
IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

The ASSISTment Builder: Supporting the
Life-cycle of Tutoring System Content

Creation
Leena Razzaq, Jozsef Patvarczki, Shane F. Almeida, Manasi Vartak, Mingyu Feng, Neil
T. Heffernan and Kenneth R. Koedinger

Abstract— Content creation is a large component of the cost of creating educational software. Estimates are that

approximately 200 hours of development time are required for every hour of instruction. We present an authoring tool designed

to reduce this cost as it helps to refine and maintain content. The ASSISTment Builder is a tool designed to effectively create,

edit, test, and deploy tutor content. The web-based interface simplifies the process of tutor construction to allow users with little

or no programming experience to develop content. We show the effectiveness of our Builder at reducing the cost of content

creation to 40 hours for every hour of instruction. We describe new features that work towards supporting the life cycle of ITS

content creation through maintaining and improving content as it is being used by students. The Variabilization feature allows

the user to reuse tutoring content across similar problems. The Student Comments feature provides a way to maintain and

improve content based on feedback from users. The Most Common Wrong Answer feature provides a way to refine remediation

based on the users’ answers. This paper describes our attempt to support the life-cycle of content creation.

Index Terms— K.3.1 Computer Uses in Education, N.2 E-learning tools, N.4 Adaptive and intelligent educational systems,

N.5.e Authoring tools

—————————— � ——————————

1 INTRODUCTION

LTHOUGH intelligent tutors have been shown to
produce significant learning gains in students [1],
[8], few intelligent tutoring systems (ITS) have be-

come commercially successful. The high cost of building
intelligent tutors may contribute to their scarcity and a
significant part of that cost concerns content creation.
Murray [13] asked why there are not more ITS and pro-
posed that a major part of the problem was that there
were few useful tools to support ITS creation. In 2003,
Murray, Blessing, and Ainsworth [14] reviewed 28 au-
thoring systems for learning technologies. Unfortunately,
they found that there are very few authoring systems that
are of "release quality", let alone commercially available.
Two systems that seem to have “left the lab” stage of
development are worth mentioning: APSPIRE [10], an
authoring tool for Contraint Based Tutors [11], and
Carnegie Learning [3] for their work on creating an
authoring tool for Cognitive Tutors by focusing on
creating a graphical user interface for writing production
rules. Writing production rules is naturally a difficult
software engineering task, as flow of control is hard to
follow in production systems.

Murray, after looking at many authoring tools [13]
said, “A very rough estimate of 300 hours of development
time per hour of on-line instruction is commonly used for

the development time of traditional CAI [computer as-
sisted instruction].” While building intelligent tutoring
systems is generally agreed to be much harder, Anderson
[2] suggested that it took a ratio of development time to
instruction time of at least 200:1 hours to build the Cogni-
tive Tutor.

We hope to lower the skills needed to author tutoring
system content to the point that normal classroom teach-
ers can author their own content. Our approach is to al-
low users to create example-tracing tutors [7] via the web
to reduce the amount of expertise and time it takes to cre-
ate an intelligent tutor, thus reducing the cost. The goal is
to allow both educators and researchers to create tutors
without even basic knowledge of how to program a com-
puter. Towards this end, we have developed the AS-
SISTment System; a web-based authoring, tutoring, and
reporting system.

Worcester Polytechnic Institute (WPI) and Carnegie
Mellon University (CMU) were funded by the Office of
Naval Research (which funded much of the CMU effort to
build Cognitive Tutors) to explore ways to reduce the cost
associated with creating cognitive model-based tutors
used in tutoring systems [7]. In the past, ITS content has
been authored by programmers who need PhD-level ex-
perience in AI computer programming as well as a back-
ground in cognitive psychology. The attempt to build
tools that open the door to non-programmers led to Cog-
nitive Tutor Authoring Tools (CTAT) [1] which the last
two authors of this paper had a hand in creating.
ASSISTments emerged from CTAT and shares some
common features, with ASSISTments’ main advantage of

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————

• Leena Razzaq, Jozsef Patvarczki, Shane F. Almeida, Manasi Vartak, Min-
gyu Feng, Neil T. Heffernan are with the Worcester Polytechnic Institute,
Worcester, MA 01609. E-mail: leenar@wpi.edu.

• Ken Koedinger is with the Human Computer Institute, Carnegie Mellon
University, Pittsburgh, PA. E-mail: koedinger@cmu.edu..

Manuscript received March 20, 2009

A

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

being completely web-based.

Fig. 1. The Builder and associated student screen.

Over time, tutoring content may grow and become

difficult to maintain. The ASSISTment System contains
tutoring for over 2000 problems and is growing everyday
as teachers and researchers build content regularly. As a
result, quality control can become a problem. We

attempted to address this problem by adding features to
help maintain and refine content as it is being used by
students, supporting the life-cycle of content creation.

While template-based authoring has been done in the
past [16], we believe the ASSISTment System has some
novel features. In this paper, we describe the ASSISTment

RAZZAQ ET AL.: THE ASSISTMENT BUILDER: SUPPORTING THE LIFE-CYCLE OF TUTORING CONTENT CREATION 3

Builder which is used to author math tutoring content
and we present our estimate of content development time
per hour of instruction time. We also describe our efforts
to incorporate variablization into the Builder. With our
server based system, we are attempting to support the
whole lifecycle of content creation that includes error cor-
rection and debugging as well. We present our work to-
wards easing the maintenance, debugging and refining of
content.

2 THE ASSISTMENT SYSTEM

The ASSISTment System is joint research conducted by
Worcester Polytechnic Institute and Carnegie Mellon
University and is funded by grants from the U.S. De-
partment of Education, the National Science Foundation,
and the Office of Naval Research. The ASSISTment Sys-
tem’s goal is to provide cognitive-based assessment of
students while providing tutoring content to students.

The ASSISTment System aims to assist students in
learning the different skills needed for the Massachusetts
Comprehensive Assessment System (MCAS) test or (other
state tests) while at the same time assessing student
knowledge to provide teachers with fine-grained assess-
ment of their students; it assists while it assesses. The sys-
tem assists students in learning different skills through
the use of scaffolding questions, hints, and messages for
incorrect answers (also known as buggy messages) [19].
Assessment of student performance is provided to teach-
ers through real-time reports based on statistical analysis.
Using the web-based ASSISTment System is free and only
requires registration on our website; no software need be
installed. Our system is primarily used by middle- and
high-school teachers throughout Massachusetts who are
preparing students for the MCAS tests. Currently, we
have over 3000 students and 50 teachers using our system
as part of their regular math classes. We have had over 30
teachers use the system to create content.

Cognitive Tutor [2] and the ASSISTment System are
built for different anticipated classroom use. Cognitive
Tutor students are intended to use the tutor two class
periods a week. Students are expected to proceed at their
own rate letting the mastery learning algorithm advance
them through the curriculum. Some students will make
steady progress while others will be stuck on early units.
There is value in this in that it allows students to proceed
at their own paces. One downside from the teachers’ per-
spective could be that they might want to have their class
all do the same material on the same day so they can as-
sess their students. ASSISTments were created with this
classroom use in mind. ASSISTments were created with
the idea that teachers would use it once every two weeks
as part of their normal classroom instruction, meant more
as a formative assessment system and less as the primary
means of assessing students. Cognitive Tutor advances
students only after they have mastered all of the skills in a
unit. We know that some teachers use some features to
automatically advance students to later lessons because
they might want to make sure all the students get some
practice on Quadratics, for instance.

We think that no one system is “the answer” but that
they have different strengths and weaknesses. If the stu-
dent uses the computer less often there comes a point
where the Cognitive Tutor may be behind on what a stu-
dent knows, and seem to move along too slowly to teach-
ers and students. On the other hand, ASSISTments does
not automatically offer mastery learning, so if students
struggle, it does not automatically adjust. It is assumed
that the teacher will decide if a student needs to go back
and look at a topic again.

We are attempting to support the full life cycle of con-
tent authoring with the tools available in the ASSISTment
System. Teachers can create problems with tutoring, map
each question to the skills required to solve them, bundle
problems together in sequences that students work on,
view reports on students’ work and use tools to maintain
and refine their content over time.

2.1 Structure of an ASSISTment

Koedinger et al. [7] introduced example-tracing tutors
which mimic cognitive tutors but are limited to the scope
of a single problem. The ASSISTment System uses a fur-
ther simplified example-tracing tutor, called an ASSIST-
ment, where only a linear progression through a problem
is supported which makes content creation easier and
more accessible to a general audience.

An ASSISTment consists of a single main problem, or
what we call the original question. For any given prob-
lem, assistance to students is available either in the form
of a hint sequence or scaffolding questions. Hints are
messages that provide insights and suggestions for solv-
ing a specific problem, and each hint sequence ends with
a bottom-out hint which gives the student the answer.
Scaffolding problems are designed to address specific
skills needed to solve the original question. Students must
answer each scaffolding question in order to proceed to
the next scaffolding question. When students finish all of
the scaffolding questions, they may be presented with the
original question again to finish the problem. Each scaf-
folding question also has a hint sequence to help the stu-
dents answer the question if they need extra help. Addi-
tionally, messages called buggy messages are provided to
students if certain anticipated incorrect answers are se-
lected or entered. For problems without scaffolding, a
student will remain in a problem until the problem is an-
swered correctly and can ask for hints which are pre-
sented one at a time. If scaffolding is available, the stu-
dent will be programmatically advanced to the first scaf-
folding problems in the event of an incorrect answer on
the original question.

Hints, scaffolds, and buggy messages together help
create ASSISTments that are structurally simple but can
address complex student behavior. The structure and the
supporting interface used to build ASSISTments are sim-
ple enough so that users with little or no computer sci-
ence and cognitive psychology background can use it
easily. Fig. 1 shows an ASSISTment being built on the left
and what the student sees is shown on the right. Content
authors can easily enter question text, hints and buggy
messages by clicking on the appropriate field and typing;

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

formatting tools are also provided for easily bolding,
italicizing, etc. Images and animations can also be up-
loaded in any of these fields.

The Builder also enables scaffolding within scaffold
questions, although this feature has not often been used
in our existing content. In the past, the Builder allowed
different lines of scaffolds for different wrong answers
but we found that this was seldom used and seemed to
complicate the interface causing the tool to be harder to
learn. We removed support for different lines of scaffold-
ing for wrong answers but plan to make it available for an
expert mode in the future. In creating an environment
that is easy for content creators to use, we realize there is
a tradeoff between ease of use and having a more flexible
and complicated ASSISTment structure. However, we
think the functionality that we do provide is sufficient for
the purposes of most content authors.

Skill mapping. We assume that students may know cer-

tain skills and rather than slowing them down by going
through all of the scaffolding first, ASSISTments allow
students to try to answer questions without showing
every step. This differs from Cognitive Tutors [2] and
Andes [20] which both ask the students to fill in many
different steps in a typical problem. We prefer our scaf-
folding pattern as it means that students get through
items that they know faster and spend more time on
items they need help on. It is not unusual for a single
Cognitive Tutor Algebra Word problem to take ten min-
utes to solve, while filling in a table of possibly dozens of
sub-steps, including defining a variable, writing an equa-
tion, filling in known values, etc. We are sure, in circum-
stances where the student does not know these skills, that
this is very useful. However, if the student already
knows most of the steps this may not be pedagogically
useful.

The ASSISTment Builder also supports the mapping of
knowledge components, which are organized into sets
known as transfer models. We use knowledge compo-
nents to map certain skills to specific problems to indicate
that a problem requires knowledge of that skill. Mapping
between skills and problems allows our reporting system
to track student knowledge over time using longitudinal
data analysis techniques [4].

In April of 2005, our subject-matter expert helped us to
make up knowledge components and tag all of the exist-
ing 8th grade MCAS items with these knowledge compo-
nents in a seven hour long “coding session”. Content au-
thors who are building 8th grade items can then tag their
problems in the Builder with one of the knowledge com-
ponents for 8th grade. Tagging an item with a knowledge
component typically takes 2-3 minutes. The cost of build-
ing a transfer model can be high initially, but the cost of
tagging items is low.

We currently have more than twenty transfer models
available in the system with up to 300 knowledge compo-
nents each. See [18] for more information about how we
constructed our transfer models. Content authors can
map skills to problems and scaffolding questions as they
are building content. The Builder will automatically map

problems to any skills that its scaffolding questions are
marked with.

2.2 Problem Sequences

Problems can be arranged in problem sequences in the
system. The sequence is composed of one or more sec-
tions, with each section containing problems or other sec-
tions. This recursive structure allows for a rich hierarchy
of different types of sections and problems.

The section component, an abstraction for a particular
ordering of problems, has been extended to implement
our current section types and allows for new types to be
added in the future. Currently, our section types include
“Linear” (problems or sub-sections are presented in linear
order), “Random” (problems or sub-sections are pre-
sented in a pseudo-random order), and “Choose Condi-
tion” (a single problem or sub-section is selected pseudo-
randomly from a list, the others are ignored).

Fig. 2. A problem sequence arranged to conduct an experiment

We are interested in using the ASSISTment system to

find the best ways to tutor students and being able to eas-
ily build problem sequences helps us to run randomized
controlled experiments very easily. Fig. 2 shows a prob-
lem sequence that has been arranged to run an experi-
ment that compares giving students scaffolding questions
to allowing them to ask for hints. (This is similar to an
experiment described in [17].) Three main sections are
presented in linear order, a pre-test, experiment and post-
test sections. Within the experiment section there are two
conditions and students will randomly be presented with
one of them.

2.3 Teacher Reports

The various reports that are available on students’
work are valuable tools for teachers. Teachers can see
how their students are doing on individual problems or
on complete assignments. They can also see how their
students are performing on each skill. These reports allow
teachers to determine where students are having difficul-
ties and they can adapt their instruction to the data found
in the reports. For instance, Fig. 3 shows an item report
which shows teachers how students are doing on indi-
vidual problems. Teachers can tell at a glance which stu-

RAZZAQ ET AL.: THE ASSISTMENT BUILDER: SUPPORTING THE LIFE-CYCLE OF TUTORING CONTENT CREATION 5

dents are asking for too many bottom-out hints (cells are
colored in yellow). Teachers can also see what students
have answered for each question, whether the answer
was correct, what percent of the class got the answer cor-
rect and individual students’ percent correct for the
whole problem set.

Fig. 3. An item report tells teachers how students are doing on individual

problems.

2.4 Cost-effective content creation

The ASSISTment Builder’s interface, shown in Fig. 1, uses
common web technologies such as HTML and JavaScript,
allowing it to be used on most modern browsers. The
Builder allows a user to create example-tracing tutors
composed of an original question and scaffolding ques-
tions. In the next section, we evaluate this approach in
terms of usability and decreased creation time of content.

Methodology. We wished to create new 10th grade math
tutoring content in addition to our existing 8th grade
math content. In September 2006, a group of nine WPI
undergraduate students, most of whom had no computer
programming experience, began to create 10th grade
math content as part of an undergraduate project focused
on relating science and technology to society. Their goal
was to create as much 10th grade content as possible for
this system.

All content was first approved by the project’s subject-
matter expert, an experienced math teacher. We also gave
the content authors a one hour tutorial on using the AS-
SISTment Builder where they were trained to create scaf-
folding questions, hints and buggy messages. Creating
images and animations were also demonstrated.

We augmented the Builder to track how long it takes
authors to create an ASSISTment. This does ignore the

time it takes authors to plan the ASSISTment, work with
their subject-matter expert, and any time spent making
images and animated gifs. All of this time can be substan-
tial, so we cannot claim to have tracked all time associ-
ated with creating content.

Once we know how many ASSISTments authors have
created, we can estimate the amount of
content tutoring time created by using the
previously established number that stu-
dents spend about two minutes per AS-
SISTment [5]. This number is averaged
from data from thousands of students.
This will give us a ratio that we can com-
pare against the literature suggesting a
200:1 ratio [2].

Results. The nine undergraduate content
authors worked on their project over
three seven-week terms. During the first
term, Term A, authors created 121 AS-
SISTments with no assistance from the
ASSISTment team other than meeting
with their subject matter expert to review
the pedagogy. Since we know from prior
studies [5] that students being tutored by
the ASSISTment system spend an average
of two minutes per ASSISTment, the con-
tent authors created 242 minutes, or a
little over four hours of content. The log

files were analyzed to determine that authors spent 79
minutes (standard deviation = 30 minutes) on average to
create an ASSISTment. In the second seven weeks, Term
B, the authors created 115 more additional ASSISTments
at a rate of 55 minutes per ASSISTment. This increased
rate of creation was statistically significant (p < 0.01),
suggesting that students were becoming faster at creating
content. To look for other learning curves, we noticed that
in Term A, each ASSISTment was edited on average over
the space of four days, while in Term B, the content au-
thors were only editing an ASSISTment over the space of
three days on average. This rate was statistically signifi-
cantly faster than in Term A. Table 1 shows these results.

TABLE 1

EXPERIMENT RESULTS

 Term A Term B

Mean time to build one AS-

SISTment

79 min 55 min

Median time to build one

ASSISTment

69 min 50 min

St. dev. on time to build 30 min 33 min

Time to apply knowledge

components

2-3 min. 2-3 min.

Mean # distinct days to build 4.05 3.09

Median # distinct days to

build

4 3

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

St. dev # distinct days to

build

1.28 1.86

Effective speed up over the

200:1 ratio cited in [2]

2.8 times

faster

3.8 times

faster

It appears that we have created a method for creating

intelligent tutoring content much more cost effectively.
We did this by building a tool that reduces both the skills
needed to create content as well as the time needed to do
so. This produced a ratio of development time to on-line
instruction time of about 40:1 and the development time
does decrease slightly as authors spend more time creat-
ing content. The determination of whether the ASSIST-
ments created by our undergraduate content authors
produce significant learning is work in progress. How-
ever, our subject matter expert was satisfied that the con-
tent created was of good quality.

3 VARIABILIZATION

An important limitation of the example-tracing tutor
framework used by the present ASSISTment system is the
inability of example-tracing tutors to generalize over
similar problems [7]. A direct result of this drawback is
that separate example-tracing tutors are required to be
created for each individual problem regardless of simi-
larities in tutoring content. This process is not only tedi-
ous and time consuming, but the opportunities for errors
can also increase on the part of the content creators. In
our present system, about 140 (out of approximately 2000)
commonly used ASSISTments are “morphs” – ASSIST-
ments which have been generated by subtly modifying
(e.g., changing numerical quantities) existing ASSIST-
ments.

Pavlik et al. [15] have reported that learners, particu-
larly beginners, need practice at closely spaced intervals
while McCandliss [9] and others claim that beginners
benefit from practice on closely related problems. Apply-
ing these results to a tutoring system requires a signifi-
cant body of content addressing the same skill sets. How-
ever, the time and effort required to generate morphs has
been an important limitation on the amount of content
created in the ASSISTment system. Through the addition
of the variabilization feature – use of variables to create
parameterized templates of ASSISTments – to the AS-
SISTment builder, we seek to extend our content-building
tools to facilitate the reuse of tutoring content across simi-
lar problems.

3.1 Implementation

The variabilization feature of the ASSISTment builder
enables the creation of parameterized template ASSIST-
ments. Variables are used as parameters in the template
ASSISTment and are evaluated while creating instances of
the template ASSISTment – ASSISTments where variables
and their functions are assigned values.

Our current implementation of variabilization associ-
ates variables with individual ASSISTments. Since an AS-
SISTment is made of the main problem, scaffold prob-
lems, answers, hints, and buggy messages, this imple-

mentation allows a broad use of variables. Each variable
associated with an ASSISTment has a name and one or
more values. These values may be numerical or may in-
clude text related to the problem statement. Depending
on the degree of flexibility required, mathematical func-
tions like those to randomly generate numbers, or those
doing complex arithmetic can be used in variable values.

We also provide the option of defining relationships
between variables in two ways. The first way is to define
values of variables in terms of variables that have already
been defined. If variables called x and y have already
been defined, then we can define a new variable z to be
equal to a function involving x and y, for instance x*y.
The other way to define a relationship is to create what
are called sets of variables. Values of variables in a set are
picked together while evaluating them. For example, in a
Pythagorean Theorem problem, having the lengths of the
three sides of a right angled triangle as variables in a set,
we can associate certain values of the variables like 3-4-5
or 5-12-13 to represent the lengths of the sides of right
triangles.

We now give an example of the process involved in
generating a template variabilized ASSISTment and then
creating instances of this ASSISTment. The number of pos-
sible values for the variables dictates the number of in-
stances of an ASSISTment that can be generated. The first
step towards creating a template variabilized ASSISTment
from an existing ASSISTment is determining the possible
variables in the problem.

Fig. 4 shows an existing ASSISTment addressing the
Pythagorean Theorem with candidates for variables high-
lighted. This ASSISTment is commonly encountered by
students using our system and it contains 13 hints, eight
buggy messages, one main problem and four scaffold
problems.

After identifying possible variables, these variables are
created through the variables widget and used through-
out the ASSISTment. A variable has a unique name and
one or more values associated with it. A special syntax in
the form of ***variable-name*** is used to refer to vari-
ables throughout the Builder environment. Functions of
these variables can be used in any part of the ASSISTment
including the problem body by using the syntax
[function()]. This syntax tells the builder that the
function needs to be evaluated while generating instances
of the ASSISTment. Omitting the ***[]*** will cause func-
tion() to merely be displayed, but not evaluated. Addi-
tional variables can be introduced to make the problem
statement grammatically correct such as delimiters and
pronouns.

Generation of variables in the system is simple and fol-
lows the existing format of answers and hints. Maintain-
ing consistency with other elements of the Builder tools
minimizes the learning time for content creators. In the
Pythagorean Theorem ASSISTment (shown in Fig. 4) we
can make use of the set feature of variables to make sure
that the correct values of the three sides of the triangle are
picked together.

Once variables have been generated and introduced
into problems, scaffold questions, answers, hints, and

RAZZAQ ET AL.: THE ASSISTMENT BUILDER: SUPPORTING THE LIFE-CYCLE OF TUTORING CONTENT CREATION 7

buggy messages as required, it is possible to create multi-
ple instances of this ASSISTment using the Create button.

The number of generated ASSISTments depends on
the number of values specified in the sets. Our system
performs content validation to check if variables have
been correctly generated and used, and alerts the content
creator to any mistakes. The main advantage of variabili-
zation lies in the fact that once a template variablized AS-
SISTment is created, new ASSISTments including their
scaffolds, answers, hints, and buggy messages can be
generated instantly.

Our preliminary studies of variabilization comparing
the time required to generate five morphs using tradi-
tional morphing techniques (e.g., copy and paste) as op-
posed to generating five morphs using variabilization,
indicate that in the former case the average time required
to create one morph is 20.18 (std 9.05) minutes while in
the latter case, this time is 7.76 minutes (std 0.56). Disre-
garding the ordering effect introduced due to repeated
exposure to the same ASSISTment, this indicates a
speedup by a factor of 2.6. Further studies are being done
to assess the impact that variabilization can have in re-
ducing content creation time. It is important to note that
speedup heavily depends on the number of ASSISTments
generated since creating one template variabilized AS-
SISTment requires 38.8 (std 2.78) minutes on average as
opposed to 20.18 (std 9.05) minutes for a morphed AS-
SISTment. However, the variabilized ASSISTment can be
used to produce multiple instances of the ASSISTment
while the morph is essentially a single ASSISTment.

4 REFINING AND MAINTAINING CONTENT

The ASSISTment project is also interested in easing the
maintenance of content in the system. Because of the large
number of content developers and teachers creating con-
tent and the large amount of content currently stored in
the ASSISTment system, maintenance and quality assur-
ance becomes more difficult.

4.1 Maintaining content through student comments

We have implemented a way to find and correct errors in
our content by allowing users to comment on issues. As
seen in Fig. 5, students using the system can comment on
issues they find as they are solving problems.

Content
creators
can see a
list of
comments
and ad-
dress prob-
lems that
have been
pointed out
by users.

We as-
signed an

undergraduate
student to address
the issues found in

comments. He reported working on these issues over 5
weeks, approximately 8 hours a week, scanning through
the comments made since the system was implemented.
There were a total 2,453 comments, and the student went
through 216 comments during this time and 85 ASSIST-
ments were modified to address issues brought up by
students.

Fig. 5. Students can comment on spelling mistakes, math errors or confus-

ing wording.

Therefore, this means that about 45% of the comments
that the undergraduate student reviewed were important
enough that he decided to take action. We originally
thought that many students would not take commenting
seriously and the percentage of comments that were not
actionable would be closer to 95%, so we were pleased
with this relatively high number of useful comments.

Given that the undergraduate student worked for 8
hours a week addressing comments, he estimates that
80% of that time was spent editing the ASSISTments.
Since he edited a total number of 102 ASSISTments (in-
cluding problems brought up by professors) over the 5
week period, on average, editing an ASSISTment took a
little under 20 minutes.

Many comments were disregarded because they were
either repeating themselves (ranging from a couple of
repeats to 20 hits), or because they had nothing to do with
the purpose of the commenting system.

During his analysis, the undergraduate student catego-
rized the comments in Table 2.

It was useful, when starting to edit an ASSISTment be-
cause of a comment, to find other comments related to
that problem that might lead to subsequent corrections.

Fig. 4. A variabilized ASSISTment on the Pythagorean Theorem. Variables have been introduced for various parts of the

problem including numerical values and parts of the problem statement.

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Fig. 6. Common wrong answers for problems are shown to help with remediation.

In addition, there was one special type of comment
that pointed out visual problems from missing html code
(included in the Migration issues). These indicated strange
text behavior (i.e. words in italic, bolded, colored etc.)
because of un-closed html tags or too many breaks.

In a nutshell, we believe this account strengthens the
importance of the commenting system in maintaining and
improving a large body of content such as we have in the
ASSISTment system.

4.2 Refining remediation

There is a large literature on student misconceptions and
ITS developers spend large amounts of time developing
buggy libraries [21] to address common student errors
which requires expert domain knowledge as well as cog-
nitive science expertise. We were interested in finding
areas where students seemed to have common miscon-
ceptions that we had inadvertently neglected to address
with buggy messages.

If a large percentage of students were answering par-

ticular problems with the same incorrect answer, we
could determine that a buggy message was needed to
address this common misconception. In this way, we are
able to refine our buggy messages over time. Fig. 6 shows
a screenshot of a feature we constructed to find and show
the most common incorrect answers. In this shot, it is ap-
parent that the most common incorrect answer is 5, an-
swered by 20% of students. We can easily address this by
adding a buggy message as shown in Fig. 6.

TABLE 2

CATEGORIZATION OF COMMENTS ON ISSUES WITH ASSIST-
MENT CONTENT

Type No.* Description

1. Math

problems

24 The information in the prob-

lem text did not agree with the

answer, so the correct answer

was not accepted.

2. Rewording 32 Students were complaining

that some ASSISTments were

wordy and confusing in the

way they were written.

3.Broken im-

ages

22 Users complained about miss-

ing images, distorted and/or

unreadable numbers in the

figures.

4. Widgets 17 Some widgets needed to be

changed from multiple choice to

text-box or other ways to accept

correct answers

5.Migration

issues

10 Outdated elements from our

old system: messages with

"null" in them, images that

were above are now below,

"Please select an answer" being

one of the answer choices etc.

6.Question

mismatch

19 Questions did not match an-

swers or the hint text. Or scaf-

folding questions were pre-

sented in the wrong order.

7.Spelling

and grammar

15 Spelling and grammar mis-

takes.

5 CONCLUSIONS AND CONTRIBUTIONS

In this paper, we have presented a description of our
authoring tool that grew out of the CTAT [7] authoring
tool. When CTAT was initially designed (by the last two
authors of this paper as well as Vincent Aleven) it was
mainly thought of as a tool to author cognitive rules.
CTAT supports the authoring of both example-tracing

RAZZAQ ET AL.: THE ASSISTMENT BUILDER: SUPPORTING THE LIFE-CYCLE OF TUTORING CONTENT CREATION 9

tutors, which do not require computer programming but
are problem-specific, and cognitive tutors, which require
AI programming to build a cognitive model of student
problem solving but support tutoring across a range of
problems. Writing rules is time intensive. CTAT allowed
authors to first demonstrate the actions that the model
was supposed to be able to “model-trace” with CTAT's
Behavior Recorder. This enabled users to author a tutor
by demonstration, without programming.

 It turned out that the demonstrations that CTAT
would record for this seemed like good tutors sometimes,
and that we might not ever have to write rules for the
actions. The CTAT example-tracing tutors mimic a cogni-
tive tutor, in that they could give buggy messages and
hint messages. When funding for ASSISTments was given
by the US Dept of Education, it made sense to create a
new version of a simplified CTAT, which we call the AS-
SISTment Builder. This builder is a simplification of the
CTAT example-tracing tutors in that they no longer sup-
port the writing of production rules at all, and only allow
a single directed line of reasoning. Is this a good design
decision? We are not sure. There are many things AS-
SISTments are not good for (such as telling which solu-
tion strategy a student used) but the data presented in
this paper suggests they are much easier to build than
cognitive tutors. They both take less time to build and
also require a lower threshold of entry (learning to be a
rule-based programmer is very hard and the skill set is
not common as very few professional programmers have
ever written a rule-based program (i.e., in a language like
JESS (http://www.jessrules.com/jess/)).

What don’t we know that we would like to know? It
would be nice to do an experiment that pitted the CTAT
rule-based tutors against ASSISTments, give both teams
an equal amount of money, and see which produces bet-
ter tutoring. By better tutoring we mean which performs
better on a standard pre-test post-test type of analysis to
see if students learn more from either system. We assume
the rule-based cognitive tutor would probably lead to
better learning, but it will cost more to get the same
amount of content built. How much better does the sys-
tem have to be to justify the cost? There are several
works where researchers built two different systems to
compare them [6 , 12], One work where researchers build
two different systems and tried to make statements of
which one is better is Kodaganallur’s work [6]. They built
a model-tracing tutor and a constraint-based tutor, and
expressed the opinion that the constraint-based tutor was
easier to build but they thought it would not be as effec-
tive at increasing learning. However, they did not collect
student data to substantiate the claim of better learning
from the model-tracing tutors. We need more studies like
this to help figure out if example-tracing tu-
tors/ASSISTments are very different from model-tracing
tutors in terms of increasing student learning. The obvi-
ous problem is that few researchers have the time to build
two different tutoring systems.

There is clearly a tradeoff between the complexity of
what a tool can express and the amount of time it takes to
learn to use a tool. Very simple web-based answering

systems (like www.studyisland.com) sit at the “easy to use
end” in that they only allow simple question-answer drill
type activities. Imagine that is on the left. At the other
extreme, to the far right, is Cognitive Tutors which are
very hard to learn to create and to produce content, but
offer greater flexibility in creating different types of tu-
tors. Where do we think ASSISTments sit on this contin-
uum? We think ASSISTments is very close to the web-
based drill type systems but just to the right. We think
CTAT created example-tracing tutors sit a little bit to the
right of ASSISTments but still clearly on the left end of the
scale.

 Where do other authoring tools sit on this spectrum?
Carnegie Learning researchers Blessing et al. are putting a
nice GUI onto the tools to create rule based tutors [3]
which probably sits just to the left of rule-based tutors. It
is much harder to place other authoring tools onto this
spectrum, but we guess that ASPRIRE [10], a system to
build constraint based tutors, sits just to the left of Bless-
ing’s tool, based upon the assumption that constraint-
based tutors are easier to create than cognitive rule-based
tutors, but still require some programming.

We think there is a huge open middle ground in this
spectrum that might be very productive for others to look
at. The difference is what level of programming is re-
quired by the user. Maybe it is possible to come up with
a programming language simple enough for most authors
that gives some reasonable amount of flexibility so that a
broader range of tutors could be built that would be bet-
ter for student learning.

In summary, we think that some of the good aspects of
the ASSISTment Builder and associated authoring tools
include 1) they are completely web-based and simple
enough for teachers to create content themselves, 2) they
capture some of the aspects of Cognitive Tutors (i.e., bug
messages, hint messages, etc) but at less cost to the au-
thor, 3) they support the full life cycle of tutor creation
and maintenance with tools to show when buggy mes-
sages need to be added, and tools to get feedback from
users, and of course, allowing teachers to get reports. We
make no claim that these are the optimal set of features,
only that they represent what we think might represent a
reasonable complexity versus ease-of-use trade off.

ACKNOWLEDGMENT

We would like to thank all of the people associated with
creating the ASSISTment system listed at
www.ASSISTment.org including investigators Kenneth
Koedinger and Brian Junker at Carnegie Mellon. We
would also like to acknowledge funding from the US De-
partment of Education, the National Science Foundation,
the Office of Naval Research and the Spencer Foundation.
All of the opinions expressed in this paper are those
solely of the authors and not those of our funding organi-
zations.

REFERENCES

[1] Aleven, V., Sewall, J., McLaren, B., and Koedinger, K. (2006).

Rapid authoring of intelligent tutors for real-world and ex-

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

perimental use. In Proceedings of ICALT 2006: 847-851. IEEE

Computer Society.

[2] Anderson, J.R., Corbett, A.T., Koedinger, K.R., & Pelletier, R.

(1995). Cognitive tutors: Lessons learned. The Journal of the

Learning Sciences, 4 (2), 167-207.

[3] Blessing, S., Gilbert, S., Ourada, S. & Ritter, S. (2007) Lowering

the Bar for Creating Model-tracing Intelligent Tutoring Systems

. In Rose Luckin and Ken Koedinger (eds.) Proceedings of the

13th International Conference on Artificial Intelligence in Education,

Los Angeles, IOS Press. pp. 443-450.

[4] Feng, M., Heffernan, N.T., & Koedinger, K.R. (2006b). Predict-

ing state test scores better with intelligent tutoring systems: de-

veloping metrics to measure assistance required. In Ikeda, Ash-

ley & Chan (Eds.). Proceedings of the 8th International Conference

on Intelligent Tutoring Systems. Springer-Verlag: Berlin. pp. 31-

40. 2006.

[5] Heffernan N.T., Turner T.E., Lourenco A.L.N., Macasek M.A.,

Nuzzo-Jones G., Koedinger K.R., (2006) The ASSISTment

Builder: Towards an Analysis of Cost Effectiveness of ITS crea-

tion. FLAIRS2006, Florida, USA.

[6] Kodaganallur, V., Weitz, R.R. and Rosenthal, D. (2005) A com-

parison of model-tracing and constraint-based intelligent tutor-

ing paradigms. International Journal of Artificial Intelligence in

Education, 15, 117-144.

[7] Koedinger, K.R., Aleven, V., Heffernan. N.T., McLaren, B. &

Hockenberry, M. (2004). Opening the Door to Non-

Programmers: Authoring Intelligent Tutor Behavior by Demon-

stration. Proceedings of 7th Annual Intelligent Tutoring Systems

Conference, Maceio, Brazil. pp. 162-173.

[8] Koedinger, K.R., Anderson, J.R., Hadley, W. H., & Mark, M.A.

(1997). Intelligent tutoring goes to school in the big city. Interna-

tional Journal of Artificial Intelligence in Education, 8, 30-43.

[9] McCandliss, B., Beck, I.L., Sandak, R., & Perfetti, C. (2003). Fo-

cusing attention on decoding for children with poor reading

skills: Design and preliminary tests of the word building inter-

vention. Scientific Studies of Reading. 7(1) page 75 – 104.

[10] Mitrovic, A., Suraweera, P., Martin, B., Zakharov, K., Milik, N.,

Holland, J. (2006) Authoring constraint-based tutors in ASPIRE.

Jhongli, Taiwan: 8th International Conference on Intelligent Tu-

toring Systems, 26-30 Jun 2006. Lecture Notes in Computer Sci-

ence, 4053, Intelligent Tutoring Systems, 41-50.

[11] Mitrovic, A., Mayo, M., Suraweera, P and Martin, B. Constraint-

based tutors: a success story. Proc. 14th Int. Conference on In-

dustrial and Engineering Applications of Artificial Intelligence

and Expert Systems IEA/AIE-2001, Budapest, June 2001, L.

Monostori, J. Vancza and M. Ali (eds), Springer-Verlag Berlin

Heidelberg LNAI 2070, 2001: 931-940.

[12] Mitrovic, A., Koedinger, K., Martin, B. (2003) A Comparative

Analysis of Cognitive Tutoring and Constraint-Based Model-

ing. User Modeling 2003: 313-322

[13] Murray, T. (1999). Authoring intelligent tutoring systems: An

analysis of the state of the art. International Journal of Artificial

Intelligence in Education, 10, pp. 98-129.

[14] Murray, T., Blessing, S., Ainsworth, S.: Authoring Tools for

Advanced Technology Learning Environment. Netherlands:

Kluwer (2003).

[15] Pavlik, P.I., & Anderson, J.R. (2005). Practice and Forgetting

Effects on Vocabulary Memory: An Activation-Based Model of

the Spacing Effect. Cognitive Science. 78(4) page 559 - 586.

[16] Ramachandran, S. & Stottler, R. (2003). A Meta-Cognitive Com-

puter-based Tutor for High-School Algebra. In D. Lassner & C.

McNaught (Eds.), Proceedings of World Conference on Educational

Multimedia, Hypermedia and Telecommunications 2003 (pp. 911-

914). Chesapeake, VA: AACE.

[17] Razzaq, L., Heffernan, N.T. (2006). Scaffolding vs. hints in the

Assistment System. In Ikeda, Ashley & Chan (Eds.). Proceedings

of the 8th International Conference on Intelligent Tutoring Systems.

Springer-Verlag: Berlin. pp. 635-644. 2006.

[18] Razzaq, L., Heffernan, N., Feng, M., Pardos, Z. (2007). Develop-

ing Fine-Grained Transfer Models in the ASSISTment System.

Journal of Technology, Instruction, Cognition, and Learning,

Vol. 5. (3) pp. 289-304.

[19] Razzaq, L., Heffernan, N., Koedinger, K., Feng, M., Nuzzo-

Jones, G., Junker, B., Macasek, M., Rasmussen, K., Turner, T. &

Walonoski, J. (2007). Blending Assessment and Instructional

Assistance. In Nadia Nedjah, Luiza deMacedo Mourelle, Mario

Neto Borges and Nival Nunesde Almeida (Eds). Intelligent

Educational Machines within the Intelligent Systems Engineer-

ing Book Series. pp. 23-49.

[20] VanLehn, K., Lynch, C., Schulze, K. Shapiro, J. A., Shelby, R.,

Taylor, L., Treacy, D.,Weinstein, A., & Wintersgill, M. (2005)

The Andes physics tutoring system: Lessons Learned. In Inter-

national Journal of Artificial Intelligence and Education, 15 (3), pp.

1-47.

[21] VanLehn, K. (1990) Mind bugs: The origins of procedural mis-

conceptions. Cambridge, MA: MIT Press.

RAZZAQ ET AL.: THE ASSISTMENT BUILDER: SUPPORTING THE LIFE-CYCLE OF TUTORING CONTENT CREATION 11

