management tab 

Figure 4: Excel-Based GUI for Annotation Management.

documents, and (3) Images. In the Excel-based GUI, scientists can
query their data either by writing direct SQL queries, or thought
a QBE interface as illustrated in Figure 4. Then, they can select
specific rows or table cells of interest, and click the View Annota-
tion button, which reports the annotations related to the selected
datasets in a new window. This window has three sections for the
three annotation types mentioned above as shown in the figure. For
the articles and images, they are uploaded to a web-server and can
be opened by clicking the corresponding link.

3. DISCOVERY OF CORRELATIONS
Given an annotated database, the primary challenge is to dis-

cover and incrementally maintain the hidden annotation-related
correlations within the database, which is the focus of this section.
The basic unit in an annotated database is an “annotated relation”.
In the following, we formally define an annotated relation and the
target correlations.

Definition 3.1 (Annotated Relation). An annotated relation R is
defined as R = {r =< x1, x2, ..., xn,a1,a2,a3, ... >}, where



each data tuple r ∈ R consists of n data values x1, x2, ..., xn, and
a variable number of attached annotations a1,a2, ...,ak.

Definition 3.2 (Data-to-Annotation Correlations). Given an an-
notated relation R, a minimum support α, and a minimum con-
fidence β, the data-to-annotation correlations over R is the
problem of discovering all association rules in the form of:
x1:v1, x2:v2, ..., xk:vk =⇒ a, where the L.H.S is a set of col-
umn names (xi) and corresponding data value (vi), the R.H.S is a
single annotation, the rule’s support≥ α, and the rule’s confidence
≥ β.

Definition 3.3 (Annotation-to-Annotation Correlations). Given an
annotated relation R, a minimum support α, and a minimum con-
fidence β, the annotation-to-annotation correlations over R is
the problem of discovering all association rules in the form of:
a1 a2 ... ak =⇒ a, where the L.H.S is a set of annotations, the
R.H.S is a single annotation, the rule’s support≥ α, and the rule’s
confidence ≥ β.

According to Definitions 3.2 and 3.3, the rules to be discovered
must involve an annotation in the R.H.S of the rule. In addition,
these rules focus on the raw annotations without generalization.
This is applicable especially for annotations of type image or publi-
cation, where a single image or publication can be attached to many
data tuples. Discovering these rules is straightforward using any of
the state-of-art techniques, e.g., the A-priori [8], or FP-Tree [30]
algorithms. The only modification that we introduced to these al-
gorithms is the early elimination of candidate patterns that do not
include at least one annotation value.

3.1 Incremental Maintenance of Correlations
An annotated database may evolve and change in three different

ways, which are: (1) Adding new un-annotated data tuples (refer to
it as ∆unannotated), (2) Adding new annotated data tuples (refer to
it as ∆annotated), and (3) Adding new annotations to existing data
tuples (refer to it as δ). Each of these changes may affect the dis-
covered association rules as summarized in Figure 5. The mainte-
nance of association rules under incremental data updates has been
studied in existing work [16, 41]. However, these existing tech-
niques can handle only the first two cases mentioned above, i.e.,
the ∆unannotated and ∆annotated cases, but not the third case, i.e,
the δ case. The reason is that the assumption in these techniques is
that the number of data tuples change (get increased), which is true
for the first two cases. In contrast, in the third case, the number of
the data tuples is fixed, but their content changes due to the addition
of new annotations.

Figure 5 summarizes the three cases mentioned above and their
effect on the association rules. The ∆unannotated case does not add
any new rules since no new annotations are added. For the exist-
ing rules, both the support and confidence of the data-to-annotation
rules may get decreased and need to be re-computed (Column 2
in Figure 5). Nevertheless, for the annotation-to-annotation rules,
only the support may decrease and need to be re-computed, but
the confidence remains unchanged (Column 3 in Figure 5). The
∆annotated case may introduce new association rules since the new
data tuples are annotated. Moreover, all of the existing rules may
get affected positively or negatively. For these two cases, the exist-
ing techniques in [29, 44] can be directly applied to efficiently and
incrementally update the association rules.

The third case—which is not handled by existing techniques—
concerns the addition of new annotations to existing data tuples.
For this case, all existing data-to-annotation rules are guaranteed
to remain valid because the support and confidence of these rules

 
New Rules 

Existing Rules 

x1, x2, …xk => a a1, a2, …, ak => a 

Δunannotated 
S#  & C# S# &  C = 

Δannotated 
S#$ & C#$  S#$ & C#$ 

δ S$ & C$  In L.H.S:   S$ & C#$ 
 
In R.H.S:   S$ & C$ 

Change 

Effect 

#!May only decrease May only increase 

May increase or decrease Fixed 

$!

#$! = 

#!May only decrease 

May only increase 

May increase or decrease 

Remain Fixed 

$!

#$!

= Δunannotated 

Δannotated 

δ 

New un-annotated data tuples 

New annotated data tuples 

New annotations on existing  
data tuples 

Figure 5: Effect of Evolving Data on Support (S) and Confi-
dence (C).

cannot be decreased. The same intuition applies to the annotation-
to-annotation rules if the new annotation appears in the R.H.S of the
rule, i.e., the support and confidence may only increase. However,
if the new annotation appears in the L.H.S of a rule, then the confi-
dence of this rule needs to be re-computed because it may decrease
and becomes below the min_conf threshold. Finally, this third case
may introduce new association rules that need to be discovered as
indicated in Figure 5. In the following, we present a pseudocode
on how these changes take place incrementally.

The algorithm depicted in Figure 6 presents the main steps of
updating the existing rules. In Step 1, the data-to-annotation rules
are updated. Basically, the denominator in the support and confi-
dence of these rules does not change, and thus only the numerator
values need to be re-computed. This update can be performed by
checking only the newly annotated data tuples and counting the
number of new occurrences of the rule’s pattern (L.H.S ∪ R.H.S).
This count will be added to the old numerator to compute the new
values. Since all of these rules are guaranteed to be in the output
set U ′, they are directly copied to U ′ after updating their support
and confidence values.

In Step 2, the annotation-to-annotation rules are updated. The
first For...End For loop handles the case where the new an-
notations do not appear in the L.H.S of an existing rule, but appear
on the R.H.S. This case is very similar to Step 1, where all the
rules will get their support and confidence updated (only the nu-
merator values), and then copied to the output set U ′. The second
For...End For loop handles the case where the new annota-
tions appear on the L.H.S of the rules. in this case both the nu-
merator and the denominator values of the confidence may change
and hence, it may increase of decrease. Fortunately, updating these
values can be also performed by only checking only the newly an-
notated data tuples and counting the number of new occurrences
that will be added to either of the numerator or denominator val-
ues. Depending on the new confidence, if the rule is still valid, then
it will be copied to the output set U ′. It is worth highlighting that
in updating the existing association rules (Steps 1 & 2 in Figure 6),
we only need to process the newly annotated data tuples without
touching the rest of the database.

The addition of the new annotations (the δ batch) may also create
new association rules. The algorithm depicted in Figure 7 outlines
the procedure of incrementally discovering the new rules. In Step 1,
the new data-to-annotation rules in the form of x1 x2 ... xk =⇒ a

will be discovered, where a ∈ δ. First, a must be a frequent an-



1- Selecting 2,000 real annotations at random and 
manually labeling them. Moreover, we created 
synthetic annotations for each category that 
include the common keywords in that category. 

 
2- Selecting 1% of the real annotations (around 

3,700) at random and classifying them using the 
trained classifier.  

 
3- Manually verifying the results, and re-labeling 

the wrong classification to refine the model.  
 
4- Repeating Steps 2 & 3 until achieving an 

acceptable accuracy. 
 

Case III (δ Addition): Updating Existing Association Rules 
Input: 
         - New annotations delta δ = {a1, a2, …, an} 
      - Set of existing association rules U = {u1, u2, …, um} 
         - Original DB 
 

Output: 
     - Updated set of association rules U’ 

         - New DB’ = DB +  δ 
 

Step1: Existing Data-to-Annotations rules 
    - For  (each rule ui having annotation “a” && δ in R.H.S)  Loop 

                - // Update the support and confidence of ui  
   - T ! The data tuples newly annotated with “a”  
   - Based on T update the  ui.supp & ui.conf 
   - Copy ui to U’                // ui is guaranteed to be valid 

        - End For 
 

Step2: Existing Annotation-to-Annotations rules 
        - For  (each rules ui where none of δ appears in L.H.S & 
                         “a” && δ in R.H.S)  Loop 
                - // Update the support and confidence of ui  

   - T ! The data tuples newly annotated with “a”  
   - Based on T update the  ui.supp & ui.conf 
   - Copy ui to U’                // ui is guaranteed to be valid 

        - End Loop 
 

    - δ’ ! annotations in δ that appear in L.H.S of some rules  
    - For  (each rule ui where any of δ’ appears in L.H.S)  Loop 

   - // Update the support and confidence of ui  
   - T ! The newly annotated data tuples having an annotation from δ’ 
   - Based on T update the  ui.supp & ui.conf 
   - If ( ui is still a valid rule) Then 
            - Copy ui to U’ 
   - End If  

        - End Loop 

Figure 6: Case III (δ Addition): Updating Existing Rules.

notation by itself. To perform this check efficiently, the system
maintains a table containing the frequency of each annotation, and
it is updated whenever a new annotation is added. If a is frequent,
then from the newly annotated tuples, denoted as T , we extract
the data-value patterns that are already frequent, say x1 x2 ... xk.
Notice that since x1 x2 ... xk is already frequent, then the denom-
inator for the support and confidence of rule x1 x2 ... xk =⇒ a is
already known. What is left is to compute the frequency of pattern
x1 x2 ... xk,a, which can be performed by checking only the data
tuples in the database annotated with a. As illustrated in Figure 7, a
similar procedure will be taken in Step 2, i.e., discovering the new
annotation-to-annotation rules where the new annotations a ∈ δ
contribute only to the R.H.S of the rule.

Discovering the new annotation-to-annotation rules where the
new annotations a ∈ δ contribute to the L.H.S is slightly differ-
ent (Step 3). This is because the denominator of the new rules is no
longer known and it has to be computed. The procedure works by
considering each new annotation a ∈ δ, and verifying first that it is
frequent (if not, then the process stops). And then, for each data tu-
ple t that is receiving a as a new annotation, we extract the already-
frequent annotation patterns, say p = a

′
1,a
′
2, ...,a

′
k, i.e., p is al-

ready frequent and attached to t. By augmenting a to p, we gener-
ate several candidate new rules in the form of a′1,a, ...,a′k =⇒ a

′
i.

Notice that a can be a new annotation over tuple t, but it is an
already-existing annotation over many other tuples in the database.
Therefore, to compute the support and confidence of these rules,
we need to check all data tuples in the database having annotation
a. This is enough to compute the support and the confidence of the
rule and to verify whether or not it is a valid rule.

It is clear that the algorithm of maintaining the existing rules
(Figure 6) is less expensive than that of discovering new rules (Fig-

Case III (δ Addition): Discovering New Association Rules 
Input: 
         - New annotations delta δ = {a1, a2, …, an} 
         - Original DB 
 

Output: 
     - New set of association rules U’ 

         - New DB’ = DB +  δ 
 

Step1: New Data-to-Annotations rules   x1, x2, …, xk => ai 
  - If (ai is frequent) Then   
          - T ! the data tuples newly annotated with ai. 
          - Find patterns “x1, x2, …, xk” within T that are already frequent. 
          - Check if  x1, x2, …, xk => ai  is valid 
               - De-numerators of the support and confidence are known 

           - Compute the frequency of pattern “x1, x2, …, xk, ai”  by checking  
                          only the data tuples annotated with ai 
               - Now the support and confidence of the rule can be verified.  
               - If the rule is valid " add it to U’  
  - End If   
 
Step2: New Annotation-to-Annotations rules   a’1, a’2, …, a’k => ai     
  - If (ai is frequent) Then   
          - T ! the data tuples newly annotated with ai 
          - Find patterns “a’1, a’2, …, a’k” within T that are already frequent. 
          - Check if  a’1, a’2, …, a’k => ai  is valid 
               - De-numerators of the support and confidence are known 

           - Compute the frequency of pattern “a’1, a’2, …, a’k, ai”  by 
                          checking  only the data tuples annotated with ai 
               - Now the support and confidence of the rule can be verified. 
               - If the rule is valid " add it to U’  
  - End If   
 
Step3: New Annotation-to-Annotations rules where ai may appear in 

L.H.S of the rule 
 - For (each frequent annotation patterns “a1, a2, …” from  δ) Loop   
          - T ! the data tuples newly annotated with “a1, a2, …”  
          - Find patterns “a’1, a’2, …, a’k” within T that are already frequent. 
          - Create candidate rules where subset (or all) of “a1, a2, …”   appear  
                  in the L.H.S of the rule 
          - Compute the support and confidence by checking  only the data   
                 tuples annotated with “a1, a2, …”  
           - If the rule is valid " add it to U’  
- End Loop       

Figure 7: Case III (δ Addition): Discovering New Rules.

ure 7). This is because the former requires access to only the newly
annotated data tuples, whereas the latter requires access to all data
tuples that have annotation a ∈ δ (even if the tuples are not newly
annotated with a. To efficiently support the latter case, the system
indexes the annotations such that given a query annotation, we can
efficiently find all data tuples having this annotation. In all cases,
there is no need for full database processing or re-discovering the
rules from scratch.

3.2 Generalization-Based Correlations
Generalizing the raw annotation values to higher concepts may

lead to discovering important association rules that cannot be dis-
covered from the raw values. The Red-Flag annotation in Figure 1
is a good example of this case. The reason this case is important in
annotated databases is that the annotations can be added by many
curators, and they may not follows specific ontology. And thus,
multiple annotations may carry the same semantics but differ in
their raw values. There are extensions to association rule mining
techniques that can discover the rules under the presence of a gener-
alization hierarchy [29, 44, 45]. However, these techniques assume
that the hierarchy, and the assignments between the raw values to
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Figure 8: Example of Annotation-Generalization Hierarchy.

the hierarchy elements are given as input, which is usually not the
case in annotated databases.

In this work, we assume the more practical case where the do-
main experts know the generalization hierarchy, i.e., the generic
types of annotations of interest, but the raw annotations are not
yet labeled. An example of this hierarchy is illustrated in Fig-
ure 8, where several types can be of interest, e.g., “Invalidation”
(comments that highlight errors or invalid values), “Provenance”
(comments capturing the source of data or how it is generated),
“Question” (comments including questions), and “Missing Info”
(comments highlighting missing values or more investigation). The
hierarchy will always include a separate class, called “Others” to
which any un-generalized annotation will belong.

In general, any text classification technique can be used. As a
proof of concept, we use the technique proposed in [18]. Since we
assume no training set or classifier model is given, the model is first
created as follows:

1- Select α real annotations at random and manually 
label them to build the 1st classifier model. 

 
2- Select β% of the real annotations at random and 

classify them using the trained classifier.  
 
3- Manually verify the results, and re-label the 

wrong classification to refine the model.  
 
4- Repeat Steps 2 & 3 until achieving an acceptable 

accuracy. 
 

In Step 1, in addition to manually labeling an initial set of α
annotations, we also create synthetic annotations to each class cap-
turing the keywords in that class. For example, as highlighted in
Figure 8, keywords like “wrong”, “incorrect”, “invalid” are em-
bedded in synthetic annotations under the 1st class label, while
keywords like “source”, “generated from” are added under the 2nd

class label. The creation process iterates between labeling and ver-
ifying a small subset of annotations (β%) until the classier reaches
an acceptable accuracy (Step 4).

After building the classifier model, it is applied over all anno-
tations in the dataset, and data tuples get annotated with the class
labels corresponding to their raw annotations—Except for “Others”
label for which its annotations are not generalized. A data tuple can
have a given label at most once even if there are multiple raw an-
notations mapping to the same label. This is the same model used
in association rule mining techniques that handle a generalization
hierarchy [29, 44, 45]. For example, the top data tuple in Figure 9
has two attached annotations classified into the “Invalidation” la-
bel, i.e., the Red Flag, and thus after attaching the classification
decision, it generates the tuple at the bottom of the figure.

After building the extended annotated database, existing tech-

GID Name Seq Family Exp-Id 

JW0013 grpC TGCT… F1 101 

JW0014 groP GGTT… F6 105 

JW0015 insL GGCT… F1 105 

… … … … … 

JW0018 nhaA CGTT… F1 101 

JW0019 yaaB TGTG… F3 101 

JW0012 Yaal TTCG… F1 103 

Sequence need to 
be shifted by 2 
bases  

JW0027 namE GTTT... F4 101 

This value is wrong 

Incorrect value 

Does not seem correct 

GID Name Seq Family Exp-Id 

JW0013 grpC TGCT… F1 101 

Incorrect value Has a mistake 

GID Name Seq Family Exp-Id 

JW0013 grpC TGCT… F1 101 

Incorrect value Has a mistake 

After annotation 
generalization 

Figure 9: Applying Annotation-Generalization over Example
Tuple.

niques can mine and extract the data-to-annotation association rules
in the form of: x1 x2 ... xk =⇒ b, where b is either a raw annota-
tion or an annotation’s class label. The same applies for annotation-
to-annotation rules, which are in the form of: b1 b2 ... bk =⇒ b,
where none of the L.H.S or R.H.S values (either raw or class label
values) have an ancestor-descendant relationship in the generaliza-
tion hierarchy.

4. EXPLOITATION OF CORRELATIONS
As discussed in Section 1, one of our goals is to exploit the

discovered correlations to enhance the quality of the annotated
database. We consider two exploitation scenarios: (1) The pre-
diction of related annotations to newly inserted tuples (Motivation
Scenario 2), and (2) The discovery of missing attachments when
new association rules are found (Motivation Scenario 1).

Insertion of New Data Tuples: For this case, an automatic
database trigger (at After Insert at Row Level) is created for each
database table. The trigger forwards a newly inserted tuple t to the
Annotation Manager, which checks t against the available associa-
tion rules. If the L.H.S pattern of a rule is present in t without the
R.H.S annotation, then the system creates a recommendation that
the R.H.S annotation is potentially applicable to t. For example,
referring to the motivation example in Figure 1, the following rule
can be derived from the data:

Exp-Id:101 =⇒ “Sequence need to be shifted
by 2 bases.”

The newly added tuple JW0027 contains the L.H.S of the rule,
and hence the system predicts and creates a recommendation that
the R.H.S annotation may be related to the new tuple. The end-
user will be notified that the system has created annotation predic-
tions for the new tuple, and the prediction(s) will be stored in a
system table along with its supporting rule (the rule generated the
recommendation) for later verification and approval as explained in
sequel.

To enable efficient searching for the association rules match-
ing the newly inserted tuple, the L.H.S of the rules are in-
dexed. Since the L.H.S may contain several pairs in the form of
columnName:value, we first itemize and store the L.H.S in a
normalized form, i.e., one record for each pair, and then index them
using a B-Tree index. In this case, given a new data tuple, the After
Insert database trigger will create lookup keys from the new tuple,
i.e., each column name and its value will form one lookup key, and
then search the normalized table to find a “superset” of the candi-
date rules. The tuple will be checked against this candidate set to
find the actual matches.
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Figure 10: Exploitation of Correlations and Annotation-
Related Recommendations.

Updating the Association Rules: As presented in Section 3.1,
the annotation-related association rules may change periodically
when new batches of data or annotations are applied. The change
may take three forms: (1) Valid rules remain valid, (2) Valid rules
become invalid, and (3) New rules are discovered. In the 1st case,
nothing will change in the system. In the 2nd case, the pending
recommendations awaiting verification whose supporting rules be-
come invalid will be eliminated. This is because the system will
not recommend attachments without rules supporting available as
evidences. 1 In the 3rd case, the discovery of new rules will trigger
the system to search for data tuples matching the L.H.S of the new
association rules, but missing the R.H.S annotation in the rule. If
a matching is found, then a new pending recommendation will be
added to the system table. Given a newly discovered rule having a
L.H.S in the form of: “C1:v1, C2:v2, ..., Cm:vm”, where
Ci is a column name and vi is the column’s value, the searching
for the matching data tuples is performed as follows. A query on
the same table to which the new rule is related is formed, and it
consists of a set of conjunctive predicates in the form of Ci = vi
∀ 1 ≤ i ≤ m. The returned tuples will be then checked if they
are missing the R.H.S of the rule, i.e., the annotation value, and if
so, then a new recommendation is generated.

It is worth highlighting that the number of discovered rules by
considering solely the support and confidence thresholds is in most
cases very high [31, 44]. This will result in many uninteresting
predictions and recommendation. To overcome this problem, we
integrate additional properties such as lift and conviction measures
that measure how interesting the rule is (See Section 2). That is,

1Recommended attachments that have been approved by the end-
users will remain in the system even if their supporting rules be-
come invalid at a later point in time. This is because an approved
attachment is viewed as a correct and permanent one.

among all the rules that satisfy the support and confidence require-
ments, we use in the exploitation process only a subset of these
rules that also satisfy the lift and conviction requirements.

Manipulation Interface: To seamlessly enable the verification
process, we extend the Excel-based GUI presented in Section 2.2
such that domain experts can visualize the recommendations from
the tool and decide whether or not each prediction will be accepted
(See Figure 10). The tool enables reporting and visualizing the
pending predictions either by providing a database table name, or
by specifying a select statement to limit the scope of interest. The
reported predictions can be then sorted according to various crite-
ria, e.g., the confidence of the association rule suggested the pre-
diction. As Figure 10 illustrates, the data tuples from a given table
(or a select statement) are reported on the top-level excel sheet, and
then when a tuple is selected, its related predictions and recommen-
dations are dynamically reported on the bottom-level sheet. For
each prediction, the supporting association rule is displayed along
with its properties, e.g., the support, confidence, lift, and convic-
tion. Curators can then use the checkbox highlighted in the figure
to decide on whether or not to accept the recommendation.

5. RELATED WORK
Annotation management is widely applicable to a broad range

of applications, yet it gained a significant importance within the
context of scientific applications [27, 35, 40]. Therefore, to help
scientists in their scientific exterminations and to boost the discov-
ery process, several generic annotation management frameworks
have been proposed for annotating and curating scientific data in
relational DBMSs [9, 17, 24, 25, 26, 46]. Several of these sys-
tems, e.g., [9, 17, 24, 46], focus on extending the relational al-
gebra and query semantics for propagating the annotations along
with the queries’ answers at query time. The techniques presented
in [46] address the annotation propagation for containment queries,
while the techniques [13] address the propagation in the presence
of logical database views. They address, for example, the mini-
mum amount of data that need to annotated in the base table(s)
in order for the annotation to appear (propagate) to the logical
view. The work in [21] proposed compact storage mechanisms for
storing multi-granular annotations at the raw-, cell-, column-, and
table-levels, as well as defining behaviors for annotations under the
different database operations. Moreover, the techniques proposed
in [21, 36] enable registering annotations in the database system
and automatically applying them to newly inserted data tuples if
they satisfy pre-defined predicates.

Other systems have addressed special types of annotations,
e.g., [15, 23]. For example, the work in [15] have addressed the
ability to annotate the annotations, and hence they proposed a hier-
archal approach that treats annotations as data. On the other hand,
the BeliefDB system in [23] introduced a special type of annota-
tions, i.e., the belief annotation, that captures the different users’
beliefs either about the data or others’ beliefs. In both systems,
the query engine is extended to efficiently propagate/query these
annotations. It have been also recognized in [28, 34] that annota-
tions may have semantics and based on these semantics the prop-
agation in the query pipeline may differ, e.g., instead of getting
the union of annotations under the join operation, getting the in-
tersection makes more sense under some annotation semantics. In
our previous work [50], we addressed the challenge of managing
number of annotations that can be orders of magnitude larger than
the number of base data tuples. In this case, reporting the raw an-
notations will be overwhelming and useless. Instead, we proposed
summarizing the annotations into concise forms, and then proposed
an extended query engine to efficiently propagate these summaries.



0 

100 

200 

300 

400 

500 

600 

0.99 0.95 0.9 0.99 0.95 0.9 0.99 0.95 0.9 
0 

20 

40 

60 

80 

100 

1 2 3 4 
# Iterations Confidence 

(0.1% Support) 

A
cc

ur
ac

y 

Confidence 
(0.2% Support) 

Confidence 
(0.4% Support) 

# 
In

te
re

st
in

g 
R

ul
es

 

(a) Accuracy of the Generalization Algorithm. (b) Effect of Generalization on the Generated Rules 

0 

5 

10 

15 

20 

25 

0.99 0.95 0.9 
Confidence 

With Generalization 

No Generalization 

Support = 0.4% 

Support = 0.2% 

Support = 0.1% +"

Ti
m

e 
(s

ec
) 

Figure 11: Annotation Generalization and Rule Generation.

Although the above systems provide efficient query processing
for annotations, none of them have addressed the facet of min-
ing the rich repositories of annotations to discover interesting pat-
terns, e.g., discovering the annotation-related correlations proposed
in this paper. Therefore, the proposed work is complementary to
existing systems and creates an automated mechanism for enhanc-
ing the quality of annotated databases, which is currently handled
through a manual curation process [2, 6]. In this process, domain
experts manually curate the data, ensure correct and high-quality
annotations are attached to the data, and potentially add or remove
further attachments between the annotations and the data. Cer-
tainly, this curation process is very time consuming, error-prune
and does not scale well, and more importantly consumes valuable
cycles from domain experts and scientists. With the proposed work,
a significant effort in discovering missing attachments and relation-
ships between the data and the annotations can be automated.

Annotations have been supported in contexts other than rela-
tional databases, e.g., annotating web documents [10, 33, 37, 51],
and pdf files [38, 39, 48]. These techniques focus mostly on an-
notating different pieces within a document (or across documents)
with useful information, e.g., extracting the key objects or provid-
ing links to other related objects. In the domains of e-commerce,
social networks, and entertainment systems [22, 42], the annota-
tions are usually referred to as tags. These systems deploy ad-
vanced mining and summarization techniques for extracting the
best insight possible from the annotations to enhance users’ experi-
ence. They use such extracted knowledge to take actions, e.g., pro-
viding recommendations and targeted advertisements [7, 19, 42].
However, none of these systems focus on mining and discovering
correlations within the annotation repositories.

6. EXPERIMENTS
Setup and Dataset: The experiments are performed using our

annotation management engines [21, 50], which are based on the
open-source PostgreSQL DBMS. The experiments are conducted
using an AMD Opteron Quadputer compute server with two 16-
core AMD CPUs, 128GB memory, and 2 TBs SATA hard drive.
Our objectives are: (1) To quantify the effectiveness of the annota-
tion generalization technique, (2) The performance of discovering
the annotation-based association rules over static data, and (3) The
efficiency of the proposed incremental techniques to update the
rules under new batches of annotations. The experimental dataset
represent the C. elegans repository, which we are building on site.
The repository consists of 27 database tables, where the main ta-
ble of our focus is the Gene table that contains approximately
17,500 genes integrated from multiple sources. The table has nine

columns, e.g., Gene Id, Locus, Strain, Stage, Location, and Length.
The table has a total number of 43,000 publications attached to the
genes in addition to other 8,120 free-text comments. These pub-
lications and comments represent the annotations attached to the
Gene table. In the dataset, each record has between 0 annotations
(the minimum) and 16 annotations (the maximum).

In Figure 11, we study the effect of annotation generalization on
the generation of interesting annotation-related association rules.
Figure 11(a) illustrates the accuracy of the generalization algorithm
presented in Section 3.2. The x-axis indicates the number of itera-
tions from 1 to 4, while the y-axis represents the obtained accuracy
from the manual verification step (Step 3 of the algorithm). As the
figure shows, there is a big jump in accuracy from Iteration 1 to
Iteration 2, and then as more iterations are performed the accuracy
slightly increases. This is mostly because our generalization model
is simple and consists of one level only. However, as the general-
ization model becomes more complex, we expect to more iterations
will be needed to reach the desired accuracy. In the subsequent
experiments, we will use the results obtained after performing 4
iterations.

In Figure 11(b), we present the number of interesting associa-
tion rules discovered in the entire dataset under varying confidence
and support degrees (the x-axis). Since the expected rules are not
necessarily globally frequent, we use very low support, e.g., 0.1%
to 0.4%, while setting the confidence to a very high threshold as
indicated in the figure. As expected, as the support or confidence
thresholds increase, less number of interesting rules are discovered.
The number of discovered rules is relatively manageable and not
very large because we also enforce minimum lift and conviction
thresholds to narrow down the reported rules to the strongest ones
only. Both thresholds are set to value 5. In the remaining experi-
ments, we will consider the dataset under the annotation general-
ization case, i.e., the annotations have been generalized to enable
the discovery of more rules.

In Figure 12, we study the execution time of discovering the
annotation-related rules in the entire dataset. We vary the confi-
dence and support thresholds as depicted in the figure. In this ex-
periment that dataset is static, i.e., there are no new batches of data
or annotations. As the figure illustrates the execution time ranges
from 8 secs to 22 secs depending on the used thresholds. We have
also studied the execution time of the mining algorithm without
annotation generalization and the observed differences are not sig-
nificant, e.g., the technique without generalization are faster by 1%
to 7% compared to the other case.

In Figure 13, we study the execution time under the addition of
new annotation batches. We focus on the 3rd case presented in
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Figure 12: Evaluation of Execution Time.
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0 

5 

10 

15 

20 

10 20 30 40 50 64 (All) 
0 

10 
20 
30 
40 
50 
60 
70 

10 20 30 40 50 64 (All) 

Top K (Out of 64 Rules) Top K (Out of 64 Rules) 

# 
R

ul
es

 Y
ie

ld
in

g 
A

pp
ro

ve
d 

 
R

ec
om

m
en

da
tio

ns
 

%
 R

ul
es

 Y
ie

ld
in

g 
A

pp
ro

ve
d 

 
R

ec
om

m
en

da
tio

ns
 

Figure 14: Number of Rules Yielding Approved Recommenda-
tions.

Section 3.1 since this case is not supported by existing association
rule mining techniques. In the experiment, we set the confidence
and support thresholds to values 95%, and 0.2%, respectively. In
the x-axis of the figure, we vary the number of newly added anno-
tations (δ) between 200 and 1,600. This is performed by isolating
delta annotations (publications) from the original dataset, discov-
ering the association rules on the modified dataset, and then adding
the isolated annotations back as the new delta batch. We perform
the experiment on three different dataset sizes, i.e., small (20% of
the entire dataset), medium (40% of the entire dataset), and large
(the entire dataset). We compared between a naive non-incremental
A-priori technique [8] versus the incremental technique proposed in
Section 3.1. As the results show, the incremental algorithm outper-
forms the non-incremental one by up to two orders of magnitude
while producing the same exact results.

In Figures 14 and 15, we investigate the virtue of the exploita-
tion process within which the system proactively uses the discov-
ered association rules and provides recommendations to enrich the
annotated database. In the experiment, we set the confidence and
support thresholds to 95% and 0.2%, respectively (resulting in 64
discovered rules as illustrated in Figure 11(b)). We then, in Fig-
ures 14 and 15 select the top K strongest rules for generating rec-
ommendations. The K varies over the values between 10 to 64 as
indicated on the x-axis. Each rule, may generate many recommen-
dations, e.g., attaching a specific annotations to some data tuples,
and each recommendation is supported by some evidences (Refer
to Figure 10). The results presented in Figure 14 and 15 illustrate
for each K, the number, and percentage, respectively, of the rules
that yield to at least one recommendation being approved by the
database admin. This means that these rules were valuable as they
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Figure 15: Percentage of Rules Yielding Approved Recommen-
dations.
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Figure 16: Searching for Matching Rules under New Tuples
Insertions.

helped discovering missing attachments. The results show that a
fair number of rules have yielded to approved recommendations.
Moreover, the strongest rules, e.g., Top 10 or 20, usually yield to
more realistic recommendations compared to the weaker rules, e.g.,
Top 50, or 60. The results in Figures 14 and 15 are interesting as
they show that we may not even use all the discovered interesting
rules for recommendation purposes. We can depend on only the
top ranked ones to achieve high acceptance rate while reducing the
domain experts’ efforts in the verification process.

In Figure 16, we study the performance of searching for match-
ing association rules under the insertion of new data tuples. We
compare the two cases where the search does not use an index, i.e.,
scanning all existing rules, versus the use of index, i.e., the rules



are normalized and indexed using the B-Tree index (Refer to Sec-
tion 4). In the experiment, we varied the number of rules from 10
to 10,000 (the x axis), and measured the search time (the y axis).
The experiment is repeated 10 times, and the average values are
presented in the figure. As expected, the “With Index” case scales
much better and remains stable as the number of association rules
gets larger. Whereas, the “Without Index” case has slightly better
performance when the number of rules is very small. This is be-
cause the key lookups over the index—which are multiple lookups
per tuple—add unnecessary overhead when the number of rules is
very small. In this case, one scan over all rules becomes faster.

7. CONCLUSION
In this paper, we investigated a new facet of annotation man-

agement, which is the discovery and exploitation of the hidden
annotation-related correlations. The addressed problem is driven
by the emerging real-world applications that create and maintain
large-scale repositories of annotated databases. The proposed work
opens a new application domain to which the well-known associa-
tion rule mining can be applied. We show cased several scenarios
specific to annotated databases that cannot be efficiently handled by
the state-of-art in association rule mining. We then proposed algo-
rithms for efficient and incremental maintenance of the discovered
association rules under these scenarios. We proposed two impor-
tant applications for leveraging the discovered annotation-related
correlations and enhancing the quality of the underlying database,
which are the discovery of missing attachments, and the recommen-
dation of applicable annotations to newly inserted data. To enable
seamless use by scientists, we integrated the proposed algorithms
within the annotation management engine and developed an end-
to-end system including an Excel-based GUI through which all of
the proposed functionalities can be performed.
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