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Abstract. Following Computer Aided Instruction systems, 2

nd
 generation tutors are Model-Tracing Tutors 

(MTTs) (Anderson & Pelletier, 1991) which are intelligent tutoring systems that have been very successful 

at aiding student learning, but have not reached the level of performance of experienced human tutors 

(Anderson et al., 1995).  To that end, this paper presents a new architecture called ATM ("Adding a 

Tutorial Model"), which is an extension to model-tracing, that allows these tutors to engage in a dialog that 

is more like what experienced human tutors do.  Specifically, while MTTs provide hints toward doing the 

next problem-solving step, this 3
rd

 generation of tutors, the ATM architecture, adds the capability to ask 

questions towards thinking about the knowledge behind the next problem-solving step.  We present a new 

tutor built in ATM, called Ms. Lindquist, which is designed to carry on a tutorial dialog about algebra 

symbolization. The difference between ATM and MTT is the separate tutorial model that encodes 

pedagogical content knowledge in the form of different tutorial strategies, which were partially developed 

by observing an experienced human tutor.  Ms. Lindquist has tutored thousands of students at 

www.AlgebraTutor.org.  Future work will reveal if Ms. Lindquist is a better tutor because of the addition of 

the tutorial model.  

 
Keywords. Intelligent tutoring systems, teaching strategies, model-tracing, student learning, 

algebra. 

  

 

INTRODUCTION 
  

This paper describes a step toward the next generation of practical intelligent tutoring systems.  

Let us assume that CAI (Computer Aided Instruction) systems were 1
st
 generation tutors (see 

Kulik, Bangert & Williams, 1983). They presented a page of text or graphics and, depending 

upon the student’s answer, presented a different page. The 2
nd

 generation of tutors, Model-

Tracing Tutors (MTTs) (Anderson & Pelletier, 1991), allow the tutor to follow the problem-

solving steps of the student through the use of a detailed cognitive model of the domain. MTTs 

have had considerable success (Koedinger, Anderson, Hadley & Mark, 1997; Anderson, Corbett, 

Koedinger & Pelletier, 1995; Shelby et al., 2001) in improving student learning. MTTs have also 

had commercial success with more than 1% of American high schools now using MTTs sold by 

Carnegie Learning Incorporated (www.CarnegieLearning.com).  

Despite the success of MTTs, they have not reached the level of performance of 

experienced human tutors (Anderson et al., 1995; Bloom, 1984) and instruct in ways that are 



quite different from human tutors (Moore, 1996). Various researchers have criticized model-

tracing (Ohlsson, 1986; McArthur, Stasz, & Zmuidzinas, 1990). For instance, McArthur et al. 

(1990) criticized Anderson’s et al. (1985) model-tracing ITS and model-tracing in general 

"because each incorrect rule is paired with a particular tutorial action (typically a stored 

message)…Anderson’s tutor is tactical, driven by local student errors (p. 200)." They go on to 

argue for the need for a strategic tutor. The mission of the Center for Interdisciplinary Research 

on Constructive Learning Environments (CIRCLE) is 1) to study human tutoring and 2) to build 

and test a new generation of tutoring systems that encourage students to construct the target 

knowledge instead of telling it to them (VanLehn et al., 1998). The hypothesis that underlies this 

research area is that we can improve computer tutors (i.e., improve the learning of students who 

use them) by making them more like experienced human tutors. Ideally, the best human tutors 

should be chosen to model, but it is difficult to determine which are the best.  This particular 

study is limited in that it is based upon a single experienced tutor. A more specific assumption of 

this work is that students will learn better if they are engaged in a dialog to help them construct 

knowledge for themselves, rather than just being hinted toward inducing the knowledge from 

problem-solving experiences.  

This paper is also focused on a particular aspect of tutoring. In particular, it is focused on 

what we call the knowledge-search loop. We view a tutoring session as containing several loops. 

The outermost loop is the curriculum loop, which involves determining the next best problem to 

work on. Inside of this loop, there is the problem-solving loop, which involves helping the student 

select actions in the problem-solving process (e.g., the next equation to write down, or the next 

element to add to a free-body diagram in a physics problem). Traditional model-tracing is focused 

at this level, and is effective because it can follow the individual path of a student's problem- 

solving through a complicated problem-solving process. However, if the student is stuck, it can 

only provide hints or rhetorical questions toward what the student should do next. Model-tracing 

tutors do not ask new questions that might help students towards identifying or constructing 

relevant knowledge. In contrast, a human tutor might "dive down" into what we call the 

knowledge-search loop. Aiding students in knowledge search involves asking the student 

questions whose answers are not necessarily part of the problem-solving process, but are chosen 

to assist the student in learning the knowledge needed at the problem-solving level. It is this 

innermost knowledge-search loop that this paper is focused upon because is it has been shown 

that most learning happens only when students reach an impasse (VanLehn, Siler, Murray, 

Yamauchi & Baggett, 2003). In addition, VanLehn et al. suggested that different types of tutorial 

strategies were needed for different types of impasses.  

The power of the model-tracing architecture has been in its simplicity. It has been possible to 

build practical systems with this architecture, while capturing some, but not all, features of 

effective one-on-one tutoring. This paper presents a new architecture for building such systems 

called ATM (for Adding a Tutorial Model) (Heffernan, 2001). ATM is intended to go a step 

further but maintain simplicity so that practical systems can be built. ATM incorporates more 

features of effective tutoring than model-tracing tutors, but does not aspire to incorporate all such 

features.  

A number of 3
rd

 

generation systems have been developed (Core, Moore & Zinn, 2000; 

VanLehn et al., 2000; Graesser et al., 1999; Aleven & Koedinger, 2000a). In order to concretely 

illustrate the ATM architecture, this paper also presents an example of a tutor built within this 

architecture, called Ms. Lindquist. Ms. Lindquist is not only able to model-trace student actions, 

but can be more human-like in carrying on a running conversation with the student, complete 

with probing questions, positive and negative feedback, follow-up questions in embedded sub-



dialogs, and requests for explanations as to why something is correct. In order to build Ms. 

Lindquist we have expanded the model-tracing paradigm so that Ms. Lindquist not only has a 

model of the student, but also has a model of tutorial reasoning. Building a tutorial model is not a 

new idea, (e.g., Clancey, 1982), but incorporating it into the model-tracing architecture is new. 

Traditional model-tracing tutors have an implicit model of the tutor; that model is that tutors keep 

students on track by giving (sometimes implicitly) positive feedback as well as making comments 

on student’s wrong actions.  Traditional model-tracing tutors do not allow tutors to ask new 

question to break steps down, nor do they allow multi-step lines of questioning.  Based on 

observation of both an experienced tutor and cognitive research (Heffernan & Koedinger, 1997, 

1998), this tutorial model has multiple tutorial strategies at its disposal.  

MTTs are successful because they include a detailed model of how students solve problems. 

The ATM architecture expands the MTT architecture by also including a model of what 

experienced human tutors do when tutoring. Specifically, similar to the model of the student, we 

include a tutorial model that captures the knowledge that a tutor needs to be a good tutor for the 

particular domain. For instance, some errors indicate minor slips while others will indicate major 

conceptual errors. In the first case, the tutor will just respond with a simple corrective getting the 

student back on track (which is what model-tracing tutors do well), but in the second case, a good 

tutor will tend to respond with a more extended dialog (something that is impossible in the 

traditional model-tracing architecture).  

We believe a good human tutor needs at least three types of knowledge. First, they need to 

know the domain that they are tutoring, which is what traditional MTTs emphasize by being built 

around a model of the domain. Secondly, they need general pedagogical knowledge about how to 

tutor. Thirdly, good tutors need what Shulman (1986) calls pedagogical content knowledge, 

which is the knowledge at the intersection of domain knowledge and general pedagogical 

knowledge. A tutor's "pedagogical content knowledge" is the knowledge that he or she has about 

how to teach a specific skill or content domain, like algebra. A good tutor is not simply one who 

knows the domain, nor is a good tutor simply one who knows general tutoring rules. A good tutor 

is one who also has content specific strategies (an example will be given later in the section "The 

Behavior of an Experienced Human Tutor") that can help a student overcome common 

difficulties. McArthur et al. (1990) recognized the need to model the strategies used by 

experienced human tutors, and that such a model could be a component of an intelligent tutoring 

system.  

Building a traditional model-tracing tutor is not easy, and unfortunately, the ATM 

architecture involves only additional work.  Authoring in Anderson & Pelletier's (1991) model-

tracing architecture involves significant work.  Programming is needed to implement a cognitive 

model of the domain, and ideally, this model involves psychological research to determine how 

students actually solve problems in that domain (e.g., Heffernan & Koedinger, 1997; Heffernan & 

Koedinger, 1998).  The ATM architecture involves the additional work of first analyzing the 

tutorial strategies used by experienced human tutors and then implementing such strategies in a 

tutorial model. This step should be done before building a cognitive model, as it constrains the 

nature and level of detail in the cognitive model that is needed to support the tutorial model's 

selection of tutorial options. 

In this paper, we first describe the model-tracing architecture used to build second-

generation systems and then present an example of a tutor built in that architecture. Then we 

present an analysis of an experienced human tutor that serves as a basis for the design on Ms. 

Lindquist and the underlying ATM architecture.  We illustrate the ATM architecture by 

describing how the Ms. Lindquist tutor was constructed within. The Ms. Lindquist tutor included 

both a model of the student (the research that went into the student model is described in 

Heffernan & Koedinger, 1997 & 1998) as well as a model of the tutor. 



 

  

THE SECOND GENERATION ARCHITECHTURE: MODEL-TRACING  
 

The Model-Tracing Architecture was invented by researchers at Carnegie Mellon University 

(Anderson & Pelletier, 1991; Anderson, Boyle & Reiser, 1985) and has been extensively used to 

build tutors, some of which are now sold by Carnegie Learning, Inc. (Corbett, Koedinger, 

Hadley, 2001). These tutors have been used by thousands of schools across the country and have 

been proven to be very successful (Koedinger, Anderson, Hadley & Mark, 1995). Each tutor is 

constructed around a cognitive model of the problem-solving knowledge students are acquiring. 

The model reflects the ACT-R theory of skill knowledge (Anderson, 1993) in assuming that 

problem-solving skills can be modeled as a set of independent production rules. Production rules 

are if-then rules that represent different pieces of knowledge (A concrete example of a 

production will be given in the section on "Ms. Lindquist’s Cognitive Student Model".) Model-

tracing provides a particular approach to implementing the standard components of an intelligent 

tutoring system, which typically include a graphical user-interface, expert model, student model 

and pedagogical model. Of these components, MTTs emphasize the first three.  

Anderson, Corbett, Koedinger & Pelletier (1995) claim that the first step in building a MTT 

is to define the interface in which the problem-solving will occur. The interface is usually 

analogous to what the student would do on a piece of paper to solve the problem. The interface 

enables students to reify steps in their problem-solving performance, thus enabling the computer 

to be able to follow the problem-solving steps the student is using. 

The main idea behind the model-tracing architecture, is that if a model of what the student 

might do exists (i.e., a cognitive model including different correct and incorrect steps that the 

student could take) then a system will be able to offer appropriate feedback to students including 

positive feedback and hints to the student if they are in need of help. Each task that a student is 

presented with can be solved by applying different pieces of knowledge. Each piece of 

knowledge is represented by a production rule. The expert model contains the complete set of 

productions needed to solve the problems, as well as the "buggy" productions.  Each buggy 

production represents a commonly occurring incorrect step. The somewhat radical assumption of 

model-tracing tutors is that the set of productions needs to be complete.  This requires the 

cognitive modeler to model all the different ways to solve a problem as well as all the different 

ways of producing the common errors.  If the student does something that cannot be produced by 

the model, it is marked as wrong. The model-tracing algorithm uses the cognitive model to 

"model-trace" each step the student takes in a complex problem-solving search space. This allows 

the system to provide feedback on each problem-solving action as well as give hints if the student 

is stuck.  

Specifically, when the student answers a question, the model-tracing algorithm is executed 

in an attempt to do a type of plan recognition (Kautz & Allen, 1986).  For instance, if a student 

was supposed to simplify “7(2+2x) + 3x” and said “10+5x”, a model tracer might respond with a 

buggy message of “Looks like you failed to distribute the 7 to the 2x”. (The underlined text 

would be filled in by a template so that the message applies to all situations in which the student 

fails to distribute to the second term.)  A model tracer is only able to do this if a bug rule had 

been written that is able to model that incorrect rule of forgetting to distribute to the second 

term.  Note that model-tracing often involves firing rules that work correctly (like the rule that 

added the 2x +3x, as well as rules that do some things incorrectly).  

An additional component of traditional model-tracing architecture is called knowledge- 

tracing which is a specific implementation of an "overlay" student model. An overlay student 



model is one in which the student's knowledge is treated as a subset of the knowledge of the 

expert. As students work through a problem, the system keeps track of the probabilities that a 

student knows each production rule. These estimates are used to decide on the next best 

problem to present to the student. The ATM architecture makes no change to knowledge 

tracing.  

Model-tracing tutors give three types of feedback to students: 1) flag feedback, 2) buggy 

messages, and 3) a chain of hints. Flag feedback simply indicates the correctness of the response, 

sometimes done by using a color (e.g., green=correct or red=wrong). A buggy message is a text 

message that is specific to the error the student made (examples below). If a student needs help, 

they can request a "Hint" to receive the first of a chain of hints that suggests things for the student 

to think about. If the student needs more help, they can continue to request a more specific hint 

until the "bottom-out" message is delivered that usually tells the student exactly what to type. 

Anderson & Pelletier (1991) argue for this type of architecture because they hypothesized that 

telling students what to do next would be more helpful than focusing on their errors. We agree 

that emphasizing bug-diagnosis is probably not particularly helpful, however simply 

"spewing" text at the student may not be the most pedagogically effective response. This 

point will be elaborated upon in the section describing Ms. Lindquist's architecture.  

 

 

THIRD GENERATION SYSTEMS  
 
The ATM architecture is our attempt to build a new architecture, that will extend the model-

tracing architecture to allow for better dialog capabilities. Other researchers (Aleven & 

Koedinger, 2000a; Core, Moore & Zinn, 2000; Freedman & Evens, 2000; Graesser et al., 1999; 

VanLehn et al., 2000) have built 3
rd

 generation systems but ATM is the first to take the approach 

of generalizing the successful model-tracing architecture to seamlessly integrate tutorial dialog. 

Besides drawing on the demonstrated strengths of model-tracing tutors, this approach allows us to 

show how model tracing is a simple instance of tutorial dialog. Aleven and Koedinger (2000a & 

2000b) have built a geometry tutor in the traditional model-tracing framework but have added a 

requirement for students to explain some of their problem-solving steps. The system does natural 

language understanding of these explanations by parsing a student's answer. The system's goal is 

to use traditional buggy feedback to help students refine their explanations. Many of the hints and 

buggy messages ask new "questions", but they are only rhetorical. For instance, when the student 

justifies a step by saying "The angles in an isosceles triangle are equal" and the tutor responds 

with "Are all angles in an isosceles triangle equal?" the student doesn't get to say "No, it’s just the 

base angles". Instead, the student is expected to modify the complete explanation to say "The 

base angles in an isosceles triangle are equal." Therefore, the system's strength appears to be its 

natural language understanding, while its weakness is in not having a rich dialog model that can 

break down the knowledge construction process through new non-rhetorical questions and multi-

step plans.  

Another tutoring system that does natural language understanding is Graesser's et al. (1999) 

system called "AutoTutor". AutoTutor is a system that has a "talking head" that is connected to a 

text-to-speech system. AutoTutor asks students questions about computer hardware and the 

student types a sentence in reply. AutoTutor uses latent semantic analysis to determine if a 

student's utterance is correct. That makes for a much different sort of student modeling than 

model-tracing tutors. The most impressive aspect of AutoTutor is its natural language 

understanding components. The AutoTutor developers (Graesser et al.,1999) de-emphasized 

dialog planning based on the claim that novice human tutors do not use sophisticated strategies, 

but nevertheless, can be effective. Auto-tutor does have multiple tutorial strategies (i.e., "Ask a 



fill-in-the-blank question" or "Give negative feedback."), but these strategies are not multi-step 

plans. However, work is being done on a new "Dialogue Advancer Network" to increase the 

sophistication of its dialog planning.  

The CIRCSIM-Tutor project (see Cho, Michael, Rovick, and Evens, 2000; Freedman & 

Evens, 1996) has done a great deal of research in building dialog-based intelligent tutors 

systems. Their tutoring system, while not a model-tracing tutor, engages the student in multi-

step dialogs based upon two experienced human tutors. In CIRCSIM-Tutor, the dialog planning 

was done within the APE framework (Freedman, 2000). Freedman's approach, while developed 

independently, is quite similar to our approach for the tutorial model in that it is a production 

system that is focused on having a hierarchal view of the dialog.  

VanLehn et al. (2000) are building a 3
rd

 generation tutor by improving a 2
nd

 generation 

model-tracing tutor (i.e., the Andes physics tutor) by appending onto to it a system (called 

Altas) that conducts multiple different short dialogs. The new system, called Atlas-Andes, is 

similar to our approach in that students are asked new questions directed at getting the student 

to construct knowledge for themselves rather than being told. Also similar to our approach is 

that VanLehn and colleagues have been guided by collecting examples from human tutoring 

sessions. While their goal and methodology are similar, their architecture for 3
rd

 generation 

tutors is different. VanLehn et al. (2000) says that "Atlas takes over when Andes would have 

given its final hint. (p. 480)" indicating that the Atlas-Andes system is two systems that are 

loosely coupled together. When students are working in Atlas, they are, in effect, using a 1
st
 

generation tutor that poses multiple-choice questions and branches to a new question based on 

the response, albeit one that does employ a parser to map the student’s response to one of the 

multiple-choice responses. Because of this architectural separation, the individual responses of 

students are no longer being model-traced or knowledge-traced. This separation is in contrast 

with the goal of seamless integration of model-tracing and dialog in ATM.  

 

Carnegie Learning’s Cognitive Algebra Tutor  

 

We will now give an example of the sort of feedback traditional model-tracing tutors provide. We 

will look at Carnegie Learning Inc.'s tutor called the "Cognitive Algebra Tutor". This software 

teaches various skills in algebra (i.e., problem analysis, graphing and equation solving), but the 

skill we will focus on here is the symbolization process (i.e., where a student is asked to write an 

equation representing a problem situation). Symbolization is fundamental because if students 

cannot translate problems into the language of algebra, they will not be able to apply algebra to 

solve them. Symbolization is also a difficult task for students to master. One relevant window 

related to symbolizations is shown in Figure 1. where the student is expected to answer questions 

by completing a table shown (partially filled in).  

In Figure 1, we see that the student has already identified names for three quantities (i.e., 

"hours worked", "The amount you would earn in your current job", and "the amount you 

would earn in the new job"), as well as having identified units (i.e., "hours", "dollars" and 

"dollars" respectively) as well as having chosen a variable (i.e., "h") to stand for the "hours 

worked" quantity.  

One of the most difficult steps for students is generating the algebraic expression and Figure 

1 shows a student who is currently in the middle of attempting to answer this sort of problem, as 

shown by the fact that that cell is highlighted. The student has typed in "100-4*h" but has not yet 

hit return. The correct answer is "100+4*h". 

 



 
Fig. 1. The worksheet window from the Carnegie Learning tutor (circa 1999).  The student has already 

filled in the column headings as well as the units, and is working on the formula row.  The student has just 

entered "100-4h" but has not yet hit the return key. 

 

Once the student hits return, the system will give flag feedback, highlighting the answer to 

indicate that the answer is incorrect. In addition, the model-tracing algorithm will find that this 

particular response can be modeled by using a buggy rule, and since there is a buggy template 

associated with that rule, the student is presented with the buggy message that is listed in the 

first row of Table 1. Table 1 also shows three other different buggy messages.  

Table 1 

Four different classes of errors, and associated buggy-message that are generated by Carnegie Learning’s 

Cognitive Algebra Tutor. The third column shows a hypothetical student response, but unfortunately, the 

questions are only rhetorical.  The ATM is meant to address this. 

 Example 

Errors  

The buggy message generated in response to 

those errors  

Possible response by 

the student  

1  100-4*h -

4*h+100  

Does the money earned in your current job 

increase or decrease as the number of hours 

worked increases?  

It increases.  

2  4*h 10+4*h  How many dollars do you start with when you 

calculate the money earned in your current job?  

100 dollars  

3  100+h 

100+3*h  

How much does the money earned in your 

current job change for each hour worked?  

Goes up 4 dollars for 

every hour  

4  4+100*h 

100h+4  

Which number should be the slope and which 

number should be the intercept in your formula?  

The 4 dollars an hour 

would be the slope.  

Notice how the four buggy messages are asking questions of the student that seem like very 

reasonable and plausible questions that a human tutor would ask a student. The last column in 

Table 1 shows possible responses that a student might make. Unfortunately, those are only 

rhetorical questions, for the student is not allowed to answer them, as such, and is only allowed to 



try to answer the original question again. This is a problem the ATM architecture solves by 

allowing the student to be asked the question implied in this buggy message. In this hypothetical 

example, when the student responds "It increases" then the system can follow that question up 

with a question like "And 'increases' suggests what mathematical operation?" Assuming the 

student says "addition" the tutor can then ask "Correct. Now fix your past answer of 100-4*h". 

We call this collection of questions, as well as the associated responses in case of unexpected 

student responses, a tutorial strategy. The ATM architecture has been designed to allow for these 

sorts of tutorial strategies that require asking students new questions that foster reasoning before 

doing, rather than simply hinting towards what to do next.  
 

Table 2  

The list of hints provided to students upon request by the Carnegie Learning’s Cognitive Algebra Tutor. 

 

Table 2 shows the hint sequence for this same symbolization question. Notice how the hints 

get progressively more explicit until finally the student is told what to type. One of the problems 

with model-tracing tutors is that sometimes students keep asking for a new hint until they get the 

last most specific hint (Gluck, 1999). However, maybe this is a rational strategy to use when the 

hints do not efficiently focus on the student's difficulty. Take a moment to consider if the chain of 

hints in Table 2 is likely to help the student above who just tried "100-4*h"? The 1
st
 and 2

nd
 hints 

certainly do not address this student's difficulty, and the later hints only do so very obliquely. 

This lack of sensitivity to the student’s cognitive state is an architectural limitation that the ATM 

architecture is designed to overcome by creating tutors that aim to aid learning by asking the 

student questions which are focused on the portions that they got wrong. We call this dynamic 

scaffolding and will define this in the next section.  

 

THE BEHAVIOR OF AN EXPERIENCED HUMAN TUTOR 
 

We developed the ATM architecture to be able to build tutors that model the tutorial strategies 

that we observed in the behavior of an experienced tutor. An hour-long protocol of an 

experienced human tutor working with an individual student in a coached practice session was 

collected. The tutor was a female middle school mathematics teacher with four years of 

mathematics teaching experience and two years of one-on-one tutoring experience (through both 

University tutoring centers and through extensive private tutoring.) This tutor charged clients 40 

dollars an hour. The tutor worked with one of her seventh grade students that she had not 

previously tutored and was given a list of problems for the student to solve. The session was 



recorded on video and then transcribed using the piece of paper the student wrote his answers on. 

Strategies that the tutor appeared to use often and that were easy to implement were chosen to 

incorporate in Ms. Lindquist. 

The tutoring session was quite interactive, resulting in slightly over 400 lines of 

transcript. The session consisted of the tutor and student working on 17 word problems. Of these 

17, 7 of them were done correctly on their first attempt. The tutor did not spend much time on 

these correctly answered problems (consumed only 24 of the 400+ lines). The remaining ten 

problems represent the bulk of the lines in the protocol. Since most of the time the tutor and the 

student alternated speaking, it makes for an average of about 20 turns (defined as the student and 

then the tutor speaking) per problem. One problem took an exceptionally long time and stretched 

from line 17 to line 146. If this long problem is excluded the average number of turns to solve a 

problem would be slightly over ten turns per problem, which is still quite substantial. This finding 

is in agreement with the literature (Merrill et al., 1995) that suggests tutors give a great deal of 

feedback so that the student knows if he is right or wrong. The tutor would give immediate 

confirmation if an answer was correct, but if it was wrong, she seldom told the student the 

answer. Instead, the tutor would generally ask a targeted question thereby giving implicit negative 

feedback. 
 

Table 3 

An experienced tutor's transcript and Ms. Lindquist's attempt to model it 

Experienced Human Tutor Exact 
Transcript  

The Ms. Lindquist Tutor Similar 
simulated input.  

240. Student: [reads the "bike-trip" problem]  T1: [The "bike-trip" problem was  

Cathy took a "m" mile bike ride. She rode at a  presented] Please write an expression for  

speed of "s" miles per hour. She stopped for a  the total time the trip took.  

"b" hour break. Write an expression for how   

long the trip took.   

241. S: um … [Writes "s/m+b"]  S1: s/m+b  

242. Tutor: How do you calculate the amount  T2: No. Let me ask you an easier question.  

of time it takes you? If you're, if you're, if  Please compute the time actually on the  

you're riding at, let's make it simple. If you are  bikes if the speed was 20 miles per hour,  

riding at 20 miles per hour, OK, and you go  and the distance ridden was 100 miles?  

100 miles, how many hours did that take you?   

243. S: Um 5  S2: 5  

244. T: 5. And how did you get that 5? How  T3: Correct. What math did you do to get  

did you use the numbers 100 and ?[trails off]  that five?  

245. S: 100 miles divided by miles per hour.  S3: 100/20  

246. T: So you took the miles and divided it by  T4: Correct. Now write your answer of  

the [garbled, but probably "speed"]  100/20 using the variables given in the  

 problem (i.e., put in 'm' and 's')?  

247. S: Miles divided by 's' plus 'b' equals time  S4: b+m/s  

[writes m/s+b]   

248. T: Right.  T5: Correct.  

 

An example of the behavior of this human tutor is shown in the left column of Table 3. This 

example was collected and transcribed from a one-on-one tutoring session with a student working 



on the “bike-trip” problem (a problem we use as one of our running examples). The right hand 

side of Table 3 shows a corresponding interaction with Ms. Lindquist and will be discussed later 

in the section on Ms. Lindquist.  

The tutor in the above dialog appears to have done two things to help the student with the 

problem. First, the tutor focused on the problem of calculating the time actually on the bikes 

(i.e., the m/s part) by decomposing what was a problem with two arithmetic operators (i.e., 

addition and division) into a problem that had only one math operator. Presumably, this is 

because the student indicated he understood that the goal quantity was found by adding the 

amount of the break (“b”) to the time actually on the bikes. This is an example of what we call 

dynamic scaffolding, by which we mean focusing the dialog on an area where the student has 

had difficulty.  

The second way this tutor helped the student was to apply what we call a tutorial strategy 

(similar to what McArthur et al. (1990) called micro-plans and what VanLehn et al. (2000) called 

knowledge construction dialogs). The particular tutorial strategy the tutor used is the one we call 

the concrete articulation strategy (called the inductive support strategy in Gluck, 1999, 

Koedinger & Anderson, 1998), which involves three steps. The first step is the compute question 

which involves asking the student to suppose one, or more, of the variables is a concrete number 

and then to compute a value (i.e., asking the student to calculate the time actually on bikes using 

100 and 20 rather than “m” and “s”.) The second step is the articulation question, which asks the 

student to explain what math they did to arrive at that value (i.e., "How did you get that 5?"). The 

final step is the generalization question, which asks the student to generalize their answer using 

the variables from the problem (i.e., line 246). We observed that our experienced human tutor 

employed this concrete articulation strategy often (in 4 of 9 problems). We describe the strategies 

used by the human tutor and how they were incorporated in Ms. Lindquist in more detail in the 

next section. 
 

THE ATM ARCHITECTURE  

 

We believe that dynamic scaffolding and tutorial strategies are two pieces that current model-

tracing framework does not deal with well, and thus motivate extending the model-tracing 

architecture by adding a separate tutorial model that can implement these new features and the 

ATM architecture. Figure 2 shows a side-by-side comparison of the traditional model-tracing 

architecture to the ATM architecture.  

 



 
 

Fig. 2. A comparison of the old and the new architectures.  

 

The traditional model-tracing architecture feeds the student’s response into the model-tracing 

algorithm to generate a message for the student but never asks a new question, and certainly 

never plans out a series of follow-up questions (as we saw the experienced human tutor appear to 

do above with the concrete articulation strategy). A key enhancement of the ATM architecture is 

the agenda data structure that allows the system to keep track of the dialog history as well as the 

tutor's plans for follow-up questions. Once the student model has been used to diagnose any 

student errors, the tutorial model does the necessary reasoning to decide upon a course of action. 

The types of responses that are possible are to give a buggy message, give a hint or use a tutorial 

strategy. The selection rules, shown in Figure 2, are used to select between these three different 

types of responses. It should be noted that currently the selection rules used in Ms. Lindquist are 

very simple.  However, selection rules can model complex knowledge, such as when to use a 

particular tutorial strategy for a particular student profile, or a particular student's error, or a 

particular context in a dialog.  Research will be needed to know what constitutes good selection 

rules, so we have currently opted for simple selection rules. For instance, there is a rule that 

forces the system to use a tutorial strategy, when possible, as opposed to a buggy message. 

Another selection rule can cause the system to choose a particular tutorial strategy in response to 

a certain class of error.  

Whereas buggy messages and hints are common between both architectures, the use of 

tutorial strategies triggered by selection rules makes the ATM more powerful than the traditional 

architecture, because the tutor is now allowed to ask new questions of the student.  



 

Fig. 3. Flowcharts comparing Ms Lindquist’s Architecture with the traditional model-tracing architecture 

 

The overall algorithm ATM uses is shown in Figure 3, and contrasted with traditional 



model tracing tutors.  The traditional model-tracing algorithm includes only buggy feedback and 

hints. On the other hand, the ATM architecture also includes new elements, as shown by the 

extra boxes in the flowchart (KCD and KRD are two types of tutorial strategies that will be 

discussed in the section below on “Tutorial Strategies”).  The ATM architecture begins by 

posing the question that is at the top of the agenda structure, and waits for the student to attempt 

an answer. Sometimes the student's answer will reveal more information than what was asked 

for, as in Table 3, response S4, in which the system was expecting an answer of "m/s" but 

instead received an answer of "b+m/s". Strictly speaking, the student's answer of "b+m/s" is 

wrong for the question that was asked, however, the tutor would appear pedantic if it said "no" 

because "b+m/s" is an answer to a question that is lower down on the tutorial agenda. Therefore, 

the system treats "b+m/s" as a correct answer to the original question asking for "b+m/s". 

Having this mechanism in place is part of ensuring reasonable conversational coherence.  

The flow diagram shows that if the student gave an answer that is correct for the question at 

the top of the agenda, the system pops that question off the agenda and proceeds to pose any 

remaining questions. However, if the student's answer is not correct, the system says "No" and 

then tries to add any positive feedback before entering the dynamic scaffolding subroutine. That 

routine tries to come up with the best plan for each error the student might have made for each 

subgoal.  Once the system has planned a response to the first subgoal that had an error, the 

system will try to do the same for any remaining subgoals that have errors. The integration of 

model-tracing and dialog is shown in Figure 3. As Figure 3 illustrates, ATM generalizes the 

functionality of model-tracing (the added boxes on the right) without eliminating any of it 

(boxes appearing on both sides). We will now describe each of the components of the ATM 

architecture (Figure 2) with reference to the Ms. Lindquist tutor.  

 

Ms. Lindquist’s Cognitive Student Model  
 

Ms Lindquist's student model is similar to traditional student models. We used the Tertl 

(Anderson & Pelletier, 1991) production system, which is a simplification of the ACT (Anderson, 

1993) Theory of Cognition. As mentioned above, a production system is a group of if-then rules 

operating on a set of what are called working memory elements. We use these rules to model the 

cognitive steps a student could use to solve a problem. Our student model has 68 production 

rules. Our production system can solve a problem by being given a set of working memory 

elements that encode, at a high level, the problem.  

To make this concrete, we now provide an example. Figure 4 shows initial working memory 

encoding the "Anne in a lake" problem. We see that the problem has 5 quantities and two 

relations that link the quantities together in what we call a quantitative network. Our 68 

productions can be broken up into several groups. Some productions are responsible for doing a 

search through the quantitative network to connect the givens with the goal. Other productions 

are used to retrieve the operator to use (e.g., +, -, *, /). Other productions are used to order the 

arguments (e.g., 800-40m versus 40m-800). Still other productions are used to add parentheses 

when needed. For example, an English version of a production that does the search:  

If  

You are trying to find a symbolization for an unknown quantity,  

And that quantity is involved in a relation  

Then  

Set goals to try to symbolize the two other quantities connected to that relation,  



And set a goal to retrieve the operator to use.  

For example, in conjunction with the working memory elements shown in Figure 4, this 

production could be used to symbolize "the distance Anne has left to row" by setting goals to 

symbolize 1) "the distance she started from the dock" and 2) "the distance rowed so far", as well 

as setting a goal to retrieve the correct operator to use.  

   

Fig. 4. The initial working memory elements for the following problem: 

Ann is in a rowboat in a lake. She is 800 yards from the dock. She then rows for "m" minutes 

back towards the dock. Ann rows at a speed of 40 yards per minute. Write an expression for 

Ann's distance from the dock. Answer=800-40m. 

We model the common errors that students make with a set of “buggy” productions. From 

our data, we compiled a list of student errors and analyzed what were the common errors. We 

found that the following list of errors was able to account for over 75% of the errors that students 

made. We illustrate the errors in the context of a problem, which has a correct answer of 

“5g+7(30-g)”.  

1) Wrong operator (e.g., “5g-7(30-g)”)  

2) Wrong order of arguments  (e.g., “5g+7(g-30)”)  

3) Missing parentheses  (e.g., “5g+7*30-g”)  

4) Confusing quantities (e.g., “7g+5(30-g)”)  

5) Missing a component  (e.g., “5g+7g” or “g+7(30-g)” or “5g+30-g”)  

6) Omission: correct for a subgoal.  (e.g., “7(30-g)” or “5g”)  

7) Any combinations of errors (e.g., “5/g+7*g-30” has three errors;1) the wrong order for 



“g-30”, 2) is missing parentheses around the 30-g, and 3) the “5/g” uses the division 

instead of multiplication.)  

Consider what a good human tutor would do when confronted with a student who wrote 

what is listed in the 7
th
 item above.  Perhaps the tutor would realize that there are multiple errors 

in the student’s answer and decide to tackle one of them first, and plan to deal with the other 

ones after finishing the first.  In contrast, a traditional model-tracing tutor could fire three 

different bug rules that would generate three different bug messages and then display all three to 

the student. This seems to make the tutor appear more like a compiler spitting out error 

messages.  ATM deals with each of the errors separately.   Dealing with more than one error 

occurring at the same time (such as the 7
th
 item in the list above), is something that Anderson’s 

traditional model-tracing tutors do not do well, and that is probably due to the fact that the 

pedagogical response of such tutors is usually a buggy message.  This is not to say that model-

tracing tutors have never dealt with more than one student error occurring simultaneously; some 

cognitive modelers have tried to compensate for the architecture’s lack of support for more than 

one error at a time, by writing single rules that will model two errors occurring at the same time. 

However, this makes the modeling work even harder.  

 

Ms. Lindquist’s Tutorial Model  
 

Now we will look at the components of the tutorial model shown in Figure 2. A fundamental 

distinction in the intelligent tutoring system is between the student model, which does the 

diagnosing, and the tutorial model, which does everything else. The tutorial model is 

implemented with 77 production rules (Our use of a production system for tutorial modeling 

is similar to Freedman's (2000)). Some of these production rules are the selection rules shown 

in Figure 3, which do the selection of what type of response to make. Other rules do different 

things. For instance, some rules specify how to implement a particular tutorial strategy while 

others know when to splice in positive feedback.  

Since using a tutorial strategy involves asking a series of questions, we will first state the 

questions Ms. Lindquist currently knows how to ask a student.  
 

Tutorial Questions  

 

Each example is illustrated in the context of the student working on the following problem:  “Ann 

is in a rowboat in a lake. She is 800 yards from the dock.  She then rows for "m" minutes back 

towards the dock.  Ann rows at a speed of 40 yards per minute. Write an expression for Ann's 

distance from the dock.” Ms. Lindquist currently has the following tutorial questions:
 

1) Q_symb: Symbolize a given quantity (“Write an expression for the distance Anne has 

rowed?”)  

2) Q_compute: Find a numerical answer (“Compute the distance Anne has rowed?”)  

3) Q_articulate: Write a symbolization for a given arithmetic quantity. This is the articulation 

step. (“How did you get the 120?”)  

4) Q_generalize: Uses the results of a Q_articulate question (“Good, Now write your 

answer of 800-40*3 using the variables given in the problem (i.e., put in ‘m’)”)  

5) Q_represents_what: Translate from algebra to English (“In English, what does 40m 

represent?” (e.g., “the distance rowed so far”))  

6) Q_articulate_verbal:  Explain in English how a quantity could be computed from other 



quantities. (We have two forms: The reflective form is “Explain how you got 40*m” while 

the problem-solving form is “Explain how you would find the distance rowed?”)  

7) Q_decomp: Symbolize a one-operator answer, using a variable introduced to stand for a sub-

quantity. (“Use A to represent the 40m for the distance rowed. Write an expression for the 

distance left towards the dock that uses A.”)  

8) Q_substitute: Perform an algebraic substitution (“Correct, that the distance left is given by 

800-A. Now, substitute “40m” in place of A, to get a symbolization for the distance left.”)  

You will notice that questions 1, 3, 4, and 8 all ask for a quantity to symbolize. Their main 

difference lies in when those questions are used, and how the tutor responds to the student’s 

attempt. Questions 5 and 6 ask the student to answer in English rather than algebra. To avoid 

natural language processing, the student is prompted to use pull down menus to complete this 

sentence “The distance rowed is equal to <noun phrase> <operator> <noun phrase>.” The noun 

phrase menu contains a list of the quantity names for that problem. The operator menu contains 

“plus”, “minus”, “times” and “divided by.”  Below we will see how these questions can be 

combined into multi-step tutorial strategies.  

 

Tutorial Agenda 
 

The tutorial agenda is a data structure that operates somewhat like a stack. It is used to keep 

track of the current focus. It includes the questions that have been asked already of the student 

but are still awaiting a correct response, as well as questions that the tutor plans to ask but has 

not yet done so. The question at the top of the agenda represents the current question that the 

student was just asked. If the tutor invokes a tutorial strategy, it places the new question on the 

agenda to be asked. As students answer questions, they are removed from the agenda.  

 

Tutorial Reasoning: Dynamic Scaffolding 

 

A diagnosis is passed from the student model to the tutorial model. If the student's response is 

correct, the system pops that question off the agenda. However, if it is not, the dynamic 

scaffolding procedure requires that for each error the student made, the system come up with a 

plan to address it. Dynamic scaffolding is based upon the fact that human tutors tend to ask 

questions related to incorrect aspects of the student's answer. This error localization 

communicates valuable information to the student by focusing the student's attention on a single 

aspect of what might have been a complicated problem-solving process. The dynamic scaffolding 

procedure can also give positive feedback on correct aspects of the student's reasoning when 

appropriate. The dynamic scaffolding procedure does the error localization and then passes 

responsibility to the selection rules to determine what is the most pedagogically effective tutorial 

strategy to employ for the given situation. The next section details the options Ms. Lindquist has.  

 

Tutorial Strategies 

 

This section will show several different tutorial strategies that Ms. Lindquist can use. Some 

strategies we observed that the human tutor used seemed to apply only if the student made a 

particular type of error and we call such strategies Knowledge Remediation Dialogs (KRD). Other 

strategies the tutor used were more broadly applicable and we call such strategies Knowledge 

Construction Dialog (KCD). (We borrow the term knowledge construction dialog from 



VanLehn.) Both KCD and KRD invoke multi-step plans to deal with particular errors, however 

the KRD is only applicable if the student has made a particular type of error. For instance, a 

dialog about the role of order of operations shown in Figure 5, would be a KRD, because it 

applies only in the case that the student's error was to forget parentheses. However, the concrete 

articulation strategy is a KCD, because it can be used no matter which specific error type might 

have occurred. Since KRDs apply in fewer situations, we have first focused on authoring KCDs, 

and have implemented only one of the KRDs we observed the experienced tutor use. That KRD is 

applicable when the student has made an error of omission, by which we mean that the student 

correctly symbolized only a piece of the problem. For example, suppose the student was supposed 

to say “800-40m” but instead said “40*m”, the tutor would digress using the one-step KRD that 

asks the student to identify what the “40*m” represents, and once the student has clarified what 

the 40*m represents, the student is then asked to symbolize the whole quantity again. ATM has 

four different types of responses. Each of these is shown in Table 4, illustrated with an example 

from the Ms. Lindquist tutor.  

Table 4  

The four different types of tutorial responses: hints, buggy-messages, KRD and KCD 

 Two types of Tutor Reponses  

 Tell the student something  Ask a New Question(s)  

Always  Traditional model-tracing hint: e.g.,  Use one of the four KCDs such  

Applies  "You need to use 40 and 'm' to find  as the three-step Concrete  

 the distance rowed."  Articulation Strategy  

Applies  Traditional model-tracing buggy- Use a KRD such as shown in  

selectively  feedback message: e.g., "You are  Figure 5 that only applies when  

 missing parentheses around the '30 the student has forgotten  

 G'."  parentheses.  

 

Table 5  

An example of a knowledge remediation dialog. Note that the dialog is focused on the location of the error, 

as well as the type of error. 

Student: The answer is 5*g+7*30-g. 

Tutor: The 5*g is correct for the amount bagging groceries, but the amount 

delivering newspapers is not 7*30-g. Let me ask you this about the rules for order 

of operations. Which do you do first, multiplication or subtraction? 

Student: multiplication 

Tutor: Correct. In this problem, do you want the multiplication done first or the 

subtraction in the expression 7*30-g? 

Student: The subtraction. 

Tutor: Good- so what do you need to use to indicate that the subtraction should  be 

done first? 

Student: Parentheses. 

Tutor: Good. So try this question again, but this time use parentheses. … 

 

We have been using the term selection rule to describe the rules that determine the best 

tutorial responses, given the entire context so far. Because this field is so new, and tutoring is so 

complicated, our selection rules are currently simple heuristics, which will need to be refined by 



further research. For instance, when the system has multiple different responses to choose 

between, its selection rules will try to put them in the following order; KRD, Buggy-Message, 

KCD, and finally hint. The heuristic for ordering them in this manner is to respond with the 

response that takes into account as much context as possible (KRD & Buggy Message). The 

second heuristic is to use a tutorial strategy (KRD or KCD) before using a buggy message or hint, 

because we would rather ask a question than give a hint. These heuristics are examples of 

selection rules.  

We will now look at four different tutorial strategies (all KCDs) that Ms. Lindquist uses; 1) 

"Concrete Articulation", 2) "Introduced Variable", 3) "Explain in English First" and finally 4) 

"Convert the Problem into an Example to Explain."  

 

Concrete Articulation Strategy 
 

Our experienced human tutor used the concrete articulation strategy on 44% of the problems she 

tutored. This strategy uses three questions of type Q_compute, Q_articulate and Q_generalize. 

The right-hand side of Table 3 shows an example dialog generated by Ms. Lindquist, which 

closely parallels the experienced human tutor dialog. We will walk through what Ms. Lindquist 

did here and illustrate both dynamic scaffolding as well as the particular tutorial strategy that Ms. 

Lindquist used. First, the student model diagnosed the student's response (“s/m+b”) as being 

partially correct (i.e., the student understood that the total trip time was the time of the break, “b”, 

plus the time actually on the bikes) and partially wrong (i.e., the system noted the bug of 

reversing the order of the arguments (i.e., "m/s" vs. "s/m"). As part of the dynamic scaffolding 

routine, the system needed to come up with a plan to address the error related to the time on 

bikes. (This is similar to the way the human tutor also ignored the part of the problem related to 

the time for the break and instead focused on the goal of getting the actual time on bikes.) In this 

example, the tutorial model chose to use the concrete articulation strategy. Therefore, the tutorial 

model generated questions for the compute, explain/articulation and generalization steps and 

placed these three questions on the agenda.  

After the student answers the compute question correctly (at S2), the tutor decides to 

continue with its plan. However, if the student had typed 100/20 instead of 5, then both the 

compute and explain questions would be removed from the agenda and the tutor would skip to the 

generalize step. An example of this sort of flexibility to interpret the student's response broadly is 

demonstrated by the tutor's response to "b+m/s" (at S4). The question at S4 was actually asking 

for the student to answer "m/s". Only a pedantic tutor would not accept that answer as it indicates 

an understanding that subsumes the understanding required for the posed question.  

To show an example of how the previous situation could have come out 

differently, let’s look at the following dialog.  

T1: Hello.  [Doing the “bike-trip” problem] Please write an expression for the total time the trip 

took. [Q_symb]  

S1: help! [Student hit the help button]  

T2: Let me ask you an easier question.  Please compute the time actually on bikes if instead the 

speed was 20 miles per hour, the time of the break was 2 hours, and the distance ridden was 

100 miles? [Q_compute]  

S2: 7  

T3: Correct. What math did you do to get that 7? [Q_articulate]  

S3: 2+5  



T4: Okay, but how did you get the 5? [Q_articulate again but this time for the 5.]  

S4: 100/20 

T5: Correct.  Now, let’s try this question again. What math did you do to get the 7? [Q_articulate]  

S5: 2+100/20  

T6: Correct. Now write your answer of ‘2+100/20’ using the variables given in the problem (i.e., 

put in ‘m’, ‘b’ and ‘s’)? [Q_generalize] 

S6: b+m/s 

T7: Correct. 

 

This example is interesting in the way Ms. Lindquist responds at T4 with what we call an 

embedded sub-dialog. In this case, the student model reported that the student’s answer of “2+5” 

is a partially complete articulation but that the student didn’t spell out where the “5” came from. 

The tutorial model is able to “dig-down” into the student's reasoning with an embedded sub-

dialog asking for an explanation of where the 5 came from. Once that was accomplished, the tutor 

could proceed with the rest of the plan (As indicated by saying "Now, let’s try this question 

again.")  

Croteau, Heffernan & Koedinger (2004) and Freybeger, Heffernan & Ruiz (2004) looked at 

tutorial log files from hundreds of students who were tutored by Ms. Lindquist and tried to find 

the best fitting cognitive models to explain students’ responses.  Croteau et al (2004) was 

interested in the question of whether there is evidence that an articulate skill is what makes 

writing expressions in the language of algebra difficult. This study found statistically significant 

evidence that students were finding “articulating” more difficult than “comprehending” word 

problems. 

 

Introduced Variable Strategy 
 

A second example of a tutorial strategy is what we call the Introduced Variable Strategy, which 

we observed our human tutor employ on close to half of the problems she tutored. This strategy 

uses both Q_decomp and Q_substitute questions as shown below.  

T1: Hello. Adam, Stan and Doug spent the day picking strawberries.  Adam picked twice as much 

as Stan and Doug picked 7 more kilograms than Adam.  Suppose Stan picked "s" kilograms 

of strawberries.  Stan and Doug cooperated to make a pie. Please write an expression for the 

combined number of kilograms for Stan and Doug.  

S1: 7+(2*s) [This answer is partially correct but should be s+7+(2*s)]  

T2: No.  But, "7+(2*s)" is correct for the number of kilograms Doug picked.  We will come back 

to the combined number of kilograms for Stan and Doug.  Let me try to break this down for 

you.  If "C" were the number of kilograms Doug picked then what would be the combined 

number of kilograms for Stan and Doug?  [This is the Q_decomp question]  

S2: C+s  

T3: Correct.  Now, let’s try this question again:  You are correct that "s+C" is the combined 

number of kilograms for Stan and Doug.  Now, can you state this in terms of the numbers 

given in the problem? [This is the Q_substitute question]  

S3: 7+(2*s)+s  

T4: Correct. 

 

Our previous research (Heffernan & Koedinger, 1998) uncovered evidence that suggested that 

this strategy could be effective. Because students have difficulty writing expressions that have 



multiple variables, by introducing the new variable (i.e., C) at T2, the tutor reduces the number of 

operators the student has to write. Only after the student has gotten confirmation (that you need to 

add the amount Doug picked and Stan picked, using "C+s") do we ask the student to put it all 

together by substituting in the correct expression for "C" (i.e., T3).  

"Explain in English" Strategy 
 

Mathematical communication is increasingly seen as a goal for students, and in particular 

translating between an algebraic representation, an English verbal representation, and a concrete 

representation of numerical instances (Schoenfeld et al., 1992, Nathan & Koedinger, 2000). Other 

researchers are also interested in an ITS that can elicit explanations from students (e.g., Conati et 

al., 1997.) Our experienced human tutor would often ask the student to explain how to compute a 

quantity in English and only afterward, ask the student to say it in symbols (Heffernan, 2001). 

Therefore, we have implemented a strategy that is based on the hypothesis that students will learn 

more if they are first asked to explain in English how to compute a quantity, before trying to 

symbolize it. The following example shows this strategy:  

 

T1: Hello. [Doing the “bike-trip” problem]  Please write an expression for the total time the trip 

took. [Q_symb]  

S1: m/s  

T2: What does “m/s” represent (e.g., the speed on the bike?)[Q_represents_what] 

S2: The total time of the trip. 

T3: No, “m/s” represents the actual time on the bikes.  Can you explain how you would find the 

total time of the trip using the time on the bikes? [Q_articulate_verbal]  

S3: The total time of the trip is equal to [1
st
 
 

menu] "the amount of time for the break" [2
nd

 

menu] "plus" [3
rd

 

menu] "the actual time on the bikes". [Composed using three pull 

down menus.]  

T4: Good, now say what the total trip time is in symbols [Q_symb] 

S4: b+m/s 

T5: Correct 

 

"Convert the Problem into an Example to Explain" Strategy 
  

This next strategy was not based on either our own empirical work, nor was it based on what the 

experienced tutor did. Instead, this strategy was inspired by literature and the suggestions that 

many other researchers have made about what makes for effective tutoring. For instance, Zhu & 

Simon (1987) suggest a similar strategy of presenting students with worked out examples. See 

also Renkl (1997), VanLehn (1998), Sweller & Cooper (1985) for related studies of student use 

of worked examples. Catrambone (1996) also suggests that learning from examples can be 

improved by asking questions that focus on the goal structures of the domain. Also, to the degree 

that this strategy focuses on asking students to explain the quantitative structure in English (using 

pull-down memus), rather then simply focusing on problem solving, the literature suggests that 

the self-explanation effect (Chi, 1996) should make this an effective strategy. For instance, Chi 

(1996), Conati, Larkin & VenLehn (1997), Mwangi & Sweller's (1998), and Aleven, Koedinger, 

& Cross (1999) have all proposed, and in some cases demonstrated that, asking students to 

explain can be beneficial. Most concretely of all, this strategy also gets at the goal of practicing 



translation from the algebraic representation to the verbal representation, which Corbett 

McLaughlin, Scarpinatto, & Hadley (2000) showed to be effective for learning symbolization. 

Here is an example dialog:  

 

T1: [Doing the “bike-trip” problem] Please write an expression for the total time the trip took. 

[Q_symb]  

S1: m*s-b  

T2: Hmm.  No. The answer is actually "b+m/s".  Let me ask you some questions to help you 

understand it. Can you explain where the "m/s" came from [Q_articulate_verbal] 

S2: The "m/s" is equal to the distance ridden divided by the speed ridden. 

T3: Correct. What does "m/s" represent? [Q_represents_what] 

S3: The time actually on bikes 

T4: Correct.  Can you explain where the "b+m/s" came from? [Q_articulate_verbal variant] 

S4: The "b+m/s" is equal to the hours for break plus the time actually on bikes. 

T5: Correct. What does "h+m/s" represent? [Q_represents_what] 

S5: The total time the trip took 

T6: Correct. 

 

Notice how at T2, the answer to the original question is given, and then the student is asked 

to explain the answer by translating the components back into English.  

This completes the review of the strategies implemented in Ms. Lindquist.  

 
 

EMPIRICAL RESULTS 

 
Although this is a descriptive paper about the Ms. Lindquist architecture, we wanted to mention 

the results of a few of the evaluations that were done with Ms. Lindquist. These evaluations can 

be studied in depth in Heffernan (2003), Heffernan & Croteau (2004) and Mendicino, Heffernan 

& Razzaq (submitted). 

 

Comparison of the “Concrete Articulation” strategy to “Cut to the Chase” 

 
We focused this analysis on students who used Ms. Lindquist as part of a class assignment.  We 

analyzed the classes of one teacher who sent about 76 middle school students (Heffernan & 

Croteau, 2004).  The experimental condition received the "Concrete Articulation" strategy and the 

control condition was simply told the answer if they answered incorrectly and moved on to the 

next problem. The interaction between condition and learning gain was statistically significant 

with an effect size of 0.56 standard deviations.  This supports the hypothesis that students do 

learn more in the experimental condition, even though they did significantly fewer problems. 

 

Ms Lindquist vs. classroom instruction 

 
In a study done by Mendicino, Heffernan & Razzaq (submitted), Ms. Lindquist was compared to 

both: 1) classroom instruction and 2) Computer Aided Instruction (CAI). This work tried to 

quantify the “value-added” of CAI over classroom instruction, versus the “value-added” of ITS 

(in the form of Ms. Lindquist) on top of CAI.   

Both computer-based versions outperformed the classroom teachers, replicating Kulik 

(1994) studies showing benefits for computer instruction compared to traditional classroom 



controls.  The ITS did outperform CAI (measured in terms of effect size was about .4 standard 

derivations) suggesting that the more intelligent version was more effective at promoting 

learning. This experiment also replicated the motivational results reported in Heffernan (2003) 

where students getting the more intelligent version would persist longer. 

 

Motivational benefits for using Ms. Lindquist 
 
We analyzed 623 student files (see Heffernan, 2003) in an experiment with three different 

experimental conditions represented by the tutorial strategies mentioned earlier and a control 

condition which told students the answer when they got it wrong and proceeded to the next 

problem. Of the 623 students analyzed, 47% of the 225 that received the control condition 

dropped out, while only 28% of the other 398 dropped out.  This difference was statistically 

significant.  There was no statistically significant difference between the drop-out rates of the 

three experimental conditions. We conclude that, as far as from a motivational point of view, the 

intelligent feedback was superior at getting students to persist in tutoring.  

 

 

DISCUSSION 

 

It is interesting to note that in the last few years there has been an increase in interest in building 

dialog-based systems. However, dialog systems are not new; Carbonell (1970) built one of the 

early dialog-based computer tutors over 30 years ago. Since that time, many educational 

technologies have instead relied on elaborate graphical user interfaces (GUI) that reify parts of 

the problem solving process (e.g., the reification of subgoals by Corbett & Anderson, 1995). 

One possible benefit of dialog-based systems is that students do not have to spend time learning 

a new interface. This seems particularly important if the tutoring system has multiple different 

tutorial strategies that encourage different ways of solving problems. Therefore, the student does 

not have to learn multiple different GUIs for each different method.  

We have released Ms. Lindquist onto the web at www.AlgebraTutor.org, where it has been 

used by thousands of students and teachers. Ms. Lindquist has also won various industry awards 

from teacher related web sites (e.g., the National Council of Teachers of Mathematics). So far, 

we have learned that the dialogs that Ms. Lindquist has with students can lead to better learning, 

compared to simply telling students the answer  as well as the fact that students appear to get 

motivated (Heffernan & Croteau, 2004).  Future work will focus on examining if the benefit of 

this type of tutoring is worth the additional time these dialogs require.  

While Anderson's model-tracing development system was designed to allow the tutor to tell 

students how to get back on track, the ATM architecture is designed to ask students questions, 

which is more like what human tutors do. However, it remains to be seen if the ATM architecture 

will enable the building of tutors that are more effective than model-tracing tutors. We plan to 

address this question by comparing the Ms. Lindquist tutoring system to a control version that 

uses only the traditional model-tracing forms of feedback (buggy messages and hints). We are 

also currently running experiments comparing the effectiveness of the different tutorial strategies 

Ms. Lindquist has. We are also interested in generalizing this architecture further by building a 

set of authoring tools for content experts to be able to author similar intelligent tutoring systems.  

Later, we want to learn "Under what conditions is it best to use tutorial strategy X versus 

tutorial strategy Y?" For example, it might be best to use the concrete articulation strategy for 

problems that include only a few arithmetic operations. Alternatively, maybe there is utility in 

using multiple different strategies. Answers to these questions can be found by systematically 



experimenting with the selection rules used by the system. Arroyo et al. (2000) provides a nice 

example of a selection rule; students who score low on a Piagetian test perform better if given 

instruction that is more concrete, while high scoring students learn better with instruction that is 

more formal. Arroyo et al. (2001) have also found evidence suggesting boys are less likely to read 

hint messages and benefit from less interactive hints. We plan to use Ms. Lindquist to discover 

progressively more detailed selection rules. As we run more experiments, refining our selection 

rules and adding new tutorial strategies, we will be creating a concrete theory of tutoring for 

symbolization that makes specific recommendations. Some of the tutor's behaviors will be shown 

to be more helpful than others. Of course, we will never reach the perfect tutoring model, but by 

making our theories about tutoring concrete, we accumulate a body of useable knowledge about 

what makes for good tutoring.  

 

 

CONCLUSION 

 

McArthur et al. (1990) criticized the model-tracing architecture “because each incorrect rule is 

paired with a particular tutorial action (typically a stored message)" and argued for a more 

strategic tutor. The ATM architecture and the Ms. Lindquist tutor address this criticism. The main 

difference between ATM and Traditional Model-Tracing is the incorporation of a tutorial model. 

Whereas traditional model-tracing tutors generate all their feedback from text templates that are 

inside the rules in the cognitive model, the ATM architecture generates a plan (usually involving 

multiple new questions to ask the student) for each error the student made. The model-tracing 

architecture does not have a way of encoding new general pedagogical knowledge, beyond that 

inherent in the architecture (such as giving feedback in response to errors). In summary, The 

ATM architecture allows Ms. Lindquist to combine the student modeling of traditional model-

tracing tutors with a model of tutorial dialog based on an experienced human tutor including such 

features as positive and negative feedback, multiple tutorial strategies, with embedded sub-

dialogs, as well as traditional buggy messages and hints.  
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