CORRECTNESS IN OPERATING SYSTEMS

Hugh Conrad Lauer

Submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy at Carnegie-Mellon
University, Pittsburgh, Pennsylvania '

September, 1972

This work was supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense
(F44620-70-C-0107) and is monitored by the Air Force Office
of Scientific Research. This document has been approved
for public release and sale; its distribution is unlimited,

ainsioxd dovssesd LaonsvbA aii yd bedvoqque 28w Arow eidT
zeaslsd 1o ¢isist392 2d3 o 22130 adr Io vorsgA

2253100 20707 ¥iA sdi vd bewoiinom 2i bns (Y0I0-D~0TV=08aMMT)
bavorqys masd ead Irmemuoob 2idT .dotsssaf sitiineis? lo
<baiimtlau el moisudizieib 231 ;sisa bns sasslsy sildug 10X

Acknowledgements

I am deeply indebted to Professor Alan Perlis, the source of a continuum
of interesting ideas and problems, for his wisdom and inspiration
Qf this work;

to Professors William Wulf and A.N.Habermann, my principal advisers, for
their guidance through this research, particularly in its forma-
tive stages;

to Professors B. Randell, James J. Horning, and William Lynch, who through
their stimulating discussions and subtle browbeating taught me
to keep the faith and to keep my feet on the ground;

to Mrs. Dorothy Josephson, for her wizardry with the typewriter in producing
this document;

and most of all, to my wife Ruth, who patiently typed countless notes and
rough drafts, lest I not be able to read my own work, who
listened attentively to and believed my wildest ideas, lest
I lose my own confidence, who spent many a lonely evening
silently watching me stare at those horrible formulas, never
once losing hope that we could beat them into submission -
but for her, I would have given up long ago.

ABSTRACT

In a method of program verification introduced by Floyd,
assertions are attached to a flowchart description of a program, and
correctness is established by showing their consistency with respect to
that flowchart. In this thesis, the method has been extended to apply to
concurrently executing programs such as those which occur in operating
systems.. This has required a careful definition of process and an effec-
tive representation of the interactions among processes. For this purpose,
a flowchart-like representation was chosen to characterize all possible
computations resulting fmmn the asynchronous execution of two programs.
Floyd's results were then applied to this representation to transform
a problem of verifying a set of programs into a problem of proving a
theorem of logic. Simplifications suggested by the structure of the
programs are applied to reduce the level of difficulty. Transformations
suggested by the interactions of the programs are applied to facilitate
the effective characterization of properties of interest.

The verification methods are applied to several small examples
of systems of cooperating processes. They illustrate that interesting
properties can be proved about such systems but that there are still
many unsolved problems, In particular, a precise formulation of the
concept of an abstraction of a process is required. The thesis concludes
with a presentation of a possible formulation of such a concept and a

brief exploration of its properties.

II.

III.

Iv.

TABLE OF CONTENTS

Introduction « « « o « ¢ + o ¢ 5 o 0 o o o s e o o o ol
Information, Processes, and Operating Systems 9
Transition Graphs . « « « o s o o o o o o s o o « o 28
Proving Correctness of Cooperating Processes 44

Some Other Forms of COrrectness . « o « o s o « o o /5

" Abstractions Of ProceSSeS . « « o o o o o o« ¢ o « » 115

Comments and ConcluSions « « o« « o « o « o o o o o o140

Bibliography « « o« « o o o o o o o o o o o « o o o 1437

INTRODUCTION

This thesis considers ways of establishing the correctness of prop-
erties of cooperating processes. It ex;ends the work eof Floyd [1967],
Manna [1968], King [1969], and others to include'programs which execute
"econcurrently"., It is complementary to the theoretical work of Dijkstra
[1965a], ﬁabermann [1969], Holt [1971],.andxothensin considering the
accuracy of programs which occur in operating systems. Hopefully, it
will provide some insight and will lead to techniques to help solve the
problem of constructing large, complex operating systems which work

" properly.

The difficulty of programming and debugging systems in which several
coordinated activities proceed concurrently has been documented by Dijkstra
[1965a], Van Horn [1966], Wirth [1969], and others, and it has become pain-
fully apparent to systems programmers in recent years. Such systems are

generally not deterministic, in the sense that from a given starting point,

onebcould reach any of a number of different states, depending upon the
relative speeds of the component activities. Errors are often difficult
to trace because they are caused by events of which all record has van-
ished, and they are more difficult to reproduce because they depend on
rare (or unknown) combinations of circumstances which cannot be readily
duplicated.

There are two useful, complementary approaches to the problem. The
synthetic approach concentrates on developing programming techniques
which avoid the pitfalls of parallel activities and which ease the burden

created by problems of scale in system design. The analytic approach

-2-

concentrates on examining systems to identify the potential trouble
spots and/or to show that they do not exist. The latter category
includes various techniques, one class of which involves attempting

to verify programs with respect to assertionms describing the properties
in question. 1In this thesis, we will concentrate on proving the cor-
rectness of concurrently executing programs by showing the consistency
of such assertions. With the exception of some work reported by
Ashcroft and Manna [1971], none of the existing assertion-oriented tech-
niques applies directly to systeﬁs of concurrent processes. But we shall
see_that by adopting a suitable representation, these methods can be
extended to apply. .

Whether or not it is practical and/or useful to prove a program
correct, particularly in formal terms, is the subject of many heated
debates. Furthemmore, it is unlikely that anyone will, in the near
future, be able to prove that a large operating system is correct -
simply because it is too difficult, Ev;ﬁ so, there are many reasons
why we should develop the formal apparatus for doing so. First, prov-
ing correctness is an interesting mathematical problem in its own right.
It is nice to know under what circumétances it can be done and how to
do it. It is also nice to know what constraints the peculiarities of
concurrent execution present to the problem.

Another, perhaps more compelling, reason for developing verifica-
tion techniques is that they may lead to useful synthetic techniques
for building systems which are a priori correct and which display a
better organization than our present ones. This is already happening

with sequential programs. Naur [1969] and Hoare [1971] have combined

a constructive approach to program design with their methods for
formally proving correctness. Both have demonstrated the development
of simple sequential programs using these techniques. Similarly,
Henderson and Snowden [1971] have shown that program verification
methods are an‘important conceptual tool to use with the structured
programming techniques of Dijkstra [1970] - not so much for proving
a program correct as for helping the programmer to maintain suitable
relationships between its parts.

Formal verification methods are also useful in analyzing abstract
~models of various system functions. For example, Ladner [1970] has
used the results of Floyd [1967] to establish the theoretical basis of
his analysis techniques for communication algorithms, even though those
techniques themselves bear little relation to formal logic and theorem
proving. We might reasonably expect that an understanding of how to
verify the programs of an operating system would be useful in construct-
ing analytic methods to apply to such systems. Similarly, we can hope
that understanding the formal techniques would lead to better under-
standing of the systems themselves and of the laws which govern their
structure and behavior.

Finally, we will show in this thesis that our verification techniques
can be applied to some very small programs. We may, in the course of
future research on system structure, discover ways to reduce the depen-
dence of system reliability on correct code. If that is done, then it
will be sufficient to verify omly small, erfitical programs to establish some con-

fidence in a system with a suitable structure. I.e., while it would be

too difficult to consider verifying a whole system, we may obtain use-
ful information by verifying small pieces of it.

The kinds of programs which occcur in operating systems are often
quite different from those we write for many other applications. The
programs, which comprise the central 'monitor'" and the various "system
processes'", usually share some of their variables with others, and the
values of these variables are liable to be changed by any of the pro-
grams at almost any time. Thus they are non-deterministic - that is,
their execution is not predetermined by any observable state, These
programs rarely halt and are usually designed not to. Instead, they
loop, continually looking for more work to do and regularly transferring
important status information from one iteration to another. Thus, it
is pointless to try to prove them correct with respect to the traditional
criteria that they halt and that the output be a given function of the
input. We must develop more appropriate criteria.

Programs in operating systems also suffer from errors which are not
considered by existing verification methods. For example, they may be-
come "blocked" and prevented from further execution. A whole system be-
coming blocked represents a sort of catastrophic error which we would
prefer not to happen. Another example involves the problem of protecting
information. Design errors which allow faulty or malicious programs to
access variables which they should not must be discovered and eliminated.
We need appropriate criteria of correctness to cover this kind of problem,
as well,

We do not claim to have developed a complete set of criteria and

formal verification methods appropriate for operating systems. But the

results of this thesis are a beginning. We will define correctness
in terms of predicates which assert some relationship among the
values of the variables of the programs. Because we are considering
programs which execute concurrently and which exchange information,
we must pay careful attention to their representation and the repre-
sentation of their interactions. To this end, we will develop a flow-
chart-like notation which will become the basis for our verification
techniques. Then, as an extension of Floyd's Induction Theorem [1967a],
we will show that a problem of verifying a system of cooperating pro-
_cesses can be reduced to proving a theorem of the first-order logic in
a particular interpretation. Methods for proving several other forms
of correctness are derived from this by suitable transformations to
the problems or the programs.

In the course of this research, it became apparent that apart
from the tedium of proving theorems of logic, one of the greatest dif-
ficulties in verifying a system of programs is finding an appropriate
statement of correctness which can be proved. In the case of several
simple systems, the "obvious' statements about the programs do not con-
tain enough information to allow a proof and the author was not able to
find less obvious, but proQable, statements. This demanded new tech-
niques which allow us to infer the correctness of a system from some
additional information. To do this, a second system is constructed
from the first by adding redundant information or identifying certain
statesvand changing the representation slightly so that a statement of
correctness is more convenient. Then we can prove that the correctness

of the second system implies that of the first,

Finally, we will see that the methods developed in the thesis are
not restricted to machine level programs but can be applied to more ab-
stract representations, as well. A verification of a system can then be
factored into two parts: a verification of the abstract representation
and a demonstration that the representation itself accurately reflects
the system. This may be easier than considering the system as a whole,
and it is a natural consequence of systems designed in '"levels of ab-
straction", such as the THE System (Dijkstra [1968b]).

It is worth pointing out that the author's interest in this re-
sea;ch has been directed toward the structure and correctness of com-
puter operating systems., As such, thé theorems and examples are biased
in that direction. But neither the results of this thesis nor the
assumptions from which they are de;ived are peculiar to operating sys-
tems problems and, in fact, can be extended to any system of cooperating
processes at any level of abstraction. The reader is invited to generalize

whenever and wherever he wishes.

OQutline of the Thesis

The following material is divided into five chapters. 1In the first
chapter we will develop a formal model of computation, inspired by the
informal point of view of Dijkstra [1965a] and the semi-férmal model of
Horning and Randell [1969]. This model is oriented toward the problem
of representing combinations of processes, and it forms the b#sis of our
verification techniques. It is also useful in considering the more gen-
eral problem of forming "levels of abstraction" or abstract representa-

tions of systems of processes, as will be seen in Chapter V.

In Chapter II we adapt Manna's graphical representation of proces-
ses to account for concurrent computation, These graphs, which we

designate as transition graphs, are similar to flowcharts, but with

the roles of the arcs and nodes reversed. That is, in a conventional
flowchart the nodes (or boxes) represent actions and the arcs between
nodes correspond to the states between actions, whereas in the transi-
tion graph, the arcs represent the actions and the nodes correspond to
the states between actions. Several simple theorems will be proved to
show that a transition graph formed from those of a system of concurrent
_processes represents the combined effect of their simultaneous operation.

In Chapter III we present.a definition of correctness and extend
Floyd's Induction Theorem to apply to cooperating processes. This is
done by generating a formula of logic from the tramsition graph repre-
senting the system of processes. Then the system can be proved to be
correct if those predicates satisfy the formula - i.e., if they cause it
to be true, when substituted for the symbols of the formula in an orderly
way. Finally in this chapter we will present some techniques for reducing
the complexity of a verification based on the structure of the system.

In Chapter IV we consider three additional ways of stating and
proving correctness. In the first, the transition graph representing
a process or system is extended with redundant information to alléw a
convenient way of making assertions about the states of the system which
cannot be made only in terms of its variables. These simplify proofs of
correctness considerably. In the second, we consider ways of stating and
proving that something does not happen in a system - i.e., that certain

combinations of states never occur. This method is useful provided that

-8~

those combinations can be identified. If not, the third method may
help. It allows us to prove that something does not happen (for ex-
ample, a deadlock) by proving instead that something else always hap-
pens (for example, the processes always reach a home state in finite
time). The last two techniques are based on the termination results
of Manna [1968] for non-determinis tic processes.

In the final chapter we investigate the question of what circum-
stances permit the correctness of a system to be established from an
"abstraction" rather than from the system itself. We will consider
the_conditions under which it is possible to consider the cooperation
of abstract processes without reference to their underlying implementa-
tion., In particular, the methods of previous chapters suggest, in
principle, a method of verifying that4an alleged abstraction of a pro-

cess correctly represents that process.

CHAPTER 1

INFORMATION, PROCESSES, AND OPERATING SYSTEMS

To prove the correctness of a set of cooperating processes, we
must know precisely what is meant by the term process and by the idea
of céoperation or communication among several of them. Horning and
Randell [1969] have given a survey of some definitions of these terms
and have extracted the essential elements into a model of the computa-

tion done by cooperating processes. In this chapter we extend that

model to overcome their difficulty in characterizing "asynchronous"

cooperation.

This is done by incorporating Dijkstra's important, abstract
assumption that all actions in a system are timeless and no two actions
occur at exactly the same instant. Thus in our model, there is never
any conflict among processors about assigning a value to a variable.
This abstraction bears no more relation to reality in computing than
does the postulation of frictionless surfaces in physics. But it is
useful for solving a large class of problems, including those of this
thesis. It is, of course, possible to simulate such a world, and many
hardware and software systems do to some extent. As a result we can
factor a proof of correctness into parts: (1) a verification of the
abstract system (using the assumption) and (2) a proof that the real
system being verified correctly simulates this timeless enviromment.
In this thesis we will concentrate on the first part, but we will com-
ment on the second part in Chapter V.

With the current proliferation of models of computing, one may

-10-

question the value of introducing yet another. Our model will be
justified if it persuades the reader that our results on proving
correctness are relevant to programs which occur in operating systems.
It may also be useful in solving problems beyond or orthogonal to the
scope of this thesis; if that happens, it will be additional justifica-
tion. On the other hand, when the results obtained with it can be
understood more simply without it, then it will be time to relegate

it to the role of an historical curiosity.

We will begin with the primitive, intuitive concepts of information
and processor which form the basis of our programming experience. From
this, we will define the union and intersection of information sets and
the product of two processors. The terms computation, process, and com-
bination of processes are based on these definitions. An essential con-
sequence of the definition is that a process may be formed from the union
of two information sets and the product of two processors, and this pro-
cess represents the behavior of two processes interacting with each
other. Thus all of the results about processes apply to combinations
of them as well, Finally, in this chapter, we will characterize operating
systems from the point of view of the model and of establishing the cor-

rectness of their components.

Information Sets

The basic stuff in computing is information. It occurs in sets of

information elements, and each element is an object which has a distinct

identity or name and which can assume any of a domain of values or states

(these last two terms are synonymous for our purposes). Examples of

-11-

information include a bit, which can have either of two values, a 32-
bit word, which cdan have any of 232 distinct values, or an Algol in-
teger variable, which (in the most abstract sense) can have any of the
integers as value. In the discussions which follow, we will not be
concerned with any internal structure of information elements. In-
stead, they will be regarded as primitive, indivisible objects defined
only by our programming intuition.

An information set is a named set of information elements, and its

value or state is the set of values of its elements. Examples of in-
formation sets include the set of variables of a program, a collection
of files in an operating systeﬁ, and programs or systems of programs
themselves. Another, more abstract, example is the potentially infi-
nite set of incarnations of the variables of a recursive Algol program.
While the structure of an information set is of paramount importance in
program design, it will not be of concern to this discussion. We are
only interested in the composition of information sets - i.e., which
elements are contained in it - and its value, regarded as a whole.

In practice, we deal only with finite sets of information elements,
each of which can have only a finite number of values. However, it is
often convenient to imagine infinite information sets for purposes of
simplifying analysis. For example, we often assume that we can do
arithmetic on the set of all integers, even though our computers use
one or another system of finite arithmetic (see Hoare [19691). Our
model will accept axioms for either system and is, in general, not re-
stricted by any finiteness assumptions. We will, however, take advantage

of finiteness where it naturally occurs.

-12-

In order to consider communication and cooperation among pro-
cesses, we will need to form combinations of information sets. The
following notation will be useful:

Let the upper case letter X, Y, Z, X', Y', etc., denote informa-
tion sets, and let corresponding lower case letters (possibly subscript-

ed) denote their values., I.e.,

X, X, X

-I, 2...

and

AR AP SFRRR

will denote values of the information sets X and Y', respectively.
Because information sets are sets of information elements, it makes
sense to consider the set-theoretic operations U, N, and \ (i.e.,

union, intersection, and set difference) on them. Then, if X and Y

are two information sets, then we will use the notation x Uy, x Ny,
and x \ y to denote the values of X UY, X N Y, and X \ Y, respectively,
where x is the value of X and y is the value of Y. That is, the symbols
", "M, and "W do not define operations on the values of information
sets, Instead, they are a convenient way of representing the values of
the corresponding combinations of two information sets in terms of the
values of their components. Finally, if the information set X is a
subset of Y, we will use notation yIX (read "y restricted to X") to de-

note the value of X in terms of the value of Y.

Processors

Information is useful in computing because its value can be changed

-13-

in well-defined, mechanical ways. The act of computing is the act of
repeatedly transforming the value of an information set with the aim

of producing some value with a specific meaning in the context of the
problem being solved. The instruments of computing are processors -
i.e., real or conceptual devices which implement sets of rules specify-
ing how the values of information sets are to be changed or transformed.
A processor is generally designed or defined to ﬁanipulate a particular
information set (class of information sets), which we will call its
operand. FEach of the possible changes in value that the processor can
‘make upon an operand is called an operation.

A processor may be a hardware automation, a program, Or some con-
ceptual entity. For example, the Central Processing Unit of a computer
system is a processor which operates on an information set consisting
of core memory, accumulafors, and whatever other registers it may have.
The rules which it implements are those described informally in its
programming manual. Alternatively, a processor could be a program writ-
ten in some language to specify how variable data is to be transformed
in value. The operand in this case is the set of variables of the pro-
gram. Interpreters of languages such as LISP fall into this category:
in effect, they create imaginary processors to implement the rules of
transforming information as defined by the semantics of the language.
The art of programming is, then, the act of defining one or more pro-
cessors and information sets, usually in terms of other processors and
information sets.

This idea of processor is, of course, intuitively obvious and

fundamental to competent programmers., It will form the basis for

“14-

precise definitions of computation and process and it will be con-
venient for describing the communication among processes. Before
we proceed wi;h these definitions, it is useful to introduce some
additional notation.

Suppose Q is a processor and the information set Y is its operand.

If Q defines an operation on the value of Y from Yo tO ¥qs then we say
YO-f—’Y1s

i.e., that Y4 is a successor of Yo under Q. It may be the case that.

some values Yo of Y, have no successor values, These are called

blocking states of Q, and Q is said to be blocked when Y has one of

these as its value.

Example:
A processor Q is defined such that one of its operations is
the P-operation (Dijkstra [1965]) on a particular variable
of type semaphore. The P-operation reduces the value of the

semaphore by one provided the result will be non-negative; it

has no effect on any other variable in the information set.
The operation has no successor when the semaphore has values

less than one. I.e., if s is a semaphore, the operation

Q

§ = 3—=s =2

is possible, but the state

——r -

-15-

is a blocking state of Q. I.e., Q cannot continue to operate

until the value of s is changed by some other means.

In this thesis, we will ignore all issues surrounding the decidability
or undecidability of whether or not a particular operation yo-fl—e Y4
can occur, and we will restrict our attention to processors such that
this can Be determined for all values Yo and Yqe

It may be the case that some value of Yo of an information set Y

has more than one successor under processor Q - i.e., that

Q

Yo 2, b))

and Y4 % Yy % vee % Vi I.e., Y does not contain enough information to
allow us to determine which operation Q will make next. It may be chosen
by a random process or it may depend on factors external to our domain of

discourse. In this case, P is called non-deterministic: otherwise it is

deterministic. (Note that this use of the term 'mon-deterministic" is

related to, but not the same as, its use by Floyd [1967b]. Ashcroft

and Manna [1971] also use the term with slightly different implications.)
Although we like to think of the hardware processors which we build as
deterministic, we combine them in system with the result, which we will
see presently, that abstract processors of operating systems are fre-

quently non-deterministic.

-16-

Processors with Multiple States

It will be convenient to consider processors with more than one
internal '"state". For example, a processor may be defined by an Algol
program and its operand may be the variables of that program. Clearly, .
the operations defined by this processor depend upon which statement is
currently being executed. This is not represented by any part of the
operand, but by information strictly internal to the program. I.e.,
for a given value of the operand, the possible successors are determined
by the current internal state of the processor. In general, if a pro-
cesgor P in state vy can perform the operation Yo=Y, and find itself

yo’ 0 .I’ 1 ?

i.e., that (y1,v]) is a successor of (yo,vo) under the processor P. The
set of internal states of P may represent values of internal registers
or data structures, the position of a reel of tape, a program counter,
or some other characteristic.

From a theoretical point of view, there is little to distinguish
single state processors from multiple state processors, and either kind
can be mapped directly to the other kind., I.e., the operand of a multiple-
state processor caﬁ be extended with an information element representing
the states. Then a new, single-state processor can be defined with opera-
tions similar to those of the given one and dependent in the obvious way
on the new information element. Conversely, a processor with only one
or a few states can be transformed into one with many states by moving

information from its operand to its internal structure. For convenience,

we will usually assume that our processors can have several states.
In Chapter II a method of representing a class of these will be pre-

sented.

Computation and Processes

When a processor is repeatedly applied to an information set, it
defines a sequence of values of that set which is the essence of the
computing task for which the two were intended. The sequence may be

finite or infinite, and it is called a computation.

‘Definition: Let P be a processor, and let the information set Y be
an operand of P, let Yo be a value Y, and let Vo be an internal

state of P. A computation

f Pon Y given (yo,vo) is a sequence
of pairs,

{(YO’VO) s (Y-l sV-I) ’(YZ’VZ) 3. "}

either finite or infinite, where for each i = 0,1,2,...,yi is

a value of Y, v, is an internal state of P, and
(3395) ——> Ty4q>Y547)
YioVi Yi+12Vi+1

The state (yo,vo) is called the initial state of the computation.

Note that if P is non-deterﬁinistic, there may be more than one computa-
tion for some initial states. Finally note that Horning and Randell
[1969] use the term "history" to denote what we have called "computation".
Given an information set Y, a set T of initial values of Y, and an
effective description of a processor P which operates on Y, it is possible

to construct all of the computations of P on Y given any of the initial

-18-~

values in L. This set of computations, called the history set by

Horning and Randell, represents all that P can do to Y. All of the

values of Y which might conceivably occur, solely as the result of

the action of P, are members of the computations in the set, and the ‘
set itself is completely determined by P, Y, and ¥. This motivates

the following definition.

Definition: A process is a triple (P,Y,Y%), where

P is a processor,
Y is an operand of P, and
¥ is a (non-null) set of pairs (y,v) consisting of values

of Y and internal states of P.

We will frequently represent processes by lower case letters

B 45 L, E's q', r', etc.

If p = (P,Y,%) is a process and if (yo,vo) is in ¥, then a computation
of Pon Y given (yo,vo) is called a computation of p.

The term "process'" is common in operating system design and has been
defined in many different, but related, ways. Saltzer's emphasis [1966]
is on the activity of the processor and on which information set is in-
volved. Lampson [1968] emphasizes that it is distinct processors which
make distinct processes. Dijkstra [1965a] identifies a process as the
act of a processor operating on an information set to produce a specific
computation. Horning and Randell [1969] have surveyed other definitions.
All of them specify, in one way or another, that the principal ingredi-

ents of a process are its own processor, an information set, and a starting

-19-

state. Brinch Hansen [1970] has emphasized that processes are not
restricted to those having processors resembling the central processing
units of conventional computers. The asynchronous input/output activi-
ties, the ticking of systeﬁ timers, and the setting of external switches
all are types of processes, and all fall within the definition given

above.

Timelessness of Processor Operations

Our definitions of computation and process make no mention of time,
but only of ordered sequences of states. Yet they represent activities
"which occur in time and which take non-infinitesimal time to happen.
This important aspect of our model of computation was introduced by
Dijkstra [1965a]. It simplifies considerably the analysis of cooperating
processes to be considered below; but at the same time, it requires that
the processes under scrutiny have a certain kind of structuring about
them.

Essentially, what we do is assume that the operations of processors
occur in zero time, and that processors and information sets spend all
of their time between operations. In effect, time acts as a discrete
counter, not as continuous measure (Habermann [1967]). We further
assume that no two processors perform operations on information at pre-
cisely the same instant. I.e., whenever two processors both perform
operations, we assume that one performs its operation of infinitesimal
duration first, then the other acts., The order might not be predict-
able. (In the case of processors specifically designed to work in

"lockstep'", they can be combined into a single processor by the methods

=20~

of synchronous combination discussed by Horning and Randell [1969].)
A consequence of this abstraction is that the value of an information
set at the instant after an operation is determined only by the pro-
cessor which performs it, not on any possible interference by other
processors.

No piece of physical machinery actually performs operatiomns in
zero time, but most of the processors and storage media that we build
today act as if this were true. That is, they are designed with inter-
locks and interfaces which guaraﬁtee that the sequences of observable
information states are exactly those which would be observed if a time-

less processor were used instead.

Example: The core memories of most modern computer systems are designed
so that a CPU and an I/O channel cannot both access a given word
simultaneously. One must wait until the other has completed its

operation, then it operates on the new value of memory.

It is a non-trivial problem to construct processors which obey this
principle and an even harder problem to prove that they do obey it. The
operating system programmer can, with some restrictions, assume that his
hardware obeys it; but he must write programs which are, in effect, ab-
stract processors which also obey the principle. This has been the sub-
ject of considerable discussion in the literature, and it has given rise
to the various so-called "synchronizing primitives" which are now com-
mon programming ﬁractice (see, for example, the P- and V-operations of
Dijkstra [1965], the message handling functions of Brinch Hansen [1970],

the functions in MULTICS as described by Saltzer [1966]). Thus, an

=27~

important verification problem is that of proving that the abstract
processors simulated by a set of cooperating processes obey the prin-

ciple of timelessness.

Cooperation Among Processes

Let p = (P,Y,¥) and g = (Q,Z,T) be processes, as defined previously.
Let us consider what happens if Y N Z is not null, That is, we will
allow the processor P to access some information elements in Z and Q to
access some elements in Y. Clearly, the sequences of states qf Y and
Z realizable by this case are not necessarily computations of p and g,
"but may be the result of interactions between the two processors; For
example, P may change the value of an information element in Y N Z upon

which the next operation of Q depends; such a variable is called a

significant variable of Q by Horning and Randell [1969].

In order to see what sequences of states of Y U Z are possible, we
will comstruct a processor R from the definitions of P and Q. For sim-
plicity, let us first assume that P and Q have only one internal state

each., Then we define the single state processor R as follows:

whenever Ya Uz and vy, U z, are values of Y U Z,

a

then

N

R
Ya U Za 7 > % u b

if and only if either

P =
Yy —> yb and za\ v, = zb\ Yy
or

Q =
2g — %, and y, \ 2, =\ g

=22~

I.e., an operation of Ron Y U Z is either an operation of P on Y with
that part of Z which does not intersect with Y (Z \ Y) left unchanged,
or it is an operation of Q on Z with Y \ Z left unchanged.

In general, R is not deterministic because there can be values
of Y U Z which are not blocking states for either P or Q. For these
states, the choice of which operation R performs next depends upon the
relative speeds of P and Q, the physical implementation of the proces-
sors and information sets, and/or other factors which may‘be random or
imperceivable.

In order to define a process based on R and Y U Z, we must also
define a set of initial states of this information set. In particular,

let v be the set of values
fyUz | yesand z €T}

I.e., it is the set of values of Y U Z such that the Y-part is an initial
state of p and the Z-part is an initial state of g. In symbols, we say

v= %% T, Then, by construction, the computations of the process

r= (R,Y UZ,v)

are exactly the sequences of values of Y U Z which result from an arbitrary

interleaving of the operations of P and Q, subject to the assumption of
timelessness. We called the processor R the product of P and Q, and

similarly, we call r the product of p and g; in symbols, we write

R=P X Q

and ‘ £=RXSO

=23 -

Example: The OS/360 operating system for the IBM System/360 [1970b]
defines one or more abstract processes (called tasks in the
terminology of that system) which are, in effect, product
processes. Each task includes one "computing' process,
zero or more "input-output" processes, and zero or more
"timer" processes. The computing process is the only one
that is programmable in the conventional sense, the others
being table-driven. All of the processors are simulated by a
combination of the hardware and system software. They communi-
cate using operations on information contained in shared tables -
for example, the computing processor performs "GET" and "PUT"
operations which manipulate and test specific variables, while
the input~-output processors keep buffers full (or empty) and
record their status in those same variables. The system pro-
grammer generally regards a whole task as a programmable pro-
cess, but he must be aware of the non-determinism of the syn-
chronization among the component processes. I.e,, a task is

a product of simpler processes.

In the case of processors with more than one internal state we can

formulate the notion of product precisely as follows:

Definition: If P is a processor of the information set Y and Q is a
processor of the information set Z, then the product, R, of P
and Q is a processor of the information set Y U Z such that

(a) the set of internal states of R is the set of

pairs {(v,w)} where v is an internal state of

-2 -

P and w is an internal state of Q, and

(b) for values Ya] z, and 28 Uz, of Y U?Z and

b
for states (va,wa) and (vb,wb) of R,
R
(75 Uz (Vv)) —> (v Uz, (v 5w))
if and only if either
P =
(ya’va)_-’ (yb’vb) and z, \ Ya = % \ I
and w, =W

or

Q =
(za’wa)——’ (Zb ’Wb) and Ya \ Za B yb \ zb
and Va = Vye
The product, r, of two processes p = (P,Y,%) and g = (Q,Z,T)
is the process (R,Y U Z,v), where v = 3% * T. 1In symbols,

we write

R

P xQ

and r=px4g.

Informally, we say that the processes p and g cooperate and communicate
through their common information set Y N Z. |

Clearly it follows from that definition and the commutativity of
set union that the processors P X Q and Q x P define exactly the same
set of operations on Y U Z, and so can be considered the same processor.

It is also apparent from the construction that the processors

P x (Q XR)

and

(PXQ xR

are identical,

=25«

Note that according to the definition, a processor cannot force
a change in internal state upon another. There is no practical loss
of generality here because the representation can be changed so that
the internal states are described by information elements common to
the operands of both processors.

Finally observe that since by our definition the combination of
a set of processes is also a process, we could use the term "process"
to mean a single, deterministic process or the combination of a set
of processes. However, it will sometimes be advantageous to talk about
~a "system of processes'" in order to make it clear that we are interest-
ed in properties relating to tﬁe combination of the processes and not

specific to any individual one.

A Characterization of Operating Systems

Randell [1971], paraphrasing Barron [1969], has observed that while
it is difficult to define precisely what we mean by the term "operating
system'", any experienced programmer would recognize one when he sees it.
Nevertheless, we can characterize operating systems with respect to
certain properties relevant to specific problems. TFor example, a person
interested in performance might characterize all operating systems as
resource allocation mechanisms, while someone else might characterize
them as interpreters of command languages. From the point of view of
an abstract study of correctness, we can regard an operating system as
a collection of processes which cooperate to simulate one or more ab-
stract processors and information sets. I.e., using a common but im-

precise term, we regard an operating system as a collection of processes

-26-

which create one or more "virtual machines". The programs of an
operating system collectively act as inﬁerpreters of the abstract
processes so created, The question is then, "Do the processes cor-
rectly simulate what they are designed to simulate?".

There are several important characteristics of these programs
which affect the problem of proving them correct. One is that many
of them are not meant to terminate, so that verification techniques
based on termination do not apply. I.e., these programs, particularly
those that manage the processors and principal memory resources, loop
and.repeatedly look for work to do. They also transmit information
from one iteration to another, so that there is no natural terminating
point.

Another characteristic of programs in operating systems is that
they define, communicate with and synchronize with other processes.
I.e., Ehey transmit information to others via shared data, and they
await answers. They become blocked by menas of synchronizing operations
such as the P- and V-operations or their equivalent. Thus there are
the natural questions of whether or not they communicate and synchronize
correctly, and whether they will be restarted correctly when they are
blocked pending some event.

A third characteristic is that, despite the best intentions of
operating systems programmers, the processes are at times non-deter-
ministic. Processes are combined with others to form product processes
which are non-deterministic, at least to the extent of the relative
speeds of the components. This complicates the verification problem

because the values of shared variables are not necessarily safe - i.e.,

27~

one process may set a value but another may change it at any time.
These considerations will motivate the verification methods intro-
duced in later chapters. It will be apparent that they also apply to
other systems of cooperating processes which are not operating systems.
However, we shall restrict our attention and examples to problems drawn

from the operating system area.

-28-

CHAPTER IT

TRANSITION GRAPHS

In later chapters, a principal method of proving the correctness
of a process or product of processes will be to prove that a state-
ment is true for each of its computations. This requires a representa-
tion of processes and processors which facilitates systematic proofs
about all computations, possibly infinitely many of them. A suitable
representation for this purpose is the directed graph used by Manna
[1968] which, for lack of a better term, we will call the transition
g;gﬁh. It is analogous to a flowchart, but the roles of nodes and arcs
are interchanged, the arcs representing actions and nodes representing
the intervals between actions.

In this chapter, the idea of tﬁe transition graph will be illustrat-
ed by a brief example and then defined precisely. We will show that it
represents all of the computations of the corresponding process. We
will also present a natural way of combining transition graphs of several
processes which results in a transition graph representing the product
of those processes. This is convenient for considering the computations
which result from the cooperation of several processors operating on a
common information.set. Finally, we will comment on some useful prop-

erties of tramsition graphs.

Transition Graph of a Process

Let us consider a process designed to multiplex and transmit mes-
sages of N "logical" communication channels over one physical communica-

tion channel. This process will be part of a system for reliable and

-29-

efficient communication, proposed by Lynch [1968 and 1971] and to be
discussed in Chapter V. The processor and its information set can be
described by the pseudo-Algol program of Figure II.1. The process
continually loops, transmitting the messages contained in its buffer
named '"Message". If "OK" indicates that a message has been correctly
received, a new message is fetched from the corresponding logical chan-~
nel and the value of "Alternate" is reversed. The physical message
actually transmitted consists of the identification '"k", the kth message,
and the values of the kth Verify and Alternate bits.

In Figure II.2, a flowchart of the program is shown. It is reason-
able to expect that each solid.box in the flowchart could correspond to
one, indivisible, timeless operation by a suitable processor. The dotted
boxes, however, represent operations which would probably be implemented
as several operations spanning a non-trivial amount of time. But for
purposes of illustration, we will imagine them to be timeless operations,

as well.

begin string array Message (0:N-1);
Boolean array OK (0:N-1) = true;
Boolean array Verify, Alternate (0:N-1) = false;
semaphore sync=N; integer k;
comment: The string array '"Message'" contains the
current messages being transmitted on the
logical channels. "OK" is set by another pro-
cess to indicate that messages have been re-
ceived correctly. '"Verify" and "Alternate"
will be explained later. The semaphore 'sync"
is used for synchronizing this process with
another one;
for k := 0, (if k = N-1 then 0 else k+l) while true do
begin P(sync);
if OK (k) then begin
Message (k) := <next message on channel k>;
Alternate (k) := — Alternate (k) end;
transmit (k, Message (k), Verify (k),
Alternate (k)); end;

end;
Figure ITI.]

=30~

Yes

r .
transmit

[
I
]
}

L

:
SRR -

IMessage (k) :=next !
|

, message on i

llogical channel k :

Alternate(k):=
— Alternate k)

k, Message(k)
Verify(k
SRS,
]
I

No

k := k+1 ’

Figure IT1,2:

-31-

In Figure II.3, we show a transition graph representation of the
same processor. The boxes of the flowchart have been replaced by
labeled arcs and the lines of the flowchart have been replaced by nodes.
Some of the labels on the arcs have two components separated by a colon :
a condition and an action. The condition is a predicate on the values
of variables of the process which, if true, allows control to '"follow"
that arc. The remaining labels have only one component, an action.

The action is either null or an assigmment to one or more variables of
the process; it represents an operation of the processor. For example,

the box of Figure II.2 which performs the operation "P(sync)'" corresponds

sync > 0:sync := sync-]

v
o2 OK(k):null
3

-

— OK(k):null

]

Message (k) <next message of channel k>;

F4
\\\\$ //Agiternate(k)
s

transmit (k,Message(k), Verify(k), Alternate(k));

null

— Alternate(k)

L ko= ktl ,7k<N-1:n.ull 6

= N-1:null

8

Figure II.3

-32-

to the arc between nodes 1 and 2 in Figure II.3 and is labeled with a

predicate representing the condition

sync > 0
and action

sync := sync-1.

The test and the action are assumed to take place simultaneously and
in infinitesimal time.

Each node of the transition graph represents an internal state of
the processor described by the program, and each arc leading from a
nodé represents an operation or class of operations which can occur
when the processor is in the corresponding state., Thus it is possible
to construct computations of the process by following paths through the
graph and performing the operationsAindicated by the arcs. A given arc
can be included in such a path only if its condition label is true at
the time it is encountered. If all of the operations of the processor
are represented by the appropriate arcs, then all such paths through
the graph correspond to computations. Conversely, every computation
of the process corresponds to some path. This can be made more precise
by the following construction.

Let p be the process (P,Y,%), and suppose that V, the set of in-
ternal states of P, is finite. Let G be a directed graph with labeled
arcs such that:

(a) The nodes of G are the elements of V.

(b) The arcs are represented by ordered pairs of elements

of V and the set of arcs is denoted by T.

-33-

(c) Associated with each arc <v,w> in T is a label con-

isting . : di h
sisting of two parts: a predicate Q<V,W>(y) on the
values of Y and a function t (y) which maps the

<v,w>

set of values of Y into itself. Denote the set of
labels by L.

Thus the graph G is a triple (V,T,L).

Definition: The graph G = (V,I",L) is a transition graph representation

of the process p if and only if the following is true:
For any values 4 and Yo of Y and any elements vy

and Vo in V,

(yl,v1)-—E—#(Y2,v2)
if and only if
(a) there is'an arc <v1,v2> in T,
(b) ‘p<v1,v2>(y1) = true, and

(e)) = t<v1,v >(y1).

2
Thus a directed graph of this form is a transition graph representation
of a process if and only if its arcs exactly represent the operations

of the processor.

In Figure II.3, the action labels were shown as assigmments, where-
as in the definition they are presented as functions. We will use this
"assignment notation" as a useful way of representing functions on the
states of information sets, i.e., the assigmments describe how the
functions operate on the individual elements of an information set.

For example, if the set Y consists of the set of elements fa,b,c}, then

-3 -

the assignment

a := btc

is shorthand for the function
t(a,b,c) = {b+c,b,c}

while the two simultaneous assignments

|
]
o

b:

]
i

are shorthand for the function
t'(a,b,e) = {0,atc,c}.

Both functions take as arguments states of Y and have values which are
also states of Y. Throughout the thesis, we will use the assignment
notation when it is convenient, but we will always interpret it as a

function,

Computational Paths

It is now possible to show that paths through a transition graph
representing a process correspond to the computations of that process
and conversely. Let us define a simple path through a transition

graph G = (V,T',L) as a sequence of nodes of V,

{VO’VI’VZ""}

either finite or infinite, such that for each i = 0,1,2,..., there is

an arc <vi,v > in T'. That is, a simple path is just a way of tracing

i+l

=35~

through the transition graph by following arcs. A computational path

is a sequence of pairs

{(YO,VO),(Y1,V]),(Y2:V2)a-'-}
of values of Y and elements of V, such that

{vo,v1,v2,...] is a simple path

>(yi) = true for all i = 0,1,2,...

i+1
Vim = ey v, >y) for all 1=10,1,2,...
i’ i+

Q<v,,v
i

That is, a computational path is a way of tracing through a transition
graph while performing the tests and operations indicated by the labels

on the arcs.

Lemma II.1: Let p = (P,Y,%¥) be a process, let G = (V,T,L) be a transi-
tion graph representation of p, and let (yo,vo) € ¥. Then the

sequence of pairs

{(YO’VO)’(y1’V1)’(Y2’V2)""}

is a computation of p if and only if it is a computational path

in G.
Proof: From the definition of transition graph, the operation
(y.,V.)—P-a,(y. sV,)
i’ i+1° i+l
is part of the processor p if and only if

0 (y.) = true
<vi,vi+1> i —_—

-36-

(v,

Yiv1 = t<vi,v >y

i+l
for any i = 0,1,2,...,
That is, the operation is part of P if and only if the arc

<vi,v > can be included in a computational path. The lemma

i+1

follows by induction on the length of the sequence.

Transition Graphs of Combinations of Processes

We are now ready to present the main result of this chapter. Let
p= (P,Y,%) and p' = (P',Y',2") Be processes represented by transition
graphs G = (V,I',L) and G' = (V',T',L'), respectively. Let the process
g =p X p' be the product of p and p' according to the definition of
the previous chapter. We will construct a graph H = (W,A,M) and show
that it is a transition graph representation of q. Then as a consequence
of the previous lemma, the set of computations of q will correspond
exactly to the set of computational paths in this graph.

To construct H, let the set of nodes W be the set V x V' -~ i.,e.,
the nodes of H are pairs of nodes of G and G', Let the set of arcs A
and the set of labels M be defined as follows:

(a) for each arc <v1,v2> of T with label

CP-<V1,v2>(y):t:<v1,v2'>(y)
and for each node v' of V', let an arc

<w1,wz> = <(v1,v'),(v2,v')>

be included in A and labeled by

6_ .)
<, ,W2>(y U y').u<w] ,w2>(y Uuy"

-37-

where

9 yuy"H

<W1,w2> m<v1,v2>(y)

yUy"H

tevyv, S UG\ Y

u
<w1,w2> 1

(b) symmetrically, for each arc <vi,vé> of T'" with label

¢'<vi £>(Y')=t' (y")

sV <vl,vl>

1°°2

and for each node v of V, let an arc
<ﬁ1,ﬁz> = <(v,v%),(v,vé)>

be included in A and labeled by

e<w1 ,W >(y Uy'):u <w1 ’W2>(Y uy"
where
- = ot 1
e<w.|,wz>(y Uy" CP<vi,vé>(y)
o = ! 1 '
u_-]’w2>(Y Uy') =t <v1.’vé>(y Y U \Ny"

(¢) mno arcs are included in A except by virtue of (a) or (b).
That is, each arc of G has a corresponding arc in H for every node of
G' and each arc of G' has a corresponding arc in H for every node of
G. The condition and action labels on the arcs of H are exactly the

same as those on the corresponding arcs of G and G', but defined in

terms of the information set union Y U Y'. Thus the condition

= ' ' . .
e<w1,wz> on arc <w],w2> <(v1,v),(vz,v)> above is a predicate on

values of Y U Y' which is equal to Py v> defined on the values of
V12Y2
the Y-component only. Similarly, the function u denotes an
<w1,w2>
operation on the value Y U Y' equal to the operation defined by

-38-

t on values Y, leaving that part of Y' not in the intersection
<v1,v2>

unchanged. Note that the assigmment notation discussed above simpli-
fies the labels on arcs of H considerably.

We can see intuitively how the graph H is formed from an example.
Figure II.4 shows transition graph G' representing a small, useless
process which cooperates with that of graph G of Figure II.3. Figure
II.5 shows the "product" H of these two transition graphs. Along the

side of the figure is a copy of G, stretched out in a "linear"

form;

and similarly G' is depicted at the top of the figure. Some of the
labels are omitted or abbreviated where they can be deduced from context.
H is essentially formed from a copy of G for each node of G' "crossed"
with a copy of G' for each node of G. Note that from most nodes, there
are two arcs which can be followed at any given time. This reflects

the natural non-determinacy of two processes in which an operation of
either processor might be executed next. The paths through the graph
intuitively reflect the computations which can result from the two pro-

cessors working together. This conclusion is based, in part, on the

next lemma,

Lemma II,2: The directed graph H constructed above is a transition

graph representation of the process ¢ = p X p’.

Proof: Note that W, the set of nodes of the graph H, is exactly the
set of pairs of internal states of P and P', which is also
the set of internal states of Q by the definition of product
processor in Chapter I. Thus, H is a transition graph repre-

sentation of q if and only if there is an exact correspondence

-39-

. o' Start

null

null %1'

sync := sync+l

'2|
The transition graph G' representing a simple process

Figure I1I1.4

between the arcs in A and the operations or classes of operations
in Q. Suppose that
1 | Q ! 1
and suppose that this is true because
P
(2) (Y1’V-|)_9(Y2:V2)3
with vi = vé, and yi'\ ¥, = yé. I.e., suppose the operation
(1) has been included in the product processor Q because it is
part of the component processor P (a symmetric argument would

apply for P'). Then since G is a tramsition graph representa-

tion of p, there is an arc <v1,v2> € T such that

Q. (y,) = true

\v1,v2> 1 —_—
and

¥, = t (y)

2 <V],V2> 1

Thus, by construction of H, there is an arc

. i ' =
<(v1,v1),(v2,v2)> <w],w2>

null

40-

null

k;=0 k:=0
sync>0: sync>0:
sync:= syncs=
sync-1 sync-1
Y | Y .mull] . _ Y&
(//OK(k): OK(k):
null null
¥y N £5:5§£;;;:::::3¥
E} 1Message(k):= :gM Message(k): = Méssage(k)a% Message:=
A <next msg> il <next msg> | | ves . e
o < —
g ¥ o i A £ RTEC T e
rl- Alternate(k):= r Alt...:= Alt;.. cee
~Alternate(k) . mAlt... -
transﬁit transmit

null

Figure II,5

41-

(since vi = Vé) in A with

'y =
e<w1 ’w2>(y] U y1) true
and
v, Uyy = u<W1’W2>(y1 Uy

Conversely, suppose <W1,W2> is an arc of A with label

1 . 1
e<w1 ,w2>(y Uy)'u<w1 ,w2>(y Uy

and suppose v U yi is any value of Y U Y', with 8

'y =
<W1,W2>(y1 U y]) frue.

Then there is a corresponding arc in either T or T' - say T' since

the argument is symmetrical for T' - such that

W, W, = <(v1,v'),(v2,v')>,

172
<y V> €T,
and
P, it
\V1’V2> <V1,V2>
is the label on this arc. Thus, by construction,

(y,) = true;
2> 1 —_—

Q<v sV

1

and furthermore the operation

P
(¥15V9) — (t<v] ’v2>(y1) "’2)

is part of P, since G is a tramsition graph representation of

p. Thus, the operation

(v, U y;,<v1,v'>>_Q_><t<v1’V2><y1> TRCIANEDMNCARL)

42 .

is part of the product processor. Since by construction

! =
“<w1 ,w2>(y1 Uy t<v] ,v2>(y1) UGy \yp-

this is exactly the operation

Q
vy Uy W])——>(u<w] ,W2>(y1 Uy, wy).

Thus the definition of transition graph is satisfied and H is

a transition graph representation of the process q.

We have shown that we can construct a transition graph representing
two cooperating processes from the transition graphs representing each

one individually. In keeping with previous notation, we can say
H=G X G'.

Clearly, this product operation is both commutative and associative, just
as the product operation on processes is. That is, graphs G x G' and
G' X G are indistinguishable for our purposes, as are G x (G' X G") and

(G x G") % G".
Comments

The transition graph representation of a process will be used to
facilitate proving statements about all of the computations of a pro-
cess, Note that such a representation is not necessarily unique, but
that Lemima II.1 guarantees that all transition graphs representing the
same process have exactly the same set of computational paths. Further-

more, because of the correspondence between operations of a processor

nra

-

T T = =

43-

and arcs of a transition graph, the latter can be used as a definition
for the former.

Without loss of generality, we can assume that transition graphs
(and their corresponding processors) have at most one node designated
as a start node and at most one halt node. That is, a processor and
information set can easily be redefined so that this is true without
effectively changing the computations it can make or the way it cooperates
with other processors. Similarly, we can assume that we can delete arcs

with identically false conditions and subgraphs which are never on any

simple path beginning at the start node. This is because no action of

any processor can force the giVen processor to traverse such arcs or
enter states represented by such subgraphs.

There is one important situation in operating system programming
which is not conveniently represented by our model of computation and
by transition graphs. This is the interruptible processor, i,e., the
processor which can have a forced transfer of control imposed upon it
by another. However, this is not a serious restriction if the interrupt
handler and the "interruptible' process are two separate, cooperating
processes, each with its own abstract processor. The interrupt handler
would effectively be a loop with a blocking state which is unblocked
whenever the interrupt condition occurs. The non-determinacy of the
interrupt system is then represented by the cooperation of two processes.
This approach is in keeping with efforts to rationalize interrupt systems

by imposing some process structure on them (see, for example, Wirth [1969]).

by -

CHAPTER III

PROVING CORRECTNESS OF COOPERATING PROCESSES

The statement "Program A is correct'" can have many meaningé. In-
tuitively, the most common of these attempt to convey the idea that the
program does what the designer intends it to do and/or that the thing he
intends is the "right" thing in the context of the problem to be solved.
Deciding what algorithm is the right one for a problem is, of course,
one of the fundamental aspects of the art and science of programming.
Determining whether a particular program in a particular language is an
effective representation of an algorithm is a non-trivial problem out-
side the scope of this thesis.

We can, however, consider a more restrictive concept: "Program A
is correct with respect to the statement S". In this case, S is a pre-
cise, effective, and meaningful statement characterizing fhé functiqn
of the program. Such statements can také many forms. For example? in.
Knuth [1969], p. 318, we find the statement "...,Algorithm T f;avgfées
a tree of n nodes in postorder", where the temrms '"traverse'" and "post-
order" had been defined previéusly. In Dijkstra [1965a], we find the
statements

(a) that at any moment, at most one of the processes is
engaged in its critical section;

(b) that the decision which of the processes is the first
to enter its critical section cannot be postponed to
eternity;

(¢) that stopping a process in its "remainder of cycle"
has no effect upon the others.

45—

Van Horn [1966] considers one criterion of correctness in non-deter-
ministic processes to be "output-functionality" - i.e., that the out-
put of a process is a function only of its inputs and is independent
of the behavior of other processes. Each of these statements is mean-
ingful in the sense that it is possible to conceive arguments which
could confirm or deny them and that it is possible to draw useful con-
clusions from them. On the other hand, the statement "This compiler
compiles programs correctly' is hardly meaningful without a supporting
theory about what correct compilation is and how to do it (see, for
example, Good and London [1970]).

| In this chapter we will consider the type of correctness criteria
introduced by Floyd [1967] and subsequently used by Cooper (196817,
Manna [1968], King [1969], London [1970], and others. Statements of
correctness assert some relatibnship among the variables of the pro-
cess during computation, and the process is considered correct if the
statements are true for each computation of that process. These state-
ments, called assertions, are typically associated with lines of the
flowchart, nodes of the transition graph, or statements of the program
representing the process (although Manna and Pnuelli [1970] have gen-
eralized upon this). The assertions take the form of predicates on
the values of the process variables which say something about their
"meaning''. For example,

as= b+3

asserts a clear relationship between the values of the variables a and
b which is alleged to be true for every computation when the process is

executing the corresponding statement of the flowchart,- graph, or program.

46~

Assertions specified in this manner can be considered a form of
redundancy in programming. That is, the designer specifies an al-
gorithm in a programming language and then a second time (usually in-
completely) as a collection of predicates describing the states of the
information set. Proving that the process is "correct" with respect
to the assertions, then, amounts to showing the mutual consistency of
these two specifications. More often than not, both will contain bugs
in their initial form. However, we will see that the nature and dif-
ficulty of certain kinds of bugs is different in the two characterizations.

In this chapter we will consider assertions about cooperating pro-
cesses. The Induction Theorem of Floyd [1967] will be applied to verify
such processes with respect to these assertions, using the product trans-
ition graph representation from the previous chapter. It will be ap-
parent that any attempt to verify a product process this way will be too
cumbersome to be practical. However, certain simplificatioﬁs can be de-
rived from the structure of the components. This chapter concludes with
a presentation of some of these techniques and an example of their ap-

plication.

Assertions and the Induction Theorem

In order to present these results we will use the following notation

and terminology.

Definition: Let p = (P,Y,T) be a process represented by transition
graph G = (V,T,L). An assertion associated with a node v € V
is a predicate on the values of Y. The process p is correct

with respect to the assertion o, if and only if for each state

(y,v) which occurs in a computation of p,

—— = w o we W e

Example:

47 -

av(y) = true,

The process p is correct with respect to a set of assertions
if and only if it is correct with respect to each assertion

in the set.

. Figure III.N& shows a "producer" and a "consumer' process
designed to communicate through a ring buffer of N elements.
(The parallel block structure notation of Dijkstra [1965a]

is used here. Each statement between the- parbegin-parend

brackets is considered to define a separate processor, and
the operand of that process consists of the variables de-
clared on the normal scope of the corresponding statement or
its parts.) Synchronization is achieved with two semaphores,
E indicating the number of empty buffers and F indicating the
number of full buffers. Figure III.1(b) shows a transition
graph representation of the producer with assertions attached
to its nodes.

At node 1 we have asserted that the sum of semaphores E
and F is either N-1 or N and that each is non-negative. At node
2 we have asserted that the sum of E and F is either N-2 or N-1.
Similar assertions are applied to each node of the transition
graph. If these assertions are true for every computation of
the producer (i.e., for every computational path of Figure
III.1(b)), then that process is considered correct with respect

to them.

48~

parbegin semaphore E=N, F=0;

array buffer(0:N-1);

Producer Process: begin integer R;
for R := 0, (R+1)mod N while true do
begin P(E);
<produce value in buffer(R)>;
V(F) end;

end;

Consumer Process: begin integer S;
for 5 := 0,(S+1)mod N while true do
begin P(F); .
<consume value from buffer(S)>;
V(E) end;

end;

parend;

Algol-like description of Producer and Consumer

Figure I1I.1(a)

+ 0 (Start)e¢--E=N A F=0
R :=0

v
—Ye 1¢====-[N-1 < E+F S NJ]AE=Z0AF =0

E>0: E := E-]

N

.2¢---=[N-2 < EAF S N-1JAE=20AF =0

Produce value in Buffer(R)

\
e3¢-=-=[N-2 < F+F < N-1JAE=Z0AF 20

F := F+1

L 4
vh4émena[N-1 < FHF < NJ]AE20AF =0

R := (R+1) mod N

Transition graph of the Producer

Figure III.1(b)

49~

+ 0 (Start)¢--=-[N-1 < E+F < NJAE=20AF =0

S =0
L
»ele¢---~[N-1 < E+F < NJ]AE=20AF =0

F>0: F :=F-1

v
¢2¢u---[N-2 S E+F < N-1] AE=20AF =0

Consume value in Buffer(S)

e 36——-- [N-2 < E+F < N-1]J]AE=20AF =0

E+1

=
i

s4¢-~-=[N-1 < E+F < NJAE20AF =0

S := (S+1) mod N

Transitionvgraph of the Consumer

Figure III.1(c)

Now consider a set A consisting of assertions for each of the nodes

of a transition graph G -~ i.e.,
A= {o, | vevh

Let y1 be an arbitrary value of the information set Y, let <v1,v2> be

an arbitrary arc in the set T, and let ¢

it be its label.
<V],V2> <V1,V2> .

Suppose that the truth of the assertion av(y1) and of the condition label

Py > (y1) implies the truth of the assertion o, on the new value of
1272 2
Y, that is, the truth of 0%2(t<v1,vz>(y1))' If this assumption were true

for all values of Y and all arcs in T" and if the assertion for every initi-
al state is true, then we could infer by induction the truth of all as-
sertions on all states which occur in computations.

This can be expressed as a well-formed formula of logic as follows:

-50-

)1 o o, (t

M [°§ (y1) A Cv. v >(y1 <v],v >

(y;))
1 1272 Ap)

For example, if arc Vs V> is the arc <1,2> of Figure III.1(b), then

(1) becomes

ot [[N—1SE+FSN]A[Ezd]A[F201,\
P<1,25 [E>0]]1=
ot<]’2>=':; [[N-2 < (E-1) + F < N-1] A [(E-1 2 0] A [F = 0]].

Note that in the right side of the implication the new value of each
variable is inserted wherever that variable appears in Figure III.1(b);
in this case, (E-1) appears for each instance of E and F is unchanged.
The Induction Theorem states that in order to verify that a process
is correct, it is sufficient to show that implications of the form of
(1) are true for all values of the information set. Establishing this
can be done informally or formally, TFor example, King [1969] and Good
[1970] discuss mechanical theorem-proving techniques which require an
explicitly-stated set of axioms in a formal system of logic, such as
the Peano axioms for integers or one of the "computer" arithmetic sys-
tems discussed by Hoare [1969]. 1In such cases the implications are es-
tablished by detailed formal proofs. However, Hoare pointed out that
for many purposes, semi-formal arguments can be used instead, Such
arguments can be regarded as outlines of sketches of formal proofs.
They are presented with the understanding that they can be fransformed

directly into correct, formal proofs if necessary. For other purposes,

The notation ¢ o t means the composition of functions ¢ and t with t
applied first to the argument, then g applied to the result.

-51-

completely informal, though rigorous, arguments are sufficient. For
example, the reader can easily convince himself that the example im-
plication aBove is true for all integers E,F, and N simply by noting
that every positive integer is greater or equal to one. The conclu-
sions then follow from the hypotheses by subtracting one from both
sides of each inequality.

In this thesis we will use semi-formal arguments and the notation
of first-order logic whenever it is convenient. Well-formed formulas,
such as (1), are constructed in the standard way from the ordinary
Vlogical punctuation or connective symbols, symbols for individual,
function, and predicate constaﬁts, and symbols for individual variables.

In particular, the symbols

X, ¥» 2, X15 ¥p» Zq, tc.

(i.e., the same as those representing values of information sets) stand
for individual variables, and all other non-punctuation symbols stand
for constants. All logical connectives associate to the left except
where indicated by square brackets, "[" and "]". To reduce the number
of brackets in a formula, the "dot" notation of Church ([1956], p. 75)
is used. Each dot represents a left bracket placed in the position of
the dot and a corresponding right bracket placed immediately before the
next unbalanced right bracket, or at the end, if there is none. For

example, the formula

vy « [P(y)] D+« Q(y) A R(y)

is an abbreviation for

-52.

vy [[P(y)] 2 [Q(y) A R(MI]

Finally we will use the symbols/\wi and \V/Wi to represent finite con-
ier iel
junctions and disjunction, respectively, of the well-formed formulae

W, >W, seeesW, ,
L L
ol) k

where I is a finite index set consisting of the members
i]’iz""’ik'

Well-formed formulae will have only one "interpretation" (in the
formal sense) for a given verification problem. That is, there will be
only one domain of objects with which individual variables and constants
will be associated, namely the set of values of the information set of
the process under consideration. All function and predicate constants
will be interpreted as functions and predicates on this domain, and all
relevant axioms and theorems applying to those functions will be assumed.
These are exactly the axioms and theorems to which the programmer appeals,
either explicitly or implicitly, when programming the process. In gen-
eral, the symbols chosen to represent specific objects, functions and
predicates will be their conventional names. This interpretation is

called the intended interpretation to distinguish it from other possible

interpretations of the same formulae (see Manm[1968]).

An assigmment to a well-formed formula is an association of the
free individual variables of that formula with elements from the domain
of the interpretation., An assigmment satisfies a formula if that formula
is true when the values associated with all constants and variables are

evaluated in the normal way. A well-formed formula w, is valid if and

-53-

only if every assignment satisfies it, or equivalently, if and only if
no assignment satisfies the well-formed formula — w. We will use the

notation

o

to mean that w is valid in the intended interpretation.

We can now state and prove the Induction Theorem in our notation.

(P,Y,Y) be a process repre-

Induction Theorem (Floyd [1967]): Let p
sented by the transitiom graph G = (V,T,L) and let A = {av | v €V}
be a set of assertions on the nodes of G, To prove that p is

correct with respect to A, it is sufficient to prove that

) v (3,0 eI A

<vé7\>€' %(y) A cp<v’w>(y) D aw(t<v"w>(y))

where 0 is the sole starting node of G.

Note that formula (2) has two parts, both quantified over all values of
Y. The first part states that % (on the start node) is true for all
initial states of the process. The second part is a conjunction of in-

stances of (1) for all arcs of the graph.
Proof: Suppose (2) has been proved. Let
C= {(Y:O)s (Y-I’V—l): (yzsvz):'--}

be any computation of p. Then by the first part of 2),

ao(yo) is true. Let v denote the node 0, and suppose for any

-54 -

integer i = 0, o, (yi) is true. From the second part of (2)
i
we can infer that

o (¥.) Ao ¥.) D« (t (y.))

Vi T RV T Wi VeV Tl
is true. Since C is a computation, Py v, >(yi) is true

1?7141
and Vi1 = t<v.,v. >(yi) by Lemma II.1. Thus
i? i+

(t (v.)) ~- i.e., & (y,,,) -=- is true. By

avi+1 <Vi’vi+1> i Vi i+1

induction, the assertions of A are true for all states of C,
and since C was arbitrary, the process p is correct with

respect to C.

There are several important observations about this theorem which
should be noted. First, Floyd showed that it is not essential to
specify a complete set of assertions. One assertion for each loop and
one for the halt node (if any) are sufficient because the rest can be
generated as follows. Suppose that for some node v in V, no assertion
has been specified but that for each node vj such that <v,vj> is an arc
of T, an assertion qv"has been specified or already generated, Let

]
o, be the assertion

<V,VJ/>a~[°p<""’j>(Y) > %J.<t<v,vj><>’)”°

Then by a simple theorem of the propositional calculus

o, () A cp<v’vj>(Y) - O‘Vj(t<v,vj>(Y))

for each arc <v,vj>, so that the corresponding part of the conjunction

in (2) is always true. Since the transition graph is finite and every

-55-

cycle {(loop) contains at least one assertion, this method of generat-
ing assertions terminates and includes all nodes of a transition graph,
It does not depend in any way on the determinism or non-determinism of
the process.

A second observation is that the converse of the Induction Theorem
is not true; that is, a process may be correct with respect to a set of
assertions but the well-formed formula (2) may not be valid in the in-
tended interpretation. This is the case if the assertions are too weak,
as in the example in the first part of Chapter IV. However, there is
_always a non-trivial set of assertions which satisfies (2). This is the

set of minimal assertions, defined by
k3 k *
A = {a;(y) | o%(y) = "(y,v) is in some computation of p"}.
(In this case, the conjunction

*
@, (¥) A @<v,w>(y)

is true if and only if the state (y,v) and the arc <v,w> are both part

of a computational path. Whenever it is,

O‘:;(t<v ,w>(y))

is also true and (2) follows immediately.)

The minimal assertions are, in general, not recursively construct-
able. That is, no algorithm can be designed to generate the minimal
predicates from an arbitrary transition graph. This is because whenever
the set ¥ is recursively enumerable, so is the set of values of y for

which q;(y) = true., (Simply follow all computational paths.) If the

-56-

set of values for which a:(y) = false could be generated, the halting
problem for the process p could be decided, contrary to well-known
results,

Finally, we should observe that if p is correct with respect to

an assertion o2 then it is obvious that

EAACHOICPRONE

T.e., the minimal assertion on that node implies all others with respect
to which the process is correct. Similarly, if p is correct with respect
to % and

= Vy[ozv(}’) D a (y)1,

then p is also correct with respect to a&- I.e., to prove a process cor-
rect with respect to the assertion q%, it is sufficient to prove it cor-
rect with respect to another one which implies the given one. Finally,

1

note that p is correct with respect to two assertions o, and o, if and

only if it is correct with respect to their conjunction.

Correctness of Cooperating Processes

Our model makes it relatively easy to extend this method of verify-
ing processes to collections of cooperating processes such as occur in
operating systems, Let p = (P,Y,¥) and p' = (P',Y',T') be two cooperat-
ing processes represented by transition graphs G = (V,T,L) and
G' = (V',T'",L') respectively. Lemma II.2 allows us to form a transition
graph representing their product, namely G x G' (which for convenience
we will denote by the triple (V x V',A,M)). Since this is a transition

graph, the Induction Theorem can be applied to it and a set of assertions

-57-

{B<V v'> I (vov') €V X V'}’

such as the sets we will consider below. To verify p x p' with respect
to this, it is sufficient to show that a well-formed formula similar to

(2) is valid in the intended interpretation. In this case, we have

(3) = ¥ Uy [y Uy, (0,00) €T % D8 qiy(y Uy A

* B

. W UYD) AD
<(v,v"), (w,w')> v,v")

<(vu'y, Gty U

2B et Ctv,v), Gouy> T VI

‘where each subscripted 8:u is the label on the corresponding arc, and

where (0,0') is the start node of the product. The formula (3) is ap-
parently not well-formed because y U y' is not an individual variable
but the value of a function. However, a formula of the form of (3),

that is

My Uy") F(y,vy"),

can be regarded as an abbreviation for

vzvywy'[z = y U y' D F(y,y")],

which is well-formed,

The set of assertions {B<N,v'>} may, of course, consist of any which
might describe either process or their interactions. There are three
particularly interesting cases which are constructed from assertions on

the nodes of the component graphs. Let

A={01VIVEV}

-58-

and

[T 1 1
A {av | v' €Vv'}
be sets of assertions on the nodes of G and G', respectively. Then

= ~xr! = t]
B= By vyl Brouny@UY) = o (,,v") €V x V']
and .
[' 1 Ty = ot ' 1 !
B {B (v,v") | B (v’vl)(y uy" dd(y)s(v,v') €V XV }
can be considered extensions of these assertions to the product pro-
cess. If p x p' were correct With respect to, say, B, we could per-
vert our terminology slightly and say that p itself is correct with

respect to A in the context of the product p X p'. A third interest-

ing set of assertions is the conjunction of the first two, that is
2 = (R) 1 = At ' ' 1
B= .ol B oG Uy =a) Ao, w,v') €V x V')

These assertions simply state that the prbduct process is correct with
respect to the assertions on both components simultaneously.

These ideas can be easily generalized to products of n processes.
We observed earlier that the product operator on both transition graphs
and processes is commutative and associative. Thus, it makes sense to

consider assertions of the form

i 1 2 A
Bl(V‘,vZ,...,vn)(y Uy™ U UyD = “il(yl)

and

5 5V UYE U e Uy =

E(v-l,v ,...,vn)
ai](y]) A QiZ(yz) A oo A a:n(yn).

There is no conceptual difficulty with generalization but the notation

-59-

can get extremely cumbersome very quickly. Thus we will present the
results of this chapter in terms of products of two processes and
simply note where and how to generalize upon them.

Let us show how the Induction Theorem can be used to verify a
set of cooperating processes. This problem is based on the program
and transition graph of Figure III1.2 and derived from famous algor-
ithms of Dijkstra [1965b] and Knuth [1966]. Each of N processes
executes the same algorithm with its own identity substituted for i.
For purposes of illustration, we have simplified the algorithm to
the point where the underlying processor is probably unrealistic.
For example, the tests impliea by the condition labels, would hardly
be implemented by single, indivisible operations in any but the most
unusual processors.

The algorithm controls the access of the processes to "critieal

sections" or program using the integer array C(0:N-1) and the integer

k, all initialized to zero. We have not shown the details of the
critical section (dotted arc<+4,5>) or of the remainder of the program
(dotted arc >7,8>). This will be justified in due course.

. The reader can imagine an N-dimensional product transition graph,

G0 X G1 X eoe X GN

representing the product of these N processes. Such a graph would be
impractical to draw for N=2 and virtually impossible for N = 3. This

is apparent because the product has

9N nodes

and 11(9N-1)N arcs.

-60-

parbegin integer array C(0::N-1) = 0;
integer k = 0;

process i: begin integer j;
L: C(i) := 1;
N-1

while —/\[(k-j) mod N < (k-i) mod N D G(j) = 0] do;
3=0
C(i) := 2;

if>/[c(j) = 2] then go to L;
JFi .
<critical section of process i>;

k := (i-1) mod N;
C(i) := 0;
<remainder of process i in which stopping is allowed>;

go to L end;
parend;]
]L//’__\
c(i) :=1 \
9 N-1
N-1 \Alk-j) mod N < (k-i) mod N
/\[(k-7) mod N<(k-i) mod N O =0 SC(3) = 0]:
j=0 c(j) = 0]z Vg null -
C(i) =2
JC(j) = 2] =
/A\[(Lj) 4 271 ;¥£ J) 1=nu
j#i 4

<critical section of process i>;

I
v

5
k := (i-1) mod N
\!6
C(i) := 0
\‘/7
|
i remainder of process i
I
]
v
- 8

Figure I1II.2

-61-

However, we will be able to proceed without a picture, and in fact we
will rarely, if ever, need one.

Table III.1 gives a set of assertions which we claim character-
izes the behavior of the ith process in the context of the product.
These can be associated with the 9N nodes of the product transition
graph in the manner suggested by the description of the set Bi above,
Clearly, if we prove that the ith process is correct with respect to
these assertions in the context of the product, we have also shown
that each of the other processes is correct with respect to similar

assertions. TFrom these we will be able to conclude that the algorithm

Assertion Comment
a; c(i) =0) The initial condition
a# C(i) = 0 Vv C(i) = 2 : FEither no claim is made on the
critical section or a previous
claim has been rejected.
a; C(i) =1 A tentative claim is made.
a; C(i) = 2 . The claim is strengthened,
i o oy .
%, C@(i) =2 A /A\[C(J) = 2 The only processes for which
j#i C(j) = 2 are those between

S (k-j) mod N < (k-i) mod N] process i and process k in
cyclic order. '

L same as L
R me as o
a; C(i) =2 Ak = (i-1) mod N This is the only time we can
know the value of k.
oz; c(i) = 0
a; C(i) = 0 The claim on the critical

section is released.

Table IIT,]

62~

correctly controls access to the critical sections. For if two pro-
cesses, i and i' were both in their criticﬁl séctions (i.e., at node
4 or 5 in both component graphs) during some computation, we would
have

c(i) =2 A /\[C() =2 D (k-j) mod N < (k-i) mod NJ

jri
and .

c@') =2 A /\ [C(J) =2 D (k-7) mod N< (k-i') mod N]
hja

both true, which is impossible for i % i' when 0 <i <N, 0 <i' <N,

Using the Induction Theorem to establish the correctness of the
process with respect to Table III.1 is an unreasonable task if attempt-
ed directly. It would mean showing that a formula of the form of (3)
is valid. But this formula has as many terms in its conjunction as

there are arcs in the product graph, namely
11V .

Any feasible method of verification must reduce these to a reasonable
number. The next section shows how we can use our knowledge about

the structure of the processes and the assertions to do this,

Simplifications

A quick inspéction shows that the arcs of the product graph fall
into 11 categories corresponding to the 11 arcs of a component transi-
tion graph. The labels on the arcs within one category are all similar
or identical and the proof of the implications corresponding to the
arcs within a group follow a similar pattern. That is, verifying the
product process is very much like verifying one of its components.

Thus, we can take advantage of this to simplify the proof.

-63-

Observe that, in principle, it would be possible to prove that
a process is correct with respect to a set of assertions in the con-

text of a system of processes by:

1. proving that the process is correct when considered
alone, and
2. proving that none of the other processes alters the

truth of those assertions,

This decomposition is recursive because a component process of a product
might, itself, be a product of other processes; thus part (1) could be
decomposed the same way. However, at some level a process can be veri-
fied by direct application of the Induction Theorem and part (1) would
be proved. The difficulty of part (2) depends upon the structure of

the system and in some cases it can be treated by inspection, as we will
see below,.

The decomposition of a verification can be expressed in formal
terms as follows: Let G = (V,T,L) and G' = (V',T',L') be the two transi-
tion graphs representing processes p = (P,Y,%) and p' = (®',Yy',z2"),
respectively. Let A = {av l v € V} be a set of assertions on the nodes
of G. Then, to prove that p is correct with respect to A in the con-

text of the product p x p', it is sufficient to prove:

To ¥y« [(5,0) €TD0y(M] A

<V,W>ET" olv(Y) A °P<v,w>(y) D %(t<v’w>(y))

2. for every node v € V and every arc <v',w'> € T",

- v(y U ¥y L, (v) A m'<v,,w,>(y') O q, (new value of) 1]

-6l -

(The "new value of y" in this formula is the result of applying the

operation t' to y' - something which was hard to describe in

<v',w'>
the functional notation (see page 36) but easy to imagine in the
assignment notation.) If both parts can be proved, then formula (2)
of the Induction Theorem is satisfied for the product process and the
correctness follows immediately.

Proving part (1) is straightforward. Part (2) is trivial for
all of those cases in which the assertion o and the operation t'<v',w'>
are "independent" of each other. This could be the case if o, de-
pends only on variables which are never changed by the process p', or
if ¢t

[] . .
operates only on variables not known to p.
<v',w'> y B

Example: In Table III.1 the assertions o, for v =0,1,2,3,7 and 8
(of Figure III.2) depend only on values of C(i). But by in-
spection, we see that this element of the array C is changed
only by the ith process, never by any of the others. Thus
these assertions remain invariant under all operations of

the other process.

Example: 1In the producer-consumer system of Figure III.1, the variable
R is 1oca1:to the producer and not known to the consumer, Thus
all assertions on the consumer are independent of arc <4,1> of
Figure III.1(b), since it describes an operation which changes

only R.

The only cases in which part (2) requires any serious attention are

those in which the assertion and operation are not obviously independent.

-65-

in the example below this includes only five cases out of 99.

Another observation we can make is that, in principle, the
details and fine structure of the "local computations'" of a process
do not affect its correctness in the context of a system. Thus we
could replace a sequence of arcs or a subgraph describing such opera-

tions by.a single arc representing the equivalent effect.
Example: In Figure III.1(b) arc <4,1> describes the assignment

R := (R+1) mod N.
In practice, this assigmment would probably be impleménted as
a sequence of several operations. One possible way is repre-
sented by the fragment of a transition graph in Figure ITI.3.
A test is made to determine whether to increment R or reset
it to zero. If it is incremented, this must be done using a
- temporary (local) accumulator ACC. This detail is completely
irrelevant to the question of cooperation between the producer
and consumer, so that including .it in the transition graph
would only serve to complicate matters. Thus, we have simpli-
fied the transition graph by using a single arc <4,1> as

originally given.
R < N-1:null

\9-‘_\

_AcC := R

\. ACC = ACC.|.']
\

R =2 N-T:null

'\R:= ACC
l‘\ ’/.?_U\ - -
R :=0 T

Figure III.3

-66-

In this kind of simplification we are replacing a subgraph of
one of the component transition graphs by a single arc representing
an equivalent operation, subject to the condition that no operation
in that subgraph affects any variable mentioned by an assertion on
the other process. We wish to infer that the unsimplified system
is correct with respect to a particular set of assertions, by showing
that the simplified system is correct with respect to that same set.
I1f, as above, we are verifying p with respect to the set of asser-
tions A in the context of the product p x p', there are two cases

to consider:

a. the simplification is done to the transition graph G'
which represents p', or

b. it is done to graph G representing p.

For case (a) observe that a proof of part (1) - that p is correct
when considered alone - is unaffected by the simplification. In part
2 each of the arcs <v',w'> involved in the simplification is indepen-
dent of each of the assertions o, since we stipulated these operations
muét not affect any variable mentioned by any o, Thus, a proof of
part (2) is also unaffected by the simplification, and éo we can infer
the correctness of the unsimplified system by proving parts (1) and
(2) for the simplified system.

In case (b) we are simplifying the transition graph G, so we must
be able to infer the correctness of the unsimplified version of p from
that of the simplified version. That is, we must be able to conclude

that part (1) is true for a suitable extension of the set of assertions

-67-

A to the unsimplified case. If the single arc is, indeed, equivalent
to the subgraph it replaces, this is no problem. Part (2) follows
immediately because the assertions on nodes of the subgraph differ
from those at the ends of the equivalent arc only in their statements
about variables not mentioned by process p'. Thus, a proof of part (2)
on the simplified system also applies to the unsimplified one, and the
correctness follows.

Therefore, we can conclude that from the point of view of proving
correctness, we can ignore the details of computations on ''local"
variables and variables not mentioned by the other processes of the
system. An obvious extension of this result is that we can also make
the same simplification even when the variables are not necessarily
local or private to a process; provided that whenever the process 1s
executing in the subgraph in question, we can show that those variables
are "temporarily" not mentioned by the other component process. Other,

more general types of simplifications fall into the scope of Chapter V.

Example

Let us illustrate the verification of a collection of cooperating
processes by completing the example begun in Figure II1.,2. We can see
by inspection that the initial condition - i.e., the first implication
of (3) - is valid because all of the elements of the vector C are
initially set to zero. Table III.2 is useful in showing that ith com~
ponent process is correct when considered alone. The implications in
this table are exactly the implications in the conjunction of the
formula of part (1) above. Note that the right side of each implication

shows the new values of the variables resulting from the operation

-68-

arc ‘Formula of part (1)
<0,1> C(i) = 0>+ C() =0V c(@E) =2
<1,2> C(i)=0ve@E)=2>1=1
N-1
<2,2> C() =1 A[\/~+ (k-j) mod N< (k-i) mod N D C(j) = 0]
320
DC(i) =1
N-1
<2,3> c(i) =1 A /N\[(k-i) mod N < (k-i) mod N D C(j) = 0]
3=0
D2 =2
3,1 c(i) = 2 /\Y[C(j) =2]>5. C(i) =0V C) =2
jFi
<3,4> ci) =2 A /\[CU) #2112+ CE) =2 A
it
/\[C() = 2 D (k-j) mod N < (k-i) mod N]
iFi
<b,5> c(i) = 2/7£\[C(j) =25 (k-j) mod N < (k-i) mod N] D
i

.C(i) = 2 A /74\[0(3-) =25 (k-j) mod N < (k-i) mod N]
i |

<5,6> c(i) =2 A /\[C() = 2 D (k-j) mod N < (k-i) mod N] D
i

.C(1) = 2 A (i-1) mod N = (i-1) mod N

<6,7> C(i) =2 Ak = (i-1) mod ND0 =0
<7,8> C(i) = 0DC() =0
<8,1> C(i) = 0>+ C(A) =0V C() =2

Table ITII,2

represented by the corresponding arc. The validity of each of these
implications follows directly from the propositional calculus and the

following theorems of the intended interpretation:

-69-

l-0=0
|- 1
-2=2

= (i-1) mod N = (i-1) mod N.

1

[

Thus we can infer that part (1) is valid in the intended iﬁterpreta-
tion - that is, that the ith process is correct with respect to the
assertions of Table III.1 when considered alone.

Table III.3 shows which of the implications of part (2) are
trivial and which are not. Rows marked with an asterisk correspond
to operations of the process i' (i' # i) which do not affect the vari-
ables of the ith process (in this example all of these operations are
null). Columns marked with an asterisk correspond to assertions on
the ith process which are independent of all variables which can be
changed by any other process. In this case, these assertions depend
only on the value of C(i). Column 5 is also marked because the asser-
tion aé is the same as ai, so that proving part (2) for one will serve
the other, as well. By inspection, we also see that the Qé depends
only on the variables C(i) and k, neither of which is manipulated by
operations on arcs <1,2>, <2,3> and <6,7>. Thus, part (2) holds for
these, as well,

There are only five blank entries left in Table III.3. These
correspond to cases of (2) which demand some kind of proof. The fol-

lowing arguments are an outline of suitable proofs:

a, arc <1,2>, node 4: The body of (2) becomes

arcs
<0,1>

<1,2>

<2,2> 7

<2,3>
<3,1>
<3,4>
<4,5>
<5,6>
<6,7>
<7,8

<8,1>

-70-

.th ‘s
nodes of i transition graph

0 1 2 3 4 5 6 7 8

of graph i ! . * % ¥ ¥ % *
* * * * * * * * % *
* ES * * * * % *

* % * * * * * * * %
* % * % * * * *

% * % * % * * * *
* * * * * * % * * *
* * * * * * * * * *
* * * * * * *

* % %* %* kS * * %

* * * * * * * * * %
* * % * * * * * * *

Table IIL,3

C(i) = 2 A /7£\[C(j) =2 > (k-j) mod N < (k-i) mod N IO
it -

L e =2 A /\[C(§) =2 D (k-j) mod N < (k-i) mod N]
| i -
!

A[T =22 (k-i') mod N < (k-i) mod N]

This follows directly from the propositional calculus and the

theorem f’— [1 ;4 2].
b. arc <2,3>, node 4: The body of (2) becomes

C(i) =2 A /7‘\[C(j) =2 5 (k-j) mod N < (k-i) mod NJ
JFi

-71-

A [(k-j') mod N< (k-i') mod ND C(j') = 0] D

.c(1) =2 A /\I[CG) =2 D (k-j) mod N< (k-i) mod N]
jFi
i

Al2=22>((k-j'") mod N< (k-i) mod N]J.
. The second line implies that
(k-i) mod N < (k-i') mod N D C(i) = 0.

But C(i) = 2 from the first line and i#i' by hypothesis,
so that

(k-1') mod N < (k-i) mod N,
and the implication follows by the propositional calculus,

c. arc <6,7>, node 4: The body of (2) becomes

C(i) =2 A /7£\[C(j) = 2 D (k-j) mod N < (k-i) mod NJ
jFi

DC(i) =2 A) [C(i) = 2 D (k-j) mod N < (k-i) mod N]
JFi
L

A0=2>(k-i') mod N < (k-i) mod N.
This follows from the fact that
- -0 = 2]
and the p?opositional calculus.

The last two cases - i.e., arcs <5,6> for nodes 4 and 6 - do not

submit to our simplifications. For example, in the case of arc = <5,6>,

-72-

node = 4, the formula of part (2) becomes
c) =2 A /N\lc@i) =2 D (k-j) mod N< (k-i) mod N]
JFi

SC() =2 A /7£\[C(J) =25 ((1'-1)-1) mod N < ((i'-1)-i) mod NI,
Nhaks

which is not necessarily true if (i'-1) # k. Thus, our simplification
techniﬁues have treated all but two terms iﬁ the conjunction in formula
(3) corresponding to these two arcs. However, if we consider tﬁe con-
junctions of assertions on two processes simultaneously, we can com-
plete the verification. By considering the appropriate terms of formula
(3) with B(V’V,)b= o, A a;., we obtain an implication with an identically

false left side, rendering the implication itself true for all values of

the variables. This can be seen as follows:
d. arc <5,6>, node 4: The conjunction of the assertions is
C() =2 A /\[c(J) 2 5 (k-j) mod N < (k-i) mod N]
ACEH') =2 A 1//\\ [C(j'") =2 D (k-j') mod N < (k-i') mod NJ.
In particular, we can infer from this both
(k-i') mod N < (k-i) mod N
and
(k-i) mod N < (k-i') mod N,

a contradiction.

e. arc <5,6>, node 6: The conjunction of the assertions is

~73-

C(i) = 2 A /%\[0(3') =25 (k-j) mod N< (k-i) mod N]
jFi
AC(') =2 Ak= (i'-1) mod N.

By substituting (i'-1) mod N for k in the first line, we can

infer that

((i'-1)-i') mod N < (i'-1-i) mod N.

But a property of the integers modulo N is that

((1'-1)-1i) mod N = (~-1) mod N
= N=-1
= x mod N

for any integer x. Since i # i', we know that

((i'-1)-1i') mod N> ((i'-1-i) mod N,
a contradiction. Thus, for these two arcs, the assertions

satisfy the appropriate term of formula (3) directly.

This essentially completes the proof that the process of Figure
III.2 is correct in the context of a product of identical processes.
What we have shown is that the product is correct with respect to a

set of assertions of the form

0 1 -1 01 N=-1
{aVO A av1 Ao A QSCN'1) | (V ,V yeee,V) €

v x Vool x VN—1}.

We showed this by using the Induction Theorem on the ith process in
isolation, then by showing that the interactions between the ith and

(i')th process do not affect the validity of the assertions ai. In

7

all but five cases, this could be done by inspection. In two of those
five cases, we had to consider assertions on at least two component

processes at a time,
Comment

The actual proof techniques which might be used to prove well-
fomed formulas such as (2) and (3) are beyond the scope of this
thesis. We are only interested in converting the problem of verifying
a system of cooperating processes into a reasonable theorem to be proved.
If it is necessary or desirable, any of various forms of mechanical
theorem provers can be applied. Or we can be content, as in this thesis,

to restrict our attention to problems which can be proved manually.

-75-

CHAPTER IV

SOME OTHER FORMS OF CORRECTNESS - ADDING INFORMATION

In the previous chapter, "proving correctness' meant showing that
assertions about the values of, and relationships among, the variables
of a process aré consistent with a transition graph representation of
that process. For an interesting class of problems, this is suffici-
ent. That is, some interesting properties of programs can be stated
in the form of assertions about the program variables and proved cor-
rect. For example, London [1970] proved, albeit laboriously, that a
certain sorting algorithm does correctly sort an array in place. Hoare
[1971] has used similar methods to help synthesize an algorithm which
is a priori correct. Others, including Good [1970], Floyd [1971],
and Snowden [1971], have considered man-machine systems based partly
on these methods to support the development and/or verification of
programs. All of these efforts have been concentrated on processes
which are deterministic and which do not communicate with other pro-
cesses.

When we consider cooperating processes, such as are common in
operating systems, the results of the previous chapter are not as ef-
fective as they might be. One reason is that, although a property of
the system might be expressable in the form of assertions and although
the system might be correct with respect to those assertions, the
assertions do not contain enough information to allow a proof. That
is, the set of assertions may not satisfy formula (2) of the Induction

Theorem, even though they correctly characterize all computations of

-76-

the product process. In the author's experience, this is the case
all too often.

A second reason is that there are interesting questions regarding
the correctness of the cooperation which cannot be directly reflected
in assertions about process variables. By verifying a collection of
processes with respect to a set of assertions, we are effectively say-
ing "for every computation, the value of the variables have a specific
property or relationship." We would also like to ask "Are there any
computations with a certain property?" or "Does every computation
reach a certain state?"

In this chapter we will consider some ways of modifying the repre-
sentations of processes and adding information in order to overcomé
these difficulties, In particular, we will consider the addition of
"pseudo variables" to a representation of a process to make possible
stronger assertions about it. We will consider the application of
variations of Manna's results involving termination of non-deterministic
algorithms [1968] to prove certain properties of cooperating processes.

The difficult part, it seems to this author at least, of verify-
ing any collection of processes is not the proof but the construction
of a suitable set of criteria. Once the behavior of the system has
been suitably cﬁaracterized by a set of assertions or otherwise - a
proof is relatively straightforward. It may be lengthy, especially
if a complete, formal proof is desired. But it is not conceptually
difficult. Frequently it depends only upon the theorems and axioms
which the programmer had in mind when he designed the algorithms (see

Hoare [1968] and Dijkstra [1970]). For example, the verification of

—

—— e -

-77-

the algorithm of Chapter III involved only a few equalities and in-
equalities of the theory of integers modulo N. The deductive reason-
ing was simple, although tedious. Most of the examples which follow
have the same property, so it is natural that we concentrate on dis-
covering what to prove rather than on the details of a particular

verification.

Adding Variables to Processes

Consider the simple producer-consumer example from the beginhing
of the previous chapter. Figures III.T(b) and III.1(c) show some
assertions about the values of the two semaphores governing the co-
operation between these processes. The reader can convince himself
intuitively that each of these processes is correct in the context
of their product with respect to those assertions. However, the In-
duction Theorem provides no help in proving it because the assertions
on node 1 of each component process are too weak.* Of both processes,

it is asserted on node 1 that
(1) [N-1 <EH+F <NJ]AE=O0AF =0,

In order for the techniques of the previous chapter to apply, we must
be able to prove that the operation described by arc <1,2> of, say,
the producer preserves the invariance of (1) on node 2 of the consumer.

That is, we must be able to prove that

*It might be suggested that they are too weak to be interesting, but
it is not our purpose to evaluate the merits of a desire to prove a
particular property about a process. We are primarily interested in
the effect that cooperation among processes has on proving them to
be correct.

-78-

(2) - [N-1<EF<NIAE20AF=0A
E> 0D

* [N-1T < (E-1) + F<N]A(E-1) 20A F =0,

the appropriate instance of fhe last formula of page 63. But (2) is
not true, as the case

E+F = N-1

illustrates. Thus, the Induction Theorem does not apply.

One of the difficulties in this example is that although the
assertions of Figure III.1 do correctly characterize this system of
two processes, they do not assert under what condition the sum E+F
has the value N-1 and under what conditions it has the value N. The
author could discover no suitable stronger assertions without intro-
ducing extra information. Habermann [1972], in his discussion of
this problem, introduced three counters which effectively describe
the "progress" of the processes. Then interesting properties of the
processes were described in terms of these counters and proved. How-
ever, they are not in the information set of either of the processes
and could not be identified in an implementation of them.

This suggests that it is both helpful and necessary to add in-
formation to a representation of a system of cooperating processes in
order to state and prove interesting properties about it. Such informa-
tion would effectively reflect the conventions that the programmers
have agreed upon in order to make communication work. For example, the
programmer of the producer knows that the semaphore E reflects the num-

ber of empty buffer positions except possibly when the consumer is

pr— malin ey e SR e

——— ——— e

-79-

operating upon one. Furthermore, this is true independently of the
internal structure of the consumer, its method for naming buffer posi-
tions, or the particular transition graph which represents it.

In effect, the set of variables and the program counter (i.e.,
location in the transition graph) do not always form an adequate de-
scription of the "state" of a cooperating process for characterizing
its properties within a system. By adding extra information elements,

which we call pseudo variables, the state can be expanded for descrip-

tive purposes. The counters introduced by Habermann are pseudo vari-
ables in this sense, as are the various '"coordinates'" suggested by
Dijkstra [1968a] for measuring the progress of the execution of a pro-
gram. In Theorem IV.1 we will present a justification for drawing con-
clusions about a process by proving assertions on its pseudo variables.
This can be done provided the pseudo variables are added in such a way
as to preserve the nature of the computations of the original process.
I.e., they must be completely redundant from an operational point of
view.

In order to prove the theorem we will define "augmented process'
and prove a lemma about the states in the computations of an augmented

process,

Definition: Let p = (P,Y,%) and p' = (P',Y',%') be two processes repre-
sented respectively by transition graphs G = (V,T,L) and
G' = (V,T,L') which differ only by the labels on the arcs.
Furthermore, suppose that:
1. Y is a subset of Y' (i.e., Y' is constructed from Y.

by adding variables),

-80-

2. there is a one-one correspondence of initial states
of p'and p' such that if (y6,0) € ¥' corresponds to
(YO,O) € ¥, then y6 | Y= Yo {

3. the difference between the labels of corresponding
arcs of the two graphs consists solely of extensions
of the operations of P to include assignments to {

those elements of Y' not in Y (i.e., for each

<v,w> €T
1 1 = '
a. o <v,w>(y) Q<v,w>(y | Y), and
] ey 1
b (', LD D= LG])

Then the process p' is called an augmentation of p, or more

briefly, an augmented process. {

Lemma IV.]: There exists a one-one correspondence between the set of

Proof:

computations of a process and the computations of any augmenta-
tion of that process. Furthermore, the states of corresponding

computations are also in one-one correspondence.

Suppose that process p' = (P',Y',%') is an augmentation of pro-

cess p = (P,Y,%), and that
¢' = {(rp:0)s 375995 (7559505003

is a computation of p'. By 3a énd 3b of the definition above,
¢c={y | .00, (33 | ¥,v), 3 | ¥,v,),..03

is a computation of C. Conversely, let

-81-

C= {(Yan)’ (Y1,V-|), (yzsvz)""}

be any computation of p. Then by 2, there is a (yb,O) ey

such that Yo = yb | Y. For i = 1,2,3,..., define inductively,

yi, .=t vy
i+1 <Vi’vi+1> i

Then by 3a and 3b,

C' = {(7g:0)5 (¥75v1)s (¥55V5) 50003

is a computation of p' and for each i = 0,1,2,...,

Thus the correspondence is established.

Now consider an assertion AV associated with node v of the transi-
tion graph representing p. The same assertion can be associated with
the corresponding node of a representation of an augmentation of p by

considering the truth value of Av(y' | Y).

Theorem IV.1: If p' is an augmentation of p, then p is correct with

respect to AV if and only if p' is.

Proof: By Lemma IV.1, the state (y,v) occurs in a computation of p if
and only if state (y',v) occurs in a computation of p', where
y=7v' | Y. Thus av(y) is true if and only if Av(y' [) is

true; and by definition of correctness, the theorem follows.

Note that the assigmment notation is most convenient for applying

this theorem. The hypotheses are automatically satisfied if G' is

-82 -

constructed by adding pseudo variables and assignments to those pseudo
variables without changing any other parts of the labels on the transi-
tion graph, In particular, none of the condition labels nor any of the
assigmments to the original variables may change, because these deter-
mine the character of the computations of a process or system of pro-

cesses.

Example

Let us consider once again the producer-consumer example of Figure
II1.1. We can quickly see how to verify this system with respect to
the assertions given. Then we will turn our attention to proving a
more interesting property: namely, that the consumer receives values
from the buffer in exactly the same order as produced by the producer.
The second verification will depend, in part, upon the first one,

First, let us augment the information set of the producer-consumer
system with two Boolean pseudo vériables, x and y, both with initial

value false. To arc <1,2> of Figure III.1(b) we add the assignment

x := true; and to arc <3,4> we add the assigmment x ;= false. Similarly,
we add assignments y := true and y := false to arcs <1,2> and <3,4>,

respectively, of Figure I1I.1(c). The modified transition graphs are
presented in Figure IV.1 along with some new assertions. (Note the
abbreviation

E+F = if x then N-1 else n
which means

[x DE+F = N-1] A [x D E+F = N].)

It is now trivial to prove that each of these two processes is

W

-83-

Produce value in
Buffer (R)

R := (R+1) mod N

NAF=0Azx= false

E =2
F+F

0 AF =20 Ax= false A
= if y then N-1 else N

E =2
E+F

0OAF =20 Ax= true A
= if y then N-2 else N-I

E =
E+F

0 AF =20 Ax= true A
if y then N-2 else N-1

Il

E =
E+F

0O AF =20 A x= false A
if y then N-1 else N

i

Augmented Producer Process

.0 (start) ~------ y = false AEZ0AF 20 A
: E+F = if x then N-1 else N
S =0
G VT emmmmemmmaeea y=false ANE=20AF=0A
F>0: F := F-l E+F = if x then N-1 else N
y := true
b
+2 e mmae———— y=true NANE=20AF =0A
E+F = if x then N-2 else N-1
Consumer value -
from Buffer (S)
e y=true ANE=Z0AF =20A
B oc= Et E+F = if x then N-2 else N-1
y := false
v
— 1 y = false AE20ATF 20 A
§ := (5+1) mod N E+F = if x then N-1 else N
Augmented Consumer Process

Figure IV.1

-84 -

correct with resepct to these new assertions., The details are left
to the reader. Furthermore, each of the assertions in Figure IV.1
implies the corresponding assertion‘of Figure III.1 in the intended
interpretation, Thus, we can conclude from the remarks of Chapter
IIT (page 56) that the augmented producer-consumer system is also
correct with respect to assertions of Figure III.1. But then, by
Theorem IV.1, the original producer-consumer system is also correct
with respect to those assertions.

In order to establish the more interesting property that the sys-
tem maintains a First-In, First-Out discipline, we will need some extra
notation as well as some pseudo variables. Let us denote by Mk the
kfh value produced by the producer and by Nk the Eth value consumed by

the consumer. Then the action
"produce value in Buffer(R)"

can be represented by the assignment

Buffer(R) := Mk
for an appropriate value of k. Similarly, the action

"consume value in Buffer(S)"
can be represented by the assignment

N, = Buffer(S).

Let us also introduce a counter j, analogous to one of Habermann's

counters, which counts the number of times the consumer loop is

—— —a— -

—— ——

-85-

traversed and, hence, the number of values consumed from the buffer.
This pseudo variable, which initially is zero, will be incremented
by an assignment j := j+1 on arc <1,2> of the consumer.

The essential assertion (on node 1 of the consumer) with respect

to which we will verify the system is

Ve [1<k=<joM =NI.

That is, each of the first j values consumed is equal to the correspond-
ing value produced. 1In order to facilitate our proof, we will also

add the following two assertions to node 1:

Vk [-E <k < F A j+k = 0 D Buffer((5+k) mod N) = Mj+k+1}

AS = jmod N
This formula describes the values of the elements of buffer, except for
the one element which is being processed by the producer. Assertions
on the other nodes of the consumer transition graph can be derived by
working backwards from those on node 1. Figure IV.2 illustrates the
augmented consumer transition graph with these assertions.
To prove that the augmented consumer is correct with respect to

these assertions in the context of the product with a producer process,

we must show first, that it is correct when considered alone and, second,

that the actions of the producer preserve the invariance of the asser-
tions on the consumer. The first part involves little more than simple
substitution and a direct application of the Induction Theorem. The
second part is harder. In order to show that the operations of the pro-

ducer preserve the invariance of the assertions on the consumer, we will

-86-

(0 (start) ----1 §=0 AVK[0 =k < F D Buffer (k mod N)=]

S :=0
R TWk[1 <k <jOM=N]AS=jmdNA
Wk[-E <k < F A jtk 20D
Buffer ((S+k) mod N)= Mk+k+1]
F>0:F := F-1
Vj = j+1
S R Vk[1sk<jDMk=Nk]/\S=(j-1)rg_cﬂN/\
— Vk[-E <k £ FAj+k>0>D
d Buffer(s) Buffer((S+k) mod N) =M, , 1]
V. . _ .
L TR VK[l <k = joM=N]AS= (j-1) mod NA
Wk[-E <k <F A j+k > 0D
E := E+l Buffer((S+k) mod N) = Mj+k]
S s (5+1) mod N R, vk[1Sk$jDMk=Nk]/\S=(J'-1)ﬂ£iN/\
Wk[-E+1 <k <F A j+k > 0 D
Buffer((S+k) mod N = Mj+k]

Figure IV,2

identify three properties that the producer should possess. Then we
will show that our producer does, indeed, possess these properties.
Observe that the variables S and j are only changed by the consumer,

so that no operation of the producer can alter their values. Thus, we
need only consider the variables E, F, and Buffer and ensure ;hat pro-
ducer operations do not change the truth of any assertions on the con-
sumer. The three properties, then, are restrictions on the producer.

The first is that the producer operates upon the semaphore E only by

decrementing it. We observe that decrementing E can only reduce the

N e e o

——— - ——

-87-

range of an inequality on the left side of an implication, and there-
fore does not affect the truth of the implication. This holds for
each of the assertions on nodes 1, 2, 3, and 4.

The second property is that when the producer operates upon the
semaphore F, it does so only by incrementing it by one, and then only
when the. assertion

Buffer ((j+F) mod N) = Mj+F+1

is true. Suppose this property holds. Then, in order to preserve the

assertion on node 1 of the consumer, we must have

|- Wk[-E < k < F A j+k = 0 D Buffer((S+k) mod N) =M,]

AS = jmod N A Buffer((j+F) mod N) = Mj+F+1

D VK[-E <k < F+1 A j+k = 0 D Buffer((5+k) mod N) = Mj+k+1]'

(The right side of this implication is derived from the appropriate part
of the left by substituting F+1 for F.) This is obviously true as sub-
stitution for the case K = F will show. Similarly, the assertions on

nodes 2, 3, and 4 are invariant if

|- Wk[-E <k <F A j+k > 0 5 Buffer((S+k) mod N) =M,]

AS = (j-1) mod N A Buffer((j+F) mod N) = Mj+F+'|

DO Wk[-E <k £ F A j+k > 0 D Buffer((5+k) mod N) = Mj+k]

(For node 4, read "-E+1" in place of "-E".) This is true for the same
reason as the previous one. The invariance of the assertion on node
zero is trivial. Thus, an assignment to the semaphore F, made under
the restrictions of the second property, preserves the invariance of

the assertions on the augmented consumer.

-88-

The third propety of the producer process is that it should not
make an assigmment to a buffer element mentioned in any assertion on
the augmented consumer. One way to guarantee this is if the producer

operates only upon the element
Buffer((j+F) mod N)

and then only when the relation N-2 < E+F < N-1 is true. This is be-
cause under this relation, each assertion specifies values for only

(a subset of) the buffer elements of the ring buffer, namely
Buffer ((j+F+1) mod N),...,Buffer ((j+F-1) mod N).

Thus an assigmment to Buffer((j+F) mod N), which is not amongst these,
does not affect the truth of the assertion.

Provided that the producer's operations on the buffer and the
semaphores have these three properties, the invariance of the assertions
on the consumer is preserved, This is because the three properties ac-
count for all of the variables upon which the producer can operate. We
have used informal but vigorous arguments to show this. At the expense
of clarity, they could be translated into formal, but tedious, argu-
ments which show the same thing. (This seems to be a characteristic of
most program verification efforts - that the verification becomes ex-
tremely long and tedious, relative to program size, if it carried out
at an appropriate level of detail. Hopefully, the results of current
and future rese#rch will provide insight to help us reduce this complex-

ity and tedium.,)

—— —— e ——

N7
—r
1
i
1
1
1
'
i
1
'
1
1
1
1
1
1
1
=
I

-89-

In order to show that our producer process has the three properties
we have just presented, we will augment it with a counter i which counts
the number of values produced. Figure IV.3 illustrates the augmented
process, along with some useful assertions. To prove that this process
is correct with respect to these assertions is trivial. It is clearly
correct when considered alone. When considered in the context of the
augmented producer-consumer product, the only variables which are changed
by the augmented consumer and which also appear in these assertions are
j and F. But they always appear’'as a sum, j+F. The only operation
performed by the consumer on these is to decrement F by one and simultan-

eously increment j by one. Thus the sum remains invariant under the

action of the augmented consumer, and hence, so do the assertions on the

augmented producer. Thus, the producer process is correct with respect

to these assertions in the context of the product.

Il
o

.0 (start) ----=-- '|i=0/\j=0/\F

(j+F) mod N A i = j+F

E>0: E := E-1
i = i1
?2 """""""" + R= (j*+F) mod N A i = j+F+]
tBuffer(R) := Mi
I
|
|
v. ' B
3 mmmemmmommooee- Buffer ((J+F) mod M) = M, o A
F := F+l R = (j+F) M N Ai= j+F+l
R := (R+1) mod N G mmmmmmmmmemooe- { R= (j+F+1) mod N A i = j+F

Augmented Producer Process

Figure Iv.3

-90-

That the first of the three properties holds is evident from
Figure IV.3, since E only appears in an assigmment representing a P-
operation, i.e., which reduces its vélue. The second property holds
because the assertion

Buffer((j+F) mod N) = Mj+F+1

is true whenever the assigmment F := F+1 is executed. The third prop-

erty holds because when the producer executes the assigmment
Buffer(R) := Mi’

R = (j+F) mod N and i = j+F+1. Furthermore, the relation N-2 < E+F < N-1
holds, by our verification of Figure III.1 and Theorem IV.1.

Thus the augmented producer process has all three properties and
therefore preserves the invariance of the assertions on the augmented
consumer. So we conclude that the latter is correct in the context of
the augmented producer-consumer product with respect to those asser-
tions. This implies that each value consumed by the augmented.consumer
was produced by the augmented producer in the same order. Thus, by
Theorem IV.1, we can conclude the same about the original producer-con-
sumer system.

Note that as a corollary of our verification, we have a justifica-

tion for representing the operation
"produce a value in Buffer(R)"

as a single arc in the tramsition graph, even though this might be a

simplification of a more complex subgraph. This is because we have

—— N ——

-97 -

shown that both before and after the buffer element is changed, that
element is, in effect, a "temporary local variable" of the producer
(since it is not mentioned by any test, operation, or assertion of

the consumer). By the results of the previous chapter, we can re-

place a subgraph representing this part of the computation with a

single arc. Thus, this verification also applies to producers which are
not instantaneous in their production. A similar argument applies

to the consumer operation
"consume value in Buffer(S)."

One lesson to be drawn from this example is that of the difficulty
of proving even the most obvious properties about cooperating processes.
The very simple assertions of Figure III.1 could not be proved without
introducing additional machinery. The somewhat more interesting asser-
tions of Figure IV.] required an argument many times as long as the
program as well as extra machinery. In effect, the program describing
the two processes is a very compact representation of an otherwise very

cumbersome theorem.

Weak Termination, Deadlocks, and Tllegal States

In the previous section we showed how some properties of a set of
cooperating processes could be studied by adding information to the
representation of those processes. In this section and the next sec-
tion, we will see how some other properties can be studied by consider-
ing the circumstances under which the processes do or do not terminate.

We showed in Lemma IV.1 that there is a one-one correspondence between

-92-

the computations of a process and the computations of an augmented
version of it. Thus we can study the termination characteristics of
either version and infer the same conclusions about the other.

We have noted previously that operating systems programs are often
designed not to terminate. That is, after completing some work they
loop back and look for more to do. Termination is a special - and some-
times very unusual - occurrence. On the other hand, there are occasions
when some processes may stop unexpectedly. For example, the designers
of a system may have defined a state to be "illegal" in the sense that
if the system ever reaches that state, some catastrophe occurs. Thus,
an important property which one would like to prove about such a sys-
tem is that no computation ever reaches that state. The discussions of
the prevention of system deadlocks (Habermann [1969], Havender [1968],
Holt [1977a and 1971b], and others) fall into this category. The con-
dition of deadlock is loosely defined as the condition in which each
processor of a system is blocked, awaiting action by some other pro-
cessor. Certain states of the system are identified as potential
causes of deadlocks, and algorithms are designed to prevent the system
from reaching those states.

Observe that to prove that no computation of a process ever reaches
a certain state, it is sufficient to prove the process correct with re-
spect to an assertion which is false for that state., This follows
directly from our definition of correctness. It is equivalent to trans-
forming the state into a halting state of the process and then apply-
ing the Weak Termination Theorem of Manna [1968] to determine whether

or not there is some computation which halts.

- ————

-93-

We can illustrate this sort of proof of correctness by the following

example:

Example

Bruno, Coffman, and Hosken [1972] have considered a generalization
of the producer-consumer problem. Instead of a system of two processes,

' . .th
they have considered a system of n processes. The i process acts as
. th . st
a consumer to the (i-~1) process and as a producer to the (i+l) pro-
th

cess, and the n process acts as the producer to the first process,

The processes are synchronized by a set of integer semaphores S198gsseesS

‘and a set of generalized P-and V-operations defined by:

P(a,s) = <decrement semaphore s by amount a only if the
result would be non-negative>

V(b,s) = <increment semaphore s by b>

Figure IV.4 illustrates a program and a transition graph representation
of a typical process of this system (for i = n, replace i+1 by 1), The
integers a; and bi are both positive. |

Observe that there is a danger that this system of n processes could
reach a deadlock where each process is blocked at its P-operation waiting
for another to do a V-operation. Bruno et al have proved that, given
suitable initial states, a necessary and sufficient condition to avoid

deadlocks is that

*a * % *h *
(3) a;*a,*, . .%a < b] b2 . e bn'

Their proof is complicated, based on sequences of states and extensions

to such sequences. We shall present a different proof: in this section

9o

process -i: begin constant integer ai,bi;
L: a.48,);
L: P(agss;);
<task i>;

)3

V(8
<remainder of process i>;

go to L end

. 0 (start

i i i i i
. 2
<task i>
.3
Si41 T Siq1 TPy

k\> 4 4-

<remainder of process i>

Figure IV.4

we consider the sufficiency of (3); and in a later section, we consider
its necessity.

By inspection we see that the only possible way in which the system
can deadlock is if each of the component processes is blocked at its
P-operation - i.e.,, at node 1, In the product transition graph, this

corresponds to the node

(Vy5Vy5enesv) = (1,1,000,1).

-95-

Thus, we need only show that the system is correct with respect to an
assertion on this mode which is false if all of the s; are less than
the corresponding a.. In order to state such an assertion, let us
add the integer pseudo variables 51’52""’§n to the system and two
assignments to arc <1,2> of each transition graph, as illustrated in
Figure IV.5a. For each i, the initial value of Ei is the same as that
of S, Then it is obvious that the ith augmented process is correct
with respect to the assertions in the figure. These state that the
(i+'l)St pseudo variable reflects either the current value of the (i+1)St
semaphore or what its value will be as soon as the V-operation is per-
formed. The purpose of making this augmentation is to transform the
process into something resembling the idealized process of Figure IV.5b.
For the latter process we need_only find an assertion for a single node
(which we will then use to construct the appropriate assertions for the
former).

To discover this assertion let (5?,53,...52) be some state of the
pseudo variables (51,52,...,§n), and consider the effect of executing
the first idealized process until it becomes blocked. It would cycle

=0 ' -
approximately s.l/a1 times and increment Sy by approximately

Then execute the second process until it is blocked: it cycles approxi-

mately
-0 -0 b 1
(s, + s, =1) —
2 1 a1 a2

times and increments §3 by approximately

-96-

wi
w

-0

i+l °iH

(Note: For i = N, replace "i+1" by "1".)
(a) (b)

Figure IV.5

I
w1

0
2
Similarly executing each process in turn until it becomes blocked produces

the result that 52’53""’§n are all less than the corresponding a's and

51 would be approximately equal to

L0 byPyeesb g bobaeid 0B
51 a,a 2 7% 2a a t5,7 °
-I 2... n 2 3... n n

If the system is not to deadlock, this must be large enough to allow the

above procedure to be repeated indefinitely.

-97 -

Thus to define a suitable assertion let the function f be defined

as

o

b.b,...b b,b,...b
g V2" m 2370, g B
1 a,a....a 2 a,a ...an na

F(X,3Knpeee X) =
1772 n 1323y 223

=]

Then define the assertion A(s,,s yeee58_) to be the relation
1°72 n
f(§1,§2,...,§n) > f(a1-1,a2-1,...,an—1).

Clearly this relation is false if for each i, §i < a,. For in this case,

we would have Ei < a1-1 and thus

£(8755,50058) < £(ay-1,3,-1,...,2 -1)

contradicting A(§1,§2,...,§n).

Now we will prove that the product of the n augmented processes of
Figure 1IV.5a is correct with respect to the assertion A(§1,§2,...5n) on
every node, for suitable initial states. Suppose that each initial

0 0 0
state (81’52""’sn) is such that

0 0 0, _
Av(s1,sz,...,sn) = true

Then since §i =s; (initially) for each i = 1,2,...,n, we also have

-0 =0

-0
A(SI’SZ""’Sn) = true,

The only assigmments to the §i occur in arc <1,2> of each component pro-

cess. Thus we must show for each i = 1,2,...,n-1 and each (51,...,§n) that
A(S1’°"’Sn) Ns;, za, :)A(s.l,...,si—ai,si_l_1 + bi""’sn)

and that

-98-

A(51,...,§n) ANs =a, DA(é1 + bn,...,én -a).
For i = 1,2,...,n-1, observe that
f(§1,...,§i - a5, .+ b.,...,én) =
b% iTT.b ! b, iTl.b "
E(SysenesBysSyyqsaensd) = b, 5?2}77753 +b, a;::_..az =

f(§1,...,Ei’si+1""’sn)'

Thus, A(s1,...,§i-ai,§ + bi,...,én)

i+l

For i = n,

f(s1 + bn,...,sn - an) =

b1b2...b

a3,

b1b2...b

218

f(S-IQOOO’Sn) +bn cesd

f(s .”SQ +bn

1°°

seed

BB B IB

< b,b b

1°2°*Pp> 80

By hypothesis, a1a2"'an

b,b,...b
b a1a2 an = bn'
n -l 2... n

Thus

f(§1+bn,...,§n- a) = f(§1,...,§n),

and therefore

A(§1,...,§n) :>A(§]+bn,...,§n-an).

= A(§1,...,§n).

i

Thus the formula of the Induction Theorem is satisfied and the system

of augmented processes is correct with respect to the assertion

-99-

A(§1,...§n) on every node,

Finally to conclude that the system does not deadlock, consider
node (1,1,...1) of the product transition graph. We have already seen
that the iFh augment process is correct (in the context of the product)

with respect to the assertion

Siv1 °

i1 (for i = 1,2,...,n-1)
or

s1 = 8 (for i = n).

Therefore, A(§1,§2,...,§n) = A(s5555++255) on node (1,7,...1), and
thus the product process is correct with respect to the assertion
A(s1,sz,...,sn) on this node. But this assertion is false if s; <a

for all i = 1,2,...,n. Thus, the product process never reaches such a

state and hence the system never deadlocks.

Comment

This example illustrates both some strengths and weaknesses of
using assertions to prove properties of cooperating processes. On the
positive side, we have been able to give a conceptually simple proof

that the two conditions

(1) a,a ...an < b1b

122 ...bn, and

2
s 0 0 0 . s
(2) the initial state (s],sz,...sn) satisfies

L 9 bibi+1"’bn i i+] n

i a.a a2 (ai-]) a.a a
L %% % i=1 i%i+1°°"%n

b.,b,b

FVTs

i=

are sufficient to guarantee that the system of n processes do not deadlock.

-100-

After performing appropriate transformations and simplificatioms, our
proof consisted solely of showing that a certain inequality is pre-
served. It completely avoids the noﬁions of execution sequences which
were inherent in the original proof.

On the negative side, however, our result is weaker than the re-
sult obtained by Bruno et al because our assertion is not strong enough.

Consider the following case for n = 3. Let

and let b3 = a1+3. Let an initial state be

]
m
I
w

n
LWodhMo-—=o
N

fl
v

0 0 0O
Then f(ST’SZ’SS) =

b,b,b, L0 b)bg 0 P3
1 a.a.a S0 a.a + S3 @ "
12233 223 3
b.b.b b.b b
12233 283 3
b.b.b b.b b
(a,-1) ——————a1a2a3 + (a,-1) a2a3 + (ay-2) a—3 <
- 12223 223 3

f(a1-1,a2-1,a3-1),

b
1’2

218,

=

since

That is, the initial state does not satisfy our assertion A, But the sys-

0
tem is not blocked in this state, since S4 = ag. Furthermore, by the

- W S —

-101-

test of Bruno et al, the system will not reach a deadlock from this
initial state - something which is apparent after process 3 executes

its cycle just once. For then, the new values of the semaphores are

s, = s0 + b, = (a1-2) + (a1+3) = a

1 1 3 1
= 0 = a_ -1
S27 %7 %2
= oY =
Sg = 53-a3 0
and f(s1,sz,53) =
b.b,b b, b
(231+1) a1a2a3 + (a2-1) aza3 =
123 273
b_b_b b,b b
17273 273 3
f(a]+1,a2-1,a3)
P1by '
since a, = a, and 23, = 1. But this is greater than f(al-l,a2-1,a3—1)

so that the assertion A is satisfied and deadlock canmmot occur.

The difficulty is that we have not provided strong enough assertiors
to completely characterize the system, This seems to be characteristic
of the problems to which the author has tried to apply these methods -
that the using assertions to describe the cooperation among processes,
even in very idealized cases, is extremely difficult. In this particular
problem, it took over a week of concentrated effort and many, many dis-
cussions with colleagues to discover an assertion which was both provable
and Which guaranteed no deadlock. The candidate assertions which were
discarded were either too weak to imply that deadlock does not occur or

too hard to prove correct (in fact, most of the latter were probably not

-102-

true). it was only several weeks later that the author discovered
assertion A which allowed the example to be simplified to its present
form.

Furthermore, the difficulties of discovering an assertion were not
caused by the representation of the problem or the model of computation
which we have used. They were inherent in the problem itself - that is,
it was difficult to characterize precisely the states of the system which
could arise from the cooperating of the processes of Figure IV.5b. 1If
this problem is at all representative of the general case, we would ex-
pect that even if our methods are extended to permit verification of
reasonable large system of cooperating processes in a reasonable amount
of time, discovering and stating the properties to prove will still be

a difficult problem. This is certainly a subject for continued research.

Strong Termination and Home States

We have seen that we can prove some properties of a system of co-
operating processes by proving that no computation reaches a certain
state. A complementary question is whether or not we can verify inter-
esting properties of a system by showing that every computation reaches
a particular state. In the remainder of this chapter we will briefly
consider some variations of the Strong Termination Theorem of Manna [1968]
for the purpose of proving such properties. We will see that, in principle,
they can be proved by transforming the verification problem into a halting
problem. Then the theorem provides a necessary and sufficient condition
that every computation of the process 'halts" at one.of the identified

states, However, there are still practical problems in the application

- T ey - e

-103-

of this theorem, and these require more investigation. But we will
see an example to illustrate its use.
For the purpose of defining the notion of "strong termination",

it is useful to define a complete computation of a process as a compu-

tation which is not also an initial subsequence of another computation

of that process (see Berry [1972]).

Definition: Let p = (P,Y,¥) be a process represented by a transition

graph G = (V,T',L) and let h be a node of G designated as the

halt node. The p terminates strongly at h if and only if every

complete computation of p is finite and ends at h.

That is, p terminates strongly if all finite computations which do not
terminate at h can be extended to finite computations which do terminate

at h.

Strong Termination Theorem (Manna [1968a]): Suppose the process p has

no blocking states (other than, of course, its termination state
at node h). Then p terminates strongly at node h if and only
if there is no set of assertions %AV}VEV which satisfies the fol-

lowing formula in the intended interpretation:

(5) dyly €T A A0 (y)1 A
Vy[ﬂAh(y) A

/\' A (y) © ©Q () AA (& (y» 1.
vev v <v, W <v,w> wo<v,w>

The restriction that there be no blocking states can be relaxed by

including in the disjunction the following term:

-104-

//\\ o)) 1

<v,w>€T VW » ‘
The principal implication in formula (5) then becomes ' 1

(5) Av(y) o <v’\w{€r [cp<v’w>(y) A AW(t<v’W>(y))]_ Y, [<\{w§€‘_‘ CP<v,W>(y)],

and it is repeated for each node v of the transition graph. The proof

of this variation is nearly identical to Mamna's proof of the original

theorem, and so it will not be given here. Note that this theorem easily {
extends to apply to cases with more than one halt node, simply by re-

quiring the assertion on every halt node to be identically false.

Now let us turn our attention again to problems related to deadlocks.
Although we can sometimes associate a deadlock condition with a particular
state as in previous sections, other times we cannot. That is, it may be
inconvenient or impossible to identify a particular set of states and
show that it is the cause of the system becoming deadlocked or a process
remaining blocked indefinitely or some decision being postponed indefinite-
ly. However, it might be possible to show instead that every computation
of a system eventually reaches a state which can be regarded as "safe"
in some sense, Then we could conclude that the deadlock and indefinite
blocking and postponement cannot occur,

For a process which is designed to halt, an obvious ''safe'" state
is its halting state - if it reaches that one, it could not have been
delayed forever in some other state. But a cyclic process is not designed
to halt., Thus, to apply this method we must look for other 'safe" states.
One possibility is illustrated by Figure IV.6: 1in a transition graph

representing a cyclic process, one node - in this case v¥ - is designated

-105-

. 0 (start)

]
| subgraph of the transid
| tion graph, represent-
| ing the body of a cyclig

process

Figure 1IV.6

as the "home'" state. That is, it represents the completion of some unit
of work or some interaction with other processes, so it can be regarded
as "safe"., Thus, for a cyclic process, we break the cycle and consider
the question of whether or not every computation which begins a cycle
eventually completes it. In either case, it is a direct application of
the Strong Termination Theorem to verify that this is true, and hence
that deadlocks or indefinite delays do not occur.

The kind of processes of interest to us are those which are products
of other processes and represented by product transition graphs. The
verification method just outlined can be extended to apply to this kind
of problem, as well. Suppose, for example, we wish to show that the jth
component process of a system always completes a cycle which it begins.
We break its cycle at a node v? representing a home state; then in the

product transition graph, we designate as a halting state every node of

which v? is a component. That is, every node of the form

-106-

‘7”c = (V.|,...,V’;i‘,.,.vn)

is treated as a halt node. Then the Strong Termination Theorem is ap-
plied to the product transition graph to show that every computation
of the system reaches one of these states, and hence that the component
process in question completes its cycle.

In practice, applying the.Strong Termination Theorem this way can
lead to difficulties. Consider the system composed of N copies of the
. process of Figure IIL.2. To show that each process eventually completes
its cycle, we would designate node 8 of the transition graph as the home
state and apply the Strong Termination Theorem in the way we have de-
scribed. Unfortunately, formula (5) is satisfiable - in fact, it is not
difficult to show that the assertiomns of Table III,1 satisfy it. The
proﬁlem is that there are computations in which some processors execute
forever in infinite loops while others never execute at all,

In part, this problem arises from the model of computation which
we are using. We have deliberately chosen the model to exclude informa-
tion about relative speeds of the processors in a system and about hid-
den effects of one processor on the progress of another. This was done
to provide an orderly framework for considering the product process,
As a result, we do not have a convenient means of representing a very
important piece of information about the system of Figure III.2: namely
that every processor eventually executes its next operation if it is not
blocked. Similarly, we do not have a convenient way of representing the
kinds of information embodied in'various implementations of synchronizing

operations (see Habermann [1972]) such as:

-107-

a process in a blocked state, waiting for some event, is

unblocked and moved to its next state the instant that

event is sigrnalled.

This is a topic for further investigation. Either the model or
the representations of systems of processes could be extended so that
this kind of information can be incorporated. Alternatively, the Strong
Terminatibn Theorem itself could be extended to consider only the types
of computations of interest. Another possibility is the addition of
suitable axioms to the intended interpretation. A related topic for in-
vestigation is that of the usefulness and characteristics of the class
‘of algorithms which do fit within our model. Dijkstra [1965a] and
Courtois et al [1971] have shown interesting algorithms which do not
assume any particular queueing discipline in the synchronization primi-
tives but which do assume that signalling an event and unblocking a
waiting process are together an indivisible action. Is there merit in
studying the class of cooperating processes which do not even make the

latter assumption?

Strong Termination and Finite Computations

Another variation of the Strong Termination Theorem provides an
illustration of an application to a problem of cooperating processes,
namely, the n-process system of Bruno et al considered earlier in this
chapter. We have already shown that given suitable initial states, a

sufficient condition for the system to avoid deadlock is that

aa".a Sb
n 1

-I 2 bzoatbnl

In this section we will show the condition is necessary in a very strong

-108-

way by showing that every computation of the system is finite (i.e.,
eventually reaches a deadlock) if the condition is not satisfied, in-
dependently of the initial state. |

To do this, we will use the following version of the Strong Term-

ination Theorem.

Corollary: Let p = (P,Y,T) be a non-deterministic process represented
by a transition graph G = (V,T,L). Then every computation of
p is finite if and only if there is no set of assertions %AV}VEV

which satisfies the following formula in the intended interpreta-

tion:

6) Ty[(y,0 € A AT A

Vy/\- A (y) 2 \/

vey <v,w>er

y) A AW((y)»

* Yy, t<v,w'>

The proof of this version is also very similar to Manna's ofiginal proof.

To apply the theorem we must show that formula (6) is unsatisfiable
fqr the n-way product of the compoﬁent transition graphs of Figure 1V.4.
That is, we must show that for every set of assertions on the product
graph, there is a state which leads to a contradiction and hence prevents
that set of assertions from satisfying (6). For this purpose, we will
relabel the nodes of each component transition graph and then impose an
ordering on the states of the semaphores and'processors. Figure IV.7
shows the relabelling; ﬁote that the numbers labelling the nodes decrease
in the direction of the arrows, except for the arc representing the P-

operation,

-109-

.0 (start)
=1
/ >
s, 2 a, s, = s,-a,
i i i
|
. 3
<task i>
)
_7 i+1 = Si+1 + bl
o1

Figure IV.7

Now consider a state of the system of n processes as represented

by the 2Zn-tuple

(s1,sz,..;,sn, V]’VZ"'°’Vn)'
Form the sum g(s1,...,sn, V1""’Vn) as follows:

for i = 1,2,...,n-1: 1if v, = 2 or 3, let

3 = : i t s = .
si+1 Si+1 -+ bi’ otherwise le si+] si+1
for i = n, if v, = 2 or 3, let s, = s, + bn;

1 1

otherwise let 51 = 51.

let g(s1,...,sn, v1,...,vn) =
b

DB by

a Y-)
=1 3% n

Il

That is, g(s1,...,sn, v1,...,vn) is defined in a very similar way to
f(s1,...,sn) previously. Now to define an order relationship on states,

we will say that

-110-

(51""’Sn’ V1""’Vn) < (si,...s;, vi,...,v&)

if and only if either
g(s1,...sn, v1,...,vn) < g(s;,...,sé, vi,...,vg)

or
' g1(s1,...,sn, v1,...,vn) = g(si,...,s;, vi,...v;)

and _ _ _ -
(Sl""’sn’ V1""’Vn) < (si,...,sé, vi,...,vg)

in the lexicographic ordering. I.e., one state is less than another
if and only if the sum constructed from the first is less than that
of the second; or in the case the two sums are equal, if and only if
some gi < Ei and gj.= 53 for 1 = j < i; or in the case that all cor-
responding s are all equal, if and only if some Ve < vi, and for
1 <5< i, vj = v&. For convenience, we will use v to denote the
n-tuple (v1,...,vn).

Now let {Av(s1,...,sn)} vev be any set of assertions on the pro-

duct transition graph. There are two principle cases to consider:

Case 1: AO(sg,...,sg) = false for every initial state (s?,...,sg) of
the semaphores. Then the first term of formula (6) is not

satisfied, and hence the whole formula is not satisfied,

. e 0 0
Case 2: There exists an initial state (81""’Sn) such that

0 0 0
AO(S1’52""’Sn) = true. Let

. 0 0 0
m = m1n(0,s1,sz,...,sn)

and let (51,52,...,sn, v],...,vn) be the smallest state of the

system in our ordering such that for 1 < i = n, s = m and

—_—— e

Case a:

Case b:

Case ¢:

Case d:

-111-

Av(s1,...,sn) = true.

(Such a state exists because our ordering relationship

is also a well-ordering relationship for a set of sema-
phores bounded below by m and because the set of states with
a true assertion is not empty.) We will show that the set
of assertidné does not satisfy

Av(s],o--sn) D \/

(S,54+45_) ANA (t (S,500e8_))
<v W 1 n W <,w>" 1 n

¢ Yy,

Since the transition graph is a product of n identical compon-

. . th
ents, we need only consider the possible terms which the i

component contributes to the disjunction:

v, = 0, w, = -1. Then t<v,w§81""sn) = (81""’Sn)
(i.e., the identity operation) but v = (vl,...vn) is lexico-

graphically less than w = (v1,...,vi_],w 1,...vn)° Thus

A
i i+

by assumption: AW(s1,...,sn) = false, and hence
Av :)Aw(t<v,w>(s1""sn))
is false for this case.

v, = 3, w, = 2, This case is identical to case a.

v, =1, w, -1. This case is also identical to case a.

v, = 2, v, = 1. For this case the operation
LI) = . e . . e @ i = b"
t<v,w>(s1’ ,sn) (s1, 255141 + bl, Sn) (for i = n, su

stitute 1 for i+1. But by our ordering relationship

-112-

(31""’Sn’ v1,...vn) < (s1,...s.

i+ + bi""’sn’ v],...,

W,5eeeV)
i n

since all s, are equal and w, < v,. Thus A (t
i i i w <

V,W>(S1 seees)) =

false for this case.

Case e: i # n, v, = -1, w, = 3. Then the condition label Q<v,w>(sl""sn)

is the predicate "s, = a.", and the operation is
P i 28 P

P<v,w>(s1""sn) = (s1,...si-ai,...sn).

Since g(s],...sn, V]""Vn) =

n b....b

. l a".a

i=1 i n

n b.,...b b....b b.+1...b
E:: s, ——B _ g4 S b. vl o ono
& 1L a,ee.a 1 a,¢0e8 1 a, es el
i=1 i i+1°" " 'n

g(s],...si-ai...sn, V1""’Wi""vn)’

we see that (sl,...sn, V1,...,Vn) is lexicographically greater

than (s],...,si—ai,...sn, v1,...,wi,...vn) by virtue of
S."a.<s.’
i i i
Either the condition label s; = a; is false, in which case
e 5, =2 4, A PN
Av(sl’ ’Sn) =8y i A w(t<v,w>(s1’ Sn))

is false; or it is true, in which case

min(O,s1,...si-ai,...,sn) = m, guaranteeing that

Case f:

-113-

Aw(t<v,w>s]""sn)) is false by assumption, and hence that
LR N) ‘- 2 - LI N]
Av(s1’ Sn) o8 =8y A Aw(t<v,w>(s1’ ’Sn))
is false.

i=mn, v, = -1, w, = 3. This is the principle case and the
only one to which the condition on the a's and b's is relevant,

If a,a

1 2...an'> b.b ...bn, then

172

g(s-l ,o.‘o- ,Sn, V-I ,-..,Vn) =

n b,...b
z:: . i n g

L ia,...a

i=1 i

n b-..'b 1) 5-'...b
Z '_1-.. - a _:.]L-{-b e n:

ia,...a na na,...a

i=1 i n 1 n

g(sl,...,snman, V1,...,Wn). Thus be an argument

similar to that of case e,

Av(s1,...sn) :)sn = an ANA (t

W <v,w>(51""’sn))

is false,

. . . , .th
Since there is an arc representing an operation of the i~ process

emanating from every node of the product tramsition graph, since we

th
have considered every possible operation of the i~ component, and

since all component processes are identical, we can conclude that

-114-

Av(s1,...,sn) D

\\// . (81""Sn) A

Q..
<v W €T <V W>

AW(;<V’W>(S],...SH))

is false, Thus the set of assertions {AV}VEV does not satisfy (6) in
the intended interpretation, and by the Strong Termination Theorem we

conclude that every computation of the system is finite. That is, if

a]azctIan > b-lbz...bn’

then every computation of the system, no matter what initial state is
chosen, will eventually reach a deadlock condition.

This completes our analysis of this problem and our illustration
of an application of the Strong Termination Theorem to a system of co-
operating processes. This verification, though tedious in detail, is

conceptually a very simple one and yields a very powerful result.

-115-

CHAPTER V

ABSTRACTIONS OF PROCESSES

An important technique used in the design and analysis of programs
(and, in particular, programs of operating systems) is that of forming
"abstractions'". That is, a program is mapped from the detailed environ-
ment of its implementation (i.e., its processor and information set) in-
to less detailed and perhaps less restrictive enviromments in order to
facilitate understanding of its various parts. The mappings are chosen
to reduce the complexity of a design and description, to expose its es-
sential features and subvert unessential omes, to eliminate or minimize
the effect of some inherent non-determinism, and/or~to impose order and
structure on the processes and informations sets. Such use of abstrac-
tions in programming and system design has been discussed in the litera-
ture by Dijkstra [1970] and [1972], Zurcher and Randell [1968], Snowden
[1971], and many others, and will not be considered here.

The basic idea of abstraction is, however, very important to our
methods for verifying properties of cooperating processes. In view of
the examples of the previous chapter, it is evident that such verifica-
tion is difficult, even when the processes contain no extraneous detail.
When we consider real programs, the effort would be greatly complicated
by constraints of the design and implementation of the system which are
not essential to proving the properties of interest, For example, the
producer and consumer of Figure III.1 would probably not be implemented
as simple loops but as basic building blocks or "atomic" objects within

more complicated programs. However, we can see that repeated execution

-116-

of these objects would have the same effect as repeated traversals of

our simple loop structure, at least with respect to the properties we

proved., That is, the simple loops are abstractions of reality and are
useful for analyzing certain characteristics of a system.

To actually infer fhat the system itself has those characteristics
requires additional justification. That is, we must be able to show
that proving properties about the abstract system allows us to draw
similar conclusions about the real system. We have already done this
for a simple kind of abstraction in Chapter III. There, we showed that
under certain conditions, a subgraph of a transition graph may be re-
placed by a single arc so that subsequences of operations in a computa-
tion are replaced by single operations. That is, we abstracted a
detailed part of a computation to a single operation with the same net
effect, and we showed that to prove correctness of the original process
it was sufficient to prove the correctness of the abstraction.

A general notion of abstraction ought to allow us to draw the same
kinds of conclusions in more general cases, particularly when the
details of cooperationvamong processes are being abstracted. This re-
quires a precise definition of what is meant by "abstraction' and an
effective method of determining whether one process is, indeed, an ab-
straction of another. To be useful in a discussion of cooperating pro-
cesses, the definition must also provide a vehicle for considering the
relationship between the abstraction of a product of processes and the
product of abstractions of those processes. This would, in certain
circumstances, permit us to design, analyze, and verify some properties
of a system of cooperating processes at an abstract level rather than at

a level dominated by other details.

-117-

We do not yet have such a precise definition of abstraction.
However, in this chapter, we will consider a candidate for one, in-
spired by the notion of "image process' of Horning and Randell [1972].
Our definition is more restrictive than theirs in that every abstrac-
tion of a process is also a process in the sense of Chapter I. We will
see that our definition allows us to infer the correctness of a process
with respect to an assertion by verifying an abstraction of that pro-
cess with respect to a corresponding assertion. The results of previous

chapters, particularly the application of the Weak and Strong Termina-

tion Theorems, will suggest possible methods for determining if one pro-

cess is an abstraction of another. But the definition still presents
problems. As with the definition of Horning and Randell, it preserves
neither the determinism-nondem#minism,properties nor the termination-
nontermination properties of a process. It also leaves unanswered the
question about products of abstractions. Thus we present this chapter

primarily as a framework for future investigation.

Mapping Information Sets

Our éoncept of abstraction is based on mapping the values of one
information set into the values of another. A particular abstraction
will be specified by specifying a function to map the values of an
original, "detailed" information set into the values of an "abstract"
information set. Then this function leads directly to a natural pro-
cessor of the abstract set based on the given processor of the original
information set. From this definition we will be able to formulate

more precisely the problems which we have mentioned above.

-118-

Let us begin by considering a process p = (P,Y,%), and let Z
be an information set. Consider a function f which maps values of Y

into values of Z.

Example: Let Y be the set of two integer variables a and b and let Z
be the set consisting of the single variable which can have any

rational number as value. Then one such function would be

f(a,b) = %

f(a,0) undefined.

if b # 0.

That is, £ maps each value of Y (each pair of integers) into

the quotient in Z, if that quotient is defimed.

The function f may be either total (that is, defined for every value of
Y) or partial (not defined on some values, as in the example). In the
latter case we write y € D(f) (read Y is in the domaiﬁ of f)* tf and
only if f£(y) is defined. We call Z the image of Y under f£f.

Given f, we can define in a natural way a processor Q of Z based

on the processor P of Y. Let us ignore for the moment internal states

of P, Let Yo and Y4 be any values of Y such that

P

and
yo € D(£), ¥, € D).

Then we define the action in Q

£y £ -
*

Horning and Randell call such a state "observable'.

-119-

That is, if a certain action is defined by P, the image of that action
is defined by Q. More generally, consider any sequence {yo,y],;..,yn}

of values of Y such that

YO —_— Y'ls y1 ——'7y23'--:yn_-| —;——vyn

and
Yo € D(H), Yn € D(£)

v; £ D(f) for i = 1,2,...,n-1.
Then we define the action
Q
f(Yo)—) f(Yn)-

That is, a sequence of actions of P, such that the intermediate values
of Y have no image under f, also defines a single action of Q.
The processor Q defined this way is a sort of image of P viewed

through the mapping f£ (and as such, we will call it the image pProcessor).

That is, the actions ole are to the information set Z what the actions
of P are to Y.

In the case that the processor P has more than one internal state
(i.e., the process p = (P,Y,¥) is represented by a transition graph
G = (V,T',L) with more than one node), we can extend these definitions
as follows: Let Z be an information set and W a finite set of nodes
(W will be the set of nodes of a new transition graph), Let f be a
function which maps value-node pairs of Y and V into value-node pairs
of Zand W - -1i,e.,

£ :¥YXV=2ZXW

-120-

Then the image processor, Q, is defined as a processor which has W

as its set of internal states and which consists of the set of opera-
tions

£(ygsVy) ———2 £(y_ V)

for each computation of P on Y given (yo,vo)

{govg)s Gyavdseees(y V)]

such that
(795Vy) € D(f)

(¥ 5v,) € D(D)

(Yi,Vi) £D(f) for 1 <i<n.

That is, an operation is included in Q if and only if it is the "image"
under f of a finite computation of P on Y and that computation has the
property that only its first and last states are in the domain of f.

(We will call such a finite computation a basic sequence of states of

B-)

We may assume without loss of generality that both P and Q have
unique start nodes, labelled Ov and QW respectively. Then we can use
the notation £(I) to denote the set of images of initial states of p -
ive.,

£(2) = {(a,OW) I (z,Ow) = f(y,Ov) for some y and

(y,0)€ T}

Definition: The process ¢ = (Q,Z,f(¥) is called the abstraction of

process p = (P,Y,¥) under the mapping f£f. Conversely, p is a

realization of g. The mapping £ is called the abstracting

function.

-121-

By this definition, an abstraction of a process is a process in the
sense of Chapter I. Thus, all of the verification methods of this
thesis apply to it without modification,

Our definition of abstraction is based on mapping from the re-
alization to the abstraction, instead of the other ﬁay, for several
reasons. First, note that one purpose of forming abstractions is to
obscure detail in the realization. Thus, one state of the abstract
process could correspond to any of several in the realization. A
mapping in our direction is a natural way to represent this., Second,
.the mapping makes it possible to define the image processor in terms
of the given one. 1In the same way, an actual operating system creates
the appearance of an abstract processor by simulating it at a less ab-
stract level. Third, we will see in the next section that the computa-
tions of the abstract process correspond to a superset of those of the
realization. Thus, properties of the abstraction apply automatically
to the realization (subject to restrictions noted below). It would be
very difficult to achieve these characteristics with a mapping in the

other direction.

Computations of Abstractions

An important relationship between a process and an abstraction of
it is that the computations of the former map into computations of the
latter. To show this, let p, g, and f be defined as above and consider

an arbitrary computation of p, say

C= {(YO,OV), (Y-l’V]), (YZ’Vz)""}'

Then the sequence

-122-

c' = {f(y()’ov)’ f(Y-lsV-l): f(y2’V2).""}

is a sequence of value-nodes pairs of Z x W, possibly interleaved with
undefined terms. Let C" be the subsequence of C' consisting of exactly

those elements which are defined. That is, let

C" = {f(yio,vio), f(yi ,Vi), f(yi ’Vi),...}
2

1 1 2
where for each j = 0,1,2,...

1j < lj+1

and

)]

S . L qsV, ces . .
e i) Orpatign) o0)Y g,
is a basic sequence of states. Then by the definition of the image pro-
cessor Q, C" is a computation of Q on Z given f(yio,vio). In particular,
if (yo,Ov) € D(f), then C" is a computation of q, and our claim is justi-
fied, |

To prove a property about the computations of p it would be suffici-
ent to prove the "image' of that property about the computations of (.

I.e., suppose g is correct with respect to an assertion AW(z). Consider

an assertion Bv(y) defined by
B, (y) = AW(Z) if £(y,v) = (z,w)

whenever (y,v) € D(f). If the state (y,v) occurs in a computation of p,
then (z,w) = f(y,v) occurs in a computation of g. Hence Aw(z) is true,
and so is Bv(y). I.e., p is correct with respect to Bv(y). Thus to

verify a process with respect to some criterion, that criterion could be

-123-

translated into an appropriate assertion about an abstraction of the
process and verified there. Conversely, if a process is correct with
respect to an assertion, then every realization of it is correct with
respect to a suitable "realization" of that assertion. That is, it is
sufficient to prove some properties in the abstraction rather than the
realization,

It is not always true, however, that a property which can be proved
about a realization holds in the abstraction (although it does hold for
that subset of computationsof the abstraction which actually occur as a

_result of the realization). This is because there may be computations
of g which are not images of computations of p, and there may be finite

computations of g which are images of infinite computations of p.

Example: (due to J. J. Horning): Let Y consist of two integer variables
a and b, let Z consist of a single integer variable, and let P
be a processor of Y which has only one internal state and which

includes operations of the form

(a,b) —— (atb,1-b)

for all integersa and b. Define a mapping f by f(a,b) = ab,

Then the definition of Q includes the operations

Q P

0 ——-1 (an image of say, (1,0) —— (1,1))
1 ——g——90 (an image of say, (1,1)~—Ji—+(2,0))

and others. Thus one computation of Q on Z given as 0 an initial

value 1is

-124-

{0,1,0,1,0,1,...}

Clearly, there is no computation of P on Y which has this as

image.

This example illustrates that there are computations of g which are not
images of computationsof p. Thus, in general, it is not possible to
infer the correctness of q (with respect to some assertions) directly
from that of p. This example also shows that a deterministic process

can have non-deterministic abstractions, since the sequence
{0,1,0,2,0,3,0,...}
is also a computation of q (in fact, it is the image of the computation
{(1,0), (2,0), (2,1), (3,0), (3,1)5...}

of p). I.e., g has more than one computation given the initial state 0,

and hence it is non-deterministic.

Example: Let y consist of two integers, & and b, and let Z consist of
a single variable which can have any rational number as value.

Define f, as in the first example of this chapter, by

£(a,b) = =

if b % 0. Let P include the operations

(a,b) —E—s (atb, 1-b)

(a,0) —=—3 (a+1,0).

-125-

Then the computation
{,1, (1,0, (2,0), (3,0),...}
of p maps into the finite, incomplete computation
(0}

This example shows that infinite computations of p can map into finite
computations of the abstraction. Thus it is not possible, in general,
to infer properties regarding termination from an abstraction of a process.
In effect, forming an abstraction of a process loses structure and/or
information - in the sense that properties such as determinism or termina-
tion may be obscured or altered, and that some properties are not observ-
able in the realization. (E.g., in the example, it is impossible to
tell by observing a value of 2 in Z whether it is the image of (2,1),
(4,2), (-12,-6), or some other value of Y; this information is lost in
the abstraction.) On the other hand, abstractions can be useful for
suppressing unessential detail, information, non-determinism, and artifici-
al restrictions; they can make a problem easier to understand and analyze;
they facilitate the design of complex systems. This, as Horning and
Randell, Dijkstra, and others have pointed out, is the whole point of

forming abstractions.

Example: An Algol program describes an abstract process. The processor
is defined by the statements of the program, and the information
set consists of all possible incarnations of all variables. In

principle, there can be infinitely variables and each can have

-126-

infinite precision. A realization of this process would have
only finitely many incarnations of finitely many variables,
each with finite precision. ihus an abstracting function would
map each value of each variable of the realization into the
same value of a corresponding variable of the infinite informa-
tion set. The purpose of this abstraction is to facilitate the
design and analysis of algorithms for which the restriction of
finiteness is an unnecessary complication. The price which is
paid is that certain information about the realization - par-
ticularly information about the effect of overflowing one of

its finite constraints - is lost in the abstract process.

Abstractions of Cooperating Processes: An Example

We can explore the role of absﬁractions in verifying a set of co-
operating processes by considering an example. This will introduce us
to some new problems which will be the sﬁbject of the remainder of the
chapter. The system we will examine is an implementation of a proposal
by Lynch [1971] for a reliable, efficient communication system over a
noisy, unreliable telecommunication link. The system multiplexes N
logical communication channels on a single full-duplex 1ine and provides
each logical channel with a structure to allow it to cope with trans-
mission errors in a manner described by Lynch [1968]. In principle,
each logical‘channel acts like a half-duplex communication line, trans-
mitting messages in alternate directions., Each message is accompanied
by two bits which acknowledge receipt of the previous message and which

identify the current one. A given message must be retransmitted as often

-127-

as necessary until an acknowledgment is returned that it has been re-
ceived correctly.

The system consists of two processes at each end of the line, and
both ends of the line are identical except for the initial value of one
array. We already introduced one of the processes in Figure IT.1. In
Figures V.1 and V.2 we present a program and transition graphs describ-
ing the processes at one end of the line. The operation "transmit" is
synchronized by the apparatus with a "receive' operation at the other
end of the line. 1In the normal case the information received is exactly
that transmitted, and "receive' returns a Boolean value of false indicat-
ing no errors. However, if noise on the line causes the information to
be incorrect, the "receive'' operation returns a Boolean value true, in-
dicating that errors occurred. We assume that the apparatus can dis-
tinguish between correct and incorrect transmissions. In some cases,
"receive' does not sense a transmission at all (these are called "line
drops") - i.e., it completely misses the fact that a message was trans-
mitted - and after an appropriate wait, it receives a later transmission.

The structure of the system and the function of the acknowledgment
information can be better understood by considering abstractions of
these processes. In particular, Figure V.3 shows how the two processes
appear to the ith logical channel. The abstract transmitter process is
formed from the original transmitter process by the following mapping

(v indicates a node of the transition graph of the transmitter).

f(k, Message, Verify, OK, Alternate, sync, V) =

Sundefined ifk# i

Kﬁessage, Verify, EE, Alternate, sync, vifk=1i

-128-

parbegin semaphore array sync (1:N);
comment: Fach element of sync is initialized toe 1 at one end
of ‘the line but te zero at the other end;
Boolean array OK, Verify (1:N) = true;
transmitter: begin integer k;
string array Message (1:N);
Boolean array Alternate (1:N) = true;
for k = 1, (if k=N then 1 else k+1) while true do
begin P(sync(k));
if OK(k) then begin
Message(k) := <next message on logical channel k>;
Alternate(k) :=- Alternate(k) end;
transmit (k,Message(k),Verify(k),Alternate(k)) end;
end of transmitter;
receiver: begin integer j,k;
Boolean X,Y; string N;
Boolean array Bit (1:N) = true;
for k = 1, (if k=N then 1 else k+1) while true do
: if — Receive(j,N,X,Y) then begin
OK(j) := X; Verify(j) := true; V(sync(j));
if ¥ %Bit-(j) then begin
<output message N on logical channel j>;
Bit(j) := Y end;
while j # k do begin
OK(k) := Verify(k) := false; V(sync(k));
k := if k=N then 1 else k+]1 end;
end;
end of receiver;

parend.

(Note: A general semaphore sync could be used in place of the array of
binary semaphores sync(0:N-1), but this would complicate the

discussion.)

Figure V.1

-129-

- 0 (start)
k :=1

\%1

-~ . 7

sync(k) > 0 : sync(k) := sync(k)-1

Vv

— OK(k): OK(k):
null Message(k) := <next message on chamnel k>

Alternate(k) := — Alternate(k)
.{3

transmit (k,Message(k),Verify(k) ,Alternate(k)
- ;

k := if k=N then 1

else ki1 ‘transmitter
0 (start)
k :=1
;"/ &1
% Receive (j,N,X,Y)
v
2
Receive = true: ' Receive = false =
J=k: null L OR(j) =X
k = ¢
if k=N 3
then 1 Verify(j) := true
else k+1 -
v,

sync(j) := sync(j)+]

- Bit(4): Y # Bit(j):
! B;ﬁii). <output message N on channel j>;
Bit(j) =Y

16 ¥ j#k:OK(k)=false 7Ver1fv<k> =£11-,-é—

sync(k) :=
/sync(k)+1

9. —

\

7
(Note that sequences of operations on local variables have been replaced by

the equivalent single operations where possible.)

Figure V.2

-130-

. 0 (start)
L :
sync > 0 : sync := sync-]
— OK: ' OK:
null Message := <next message>
Alternate := — Alternate ’
\\\; transmit (Message,Verify,Alternate)
o 4

Abstract Transmitter

Verify := false

a
N,

|

Bit:
null

Ll 0
Ok := false
k///”’,/ﬂ/“““w} sync := sync+l
Receive(ﬁ,i,%)
Yé__ i
0K := X
V.
.3
Verify := true
¥
4
E sync := sync+l]
. Y % Bit:
<output message N>

Bit := Y

)

Abstract Receiver

Figure V.3

-131-

where
Message = Message(1)

Verify = Verify(i)
OK = OK(i)

Alternate = Alternate(i)

sync = sync(i)

vV = V.

The abstract receiver process is formed by a more complicated mapping,
for it will eliminate the possibility of errors and line drops. It is
~defined by the following mapping (v indicates a node of the tranmsition

graph of the original receiver):

g(j,k,N,X,Y,0K,Verify, Bit,sync,v) =
7
undefined if j # i

undefined if j = i and v = 6,7,8, or 9

E,E,?,BE,Verify,Bit,sync,; otherwise

where

OK = OK(i)

Verify = Verify(i)
Bit = Bit(i)

E;HE = gync (i)

vV = V.

We conjecture that the graphs of Figure V.3 are indeed transition graph
representations of the abstract transmitter and receiver processes de-

fined by these mappings. This raises two important questions:

-132-

(1) How can we verify the conjecture? 1I.e., how do we know
that the transition graphs of Figure V.3 represent ab-
stractions of Figure V.27

(2) 1Is the product of these two (abstract) processes an ab-
straction of the product of the two given processes?
More precisely, can we draw conclusions about the co-
operation of the processes of Figure V.2 by considering

the cooperation of Figure V,3?

We do not have complete answers to either question, but we will explore

them briefly in the next two sections.

When is an Abstraction?

It is currently considered good programming practice to design a
system "from the top down" - i.e., starting with the most abstract speci-
fication of its parts and building successively more detailed realiza-
tions (see, for example, Dijkstra [1970], Snowden [1971], Hoare [1971b],
or Brinch Hansen [1972]). Thus in the course of developing a system, a
designer might have in one hand a set.of abstract processes about which
he has verified some properties, and.in the other hand, a set of proces-
ses alleged to be realizations of the first set: He must be able ;o con-
vince himself that the allegation is true - i.e., that each process of
the first set is an abstraction of processes of the second set. When
he does, he can infer properties of thg realizations from the properties
he has already established in the abstractiom.

Alternatively, the designer may proceed by using a given collection

of processors and information sets to build new, "abstraet'" processors

-133-

and information sets. Then he repeats the procedure, over and over
again, using the processes of one level to implement a more abstract
set at the next level (e.g., the THE System of Dijkstra [1968b]). At
each level, he can ignore the details of earlier ("less abstract'")
levels and concentrate‘on those of the given level, provided that he is
confident that its processors and information sets are indeed images of
the earlier levels,

In both cases it is necessary to show that one process is an abstrac-
tion of another. If the programs were developed by "stepwise refinement"
.(Wirth [1971]), then this amounts to showing that subprograms are equiv-
alent to the abstract operations which they replace. (This is not often
regarded as a difficuit task, but Henderson and Snowden [1971] have
shown that it is easy to develop a false sense of security about making
refinements correctly.) When the abstracting functions are more complicat-~
ed than mere refinements, as in our communication system example or in
the THE system, it becomes more difficult and less obvious.

One method of proving that a process is an abstraction of another
is suggested by the Weak and Strong Termination Theorems. Recall that
the image processor includes an operation for every basic sequence of
states in the realization.* Thus, if we have the transition graph repre-
sentations of both a process and its alleged abstraction, it would be suf-
ficient to show that every basic sequence of states in the former corresponds
to an arc in the latter. That is, each computation of the given process

which starts at state in the domain of the abstracting function must either

An obvious generalization would allow the image processor to include more
operations. Clearly this would not alter our ability to infer properties
in the realization from those in the abstraction.

-134-

(1) 1lead directly to a state which has as its image an immedi-

ate successor of the starting state, or

(2) not lead to any state in the domain of the abstracting

function.

In principle, the Weak Termination Theorem provides a means of test-
ing this condition. We identify as a halt node each state of the given
process which both is in the domain of the abstracting function and does
not have a successor of the image of the given state as its own image.
Then the Weak Termination Theorem provides a necessary and sufficient
condition that no computation reach one of those states: namely, that
there exists a set of assertions which satisifes a certain well-formed
formula based on the transition graphs in the intended interpretations.
If, instead, we designate as halt states all those states which have
images which are successors of the image of the given state, then the
Strong Termination Theorem provides a stronger comdition: Each computa-
tion satisfies condition (1) above if and only if a certain formula is
unsatisfiable in the intended interpretation.

In practice, more machinery is necessary before either of these
theorems can be applied to show that one process is an abstraction of
another. Such machinery should include a convenient way of representing
"unobservable" states (i.e., states not in the domain of the abstracting
function). It would also have to be particularly suited toward processes
which are combined with other processes. Thus, our ability to verify
the abstraction-realization relationship between two processes (or be-

tween two sets of processes) is still very much an open questiom.

-135-

Products of Abstractions

In a discussion about abstractions of operating systems processes,
a fundamental question concerns conditions under which it is meaningful
to consider the product of two abstract processes. The key property of
an abstraction is that the set of its computations includes the image of
each computation of its realization. But it is not always true that every
computation of a product of two processes has an image which is a computa-
tion of the product of the abstractions of those processes - i.e., the
operations of taking a produét and taking an abstraction do not commute

with each other.

Example: Let the information set Y consist of two integers, a and b, and
let the processor P be defined to have a single internal state

and to include the operation
P
(a,b) ——— (a+b,1-b)

for each pair of integers (a,b). Consider an abstracting function
£ which maps this information set into the single rational number

c by

£(a,b) =%ifb 40

f(a,0) undefined.
Then the image processor (denoted by £(P)), includes only opera-
tions of the form

%__f(_&% for b # 0, b # 1

.__f_(ﬂl_,a—:P- for b = 1.

o'l

-136-

Now consider a second processor, Q on Y defined to have a

single internal state and to include the operations

Q

(a,0) —=——> (2a,0)

for each integer a. Let g be second abstracting function which

maps values of Y into the integer d, defined by
g(a,b) = a + b.

Thus the image processor g(Q) includes only operations of the
form

a 8@ L,
since b must be zero.

One computation of the product PX Q on Y given the initial

state (1,1) is

{a,m, 2,0, 4,0), “4,1),...1,

a result of alternating the actions of P and Q. In the abstract
information set comsisting of the variables ¢ and d, the image
of a value (a,b) of Y is

a
(B’s atb)

for b # 0 and undefined if b = 0 (since f is undefined for b = 0).

Thus the image of this computation is

{(1,2), 4,5),...}.

But the operation

(1,2)—— (4,5)

-137-

is not included in either image processor.. Hence the product
of two processes can define a computation with an image which
is not a computation of the product of the abstractions of the

two processes. .

Thus, we are led to look for other ways in which it is meaningful

to consider the produéts df abstractions of processes. There are some
well-known cases - for example, the technique of simulating indivisible
operations by using critical sections of code and a mechanism to ensure
that 6n1y one process has access at any given instant. In this case,

" the abstracting function is the identity mapping except on states inside
the critical section, where it is undefined. Then the abstraction of the
product of two such processes is not the same as the product of the ab-
stractions of the two processes, but it acts similarly. I.e., although
some computatioﬁs of the former are not computations of the latter, all

of their states occur in computations of the latter.

Example: If the product of the processes of Figure V.2 is abstracted by
combining the functions we have presented earlier, many of its
computations will contain long sequences of unobservable states.
This is because one or the other of the component processes will
be in an unobservable state - i.e., not working on logical chan-
nel i,

The images of such computations look like random selections
of states which do not bear much relation to our expectations
(as programmers) of the system, However, for each such computa-

tion, we can see intuitively that there is a computation of the

-138-

product of the abstractions which behaves in the same way with
respect to channel i. This computation is a result of inter-
leaving actions of the abstraét receiver and transmitter in
exactly the same way as the corresponding operations in the
realizations are interleaved. Thus, we can still learn a lot
about the system by studying the abstractions.

In particular, we wouldllike to be able to conclude that
the transition graph of Figure V.4 is an abstraction of the
product of the process of Figure V.3, and hence an abstraction
of the product of those of Figure V.2. But Figure V.4 is es-
sentially a representation of Lynch's original communication
system for a half-duplex line, a system which has been proven
correct in both theory and practice (Lynch [1969]). Thus, if
we could answer the two key questions of this chapter, we could
conclude that the multiple channel system is correct with respect

to the same criteria applied to each logical channel.

These examples suggest that a more precise formulation of the funda-
mental question of this section is as follows: What conditions are neces-
sary and sufficient for an abstraction of the product of two processes to
act like the product of the abstractions of those processes? Further-
more, what restrictions must be applied to assertions on the product of
the abstractions in order to infer equivalent assertions about the realiza-
tions? These questions are of theoretical importance because we could not
otherwise justify assertions about a system by proving them in abstrac-
tibns of the system. In particular, we could not even justify assertions

about a "real" system by proving them in our model of computation beeause

-139-

- 0 (start at one end of the line)

- "
Receive (N,X,¥)
™
.2
Verify|:= false i 0K := X
OK := false E Verify := true
Y = Bit: Y # Bit: .0' (start
null <output message N> at other
Bit := Y end of
e line)
» -~ -
’ " 4 OK: OK: ____
| null Message := <next message>
{ Alternate := — Alternate
. B!
transmit (Message, Verify,Alternate)
e e v -6

(Note: The start node at one end of the line is node 0, but at the

other end, it is node 0'.)

Abstract Transceiver

Figure V.4

we have made the assumption of timelessness. This, itself, is an impor-
tant abstraction of reality.

The questions are also of practical importance when we contemplate
mechanical aids for system programmers such as an extension of the
Snowden's PEARL System [1972]. We need to know what conditions to apply
to refinements of abstract operations in order to be able to help the
programmer keep them in proper perspective. Thus our question warrants

a good deal more investigation.

-140-

COMMENTS AND CONCLUSIONS

In this thesis we have developed some potentially useful methods
for verifying properties of processes which occur in operating systems.
We have shown that by paying careful attention to representations we
have been able to extend the work of Floyd, Manna, and King to apply
to such processes. We have shown that knowledge about the structure
of the processes can be used to reduce proofs of correctness to manage-
able proportions. Several examples taught us that finding suitable
assertions is harder than verifying them. To cope with this we added
information to the representation of the processes and used it to facili-
tate the statement of and verification of the properties of interest.

We also showed that some interesting properties of operating system pro-
grams can be considered as variations on ;ermination problems.

Our results suggest several directions for future work. Om the
purely mechanical side, there is need to adopt modern theorem-and pro-
gram-proving methods to the formulas generated by our representations.
This would bring us closer to the realization of a mechanical program
verifier for cooperating processes. On the practical side, an important
problem area is that of constructing suitable formal assertions about
properties of cooperating processes - properties which are often expressed
only in the programmer's intuition. That is, we need a structured body
of knowledge and experience to lead us from problem statements to state-
ments about the properties which solutions must possess. On the theoretic-
al side, we must be able to factor a complex system into a hierarchical

structure of subsystems in order to make it feasible to verify non-trivial

-141-

properties about non-trivial processes. To this end, we have intro-
duced a potential framework for a formal definition of abstraction,
and we have identifielsome problems which must be solved in order to
make that definition usable.

How the results of this thesis might be used is something which
cannot be predicted. Many of the author's programming colleagues have
an aversion to program-proving af any sort - not from ignorance but
from a well-reasoned, pragmetic view that whenever precise statements
can be made about the execution of their programs, it is more profit-
able to incorporate them as redundancy checks at runtime rather than
try to prove them, If these peéple are a representative sample, then
.program-proving will not achieve widespread use until and unless we
have systems which are as available and as efficient as high-level
language compilers are today.

An alternative, and perhaps more useful, application of our re-
sults is as an aid to the theoretical analysis of algorithms, operating
system techniques, resource allocation mechanisms, etc. That is, we
would expect that they would find more use in proving things about
classes of programs rather than about individual programs.

Another promising application is in a mechanical "structured pro-
gramming assistant" for cooperating processes. The problems of extend-
ing current systems (e.g, PEARL) to include non-deterministic and co-
operating processes appear to be non-trivial and include those we have
suggested above. But the potential of such a system in reducing design
and programming costs, guaranteeing the reliability, and improving the
understandability of operating systems is enormous. This would be ample

reward for our efforts here.

~142-

We should make one final note about the non-determinism which we
have built into our model of computation. A number of crities of this
work have steadfastly maintained this non-determinism - and indeed, all
non-determinism which we can observe in a multiprocessor computer system -
is purely the result of not considering enough state information about
the system. They assert that it could be reduced to determinism by de-
scribing more precisely the interactions of the various components. At
one level, we note that even if the eritics are right, it would be too
hard to account for such information and much easier to live with the
non-determinism, At a more fundamental level, though, such a Newtonian
view of the universe and of the world of computing contradicts the ac-
cepted theories of physics, and it thus requires a degree of faith which
this author has been unable to muster. We prefer to accept non-deter-
minism as a fundamental fact of life and develop our programming and

analytical skills around it - such as we have done in this thesis.,

-143-

BIBLIOGRAPHY

Ashcroft and Manna [1971]
Ashcroft, E. and Z. Manna, "Formalization of Properties of Paral-
lel Programs", Machine Intelligence 6, ed. Meltzer and Michie,

University of Edinburgh Press, Edinburgh, 1971.

Barron [1969]
Barron, D. W., Assemblers and Loaders, MacDonald Press, London,
1969, .

Bensoussan, Clingen, and Daley [1969]
Bensoussan, A., C. T. Clingen, and R. C. Daley, "The Multics

Virtual Memory", Proceedings Second ACM Symposium on Operating
Systems Principles, Princeton University, Princeton, New Jersey,

October 1969.

Berry [1972]
Berry, Daniel, M., "The Equivalence of Models of Tasking",
Proceedings of an ACM Conference on Proving Assertions about

Programs, University of New Mexico, January 1972,

Brinch Hansen {1970]
Brinch Hansen, P., "The Nucleus of a Multiprogramming System',
Communications of the ACM, Vol. 13, No. 4, p. 238, April 1970,

Brinch Hansen [1972] _ »
Brinch Hansen, P., '"Structured Multiprogramming', Communications

of the AcM, Vol. 15, No. 7, p. 574, 1972,

Brumo, Coffman, and Hosken [1972]
Bruno, J. L., E. G. Coffman, and W, H. Hosken, "Consistency of

Synchronization Nets Using P and V Operations'", Technical Re-
port 117, Computer Science Department, Pennsylvania State Uni-

versity, State College, Pa,, June 1972,

Church [1956]
Church, A., Introduction to Mathematical Logic, Princeton Uni-
versity Press, Princeton, New Jersey, 1956.

Cooper [1968]
Cooper, D. C., "Program Scheme Equivalences and Second Order
Logic", Machine Intelligence 4, ed. Meltzer and Michie, Uni-

1968,

versity of Edinburgh Press, Edinburgh,

Courtois, Heymans, and Parnas [1971]
Courtois, P. J., R. Heymans, and D, L. Parnas, ''Concurrent

Control with Readers and Writers'", Communications of the ACM
14, No. 10, p. 667, October 1971.

Vol,

~144 -

Daley and Dennis [1968]
Daley, Robert C. and Jack B. Dennis, "Virtual Memory, Processes,
and Sharing in MULTICS", Communications of the ACM, Vol, 11,
No. 5, p. 306, May 1968.

De Bruijn [1967]
De Bruijn,N. G., "Additional Comments on a Problem in Concurrent
Programming Control', Communications of the AQM, Vol, 10, No. 3,
pp. 137-138, March 1967.

Dijkstra [1965a]
Dijkstra, E. W., Cooperating Sequential Processes, Technological
University of Eindhoven, Eindhoven, Netherlands, Report EWD123,
September 1965.

Dijkstra [1965b]
Dijkstra, E. W., "Solution of a Problem of Concurrent Programming
Control", Communications of the ACM, Vol, 8, p. 569, 1965.

Dijkstra [1968a]
Dijkstra, E. W., "Go To Statement Considered Harmful"',Communica-
tions of tue ACM, Vol, 11, No. 3, pp. 147-148, March 1968.

Dijkstra [1968b]
Dijkstra, E. W., "The Structure of the THE Multiprogramming
System", Communications of the ACQM, Vol. 11, No. 5, pp. 341-347,
May 1968.

Dijkstra [1970]
Dijkstra, E. W., Notes on Structured Programming , Technical
University of Eindhoven, Eindhoven, Netherlands, Report EWD249,
1970,

Dijkstra [1971]
Dijkstra, E. W., "Hierarchical Orderings of Sequential Processes",
Acta Informatica, Vol. 1, No. 2, pp. 115-138, 1971.

Floyd [1967a] :
Floyd, R. W., "Assigning Meaning to Programs", Proceedings of
Symposia in Applied Mathematics, Vol. 19, American Mathematical
Society, 1967.

Floyd [1967b]
Floyd, R. W., "Non-deterministic Algorithms", Journal of the ACM,
October 1967.

Floyd [1971]
Floyd, R. W., "Toward Interactive Design of Correct Programs',
Invited Lecture, IFIPS 1971 Congress, Ljubljana, Yugoslavia, 1971.

-145-

Good [1970]
Good, Donald I., Toward a Man-Machine System for Proving Program
Correctness, Ph.D. thesis, University of Wisconsin, June 1970.

Good and London [1970]

Good, D. I., and R. L. London, "Computer Interval Arithmetic;
Definition and Proof of Correct Implementation'", Journal of
the ACM, Vol. 17, pp. 603-612, 1970.

Habermann [1967]

Habermann, A. N., On the Harmonious Cooperation of Abstract
Machines, Ph.D. thesis, Technical University of Eindhoven,
Netherlands, 1967.

Habermann [1969]

Habermann, A. N., "Prevention of System Deadlocks', Communications
of the ACM, Vol. 12, p. 373, July 1969.

Habermann [19721] . . |
Habermann, A. N., "Synchronization of Communicating Processes’,

Communications of the ACM, Vol. 15, No. 3, p. 171, March 1972.

Havender [1968]
Havender, J. W., "Avoiding Deadlock in Multi-tasking Systems",
IBM Systems Journal, Vol. 7, No. 2, p. 74, 1968.

Henderson and Snowden [1971]
Henderson, P. and R. Snowden, An Experiment in Structured Pro-
gramming, University of Newcastle Upon Tyne Computing Laboratory,
Newcastle Upon Tyne, Technical Report No. 18, 1971.

Hoare [1969]
Hoare, C. A. R., "An Axiomatic Basis for Computer Programming'',
Communications of the A@M, Vol. 12, pp. 576-583, 1969.

Hoare [1971a]

Hoare, C. A. R., "Proof of a Program FIND", Communications of the
AcM, p. 31, January 1971.

Hoare, [1971b]
Hoare, C. A. R., "Towards a Theory of Parallel Programming',
(Preliminary Draft of paper presented to the International
Seminar on Operating System Techniques, Belfast, September, 1971.

Holt [1971a]
Holt, R. C., On_Deadlock in Computer Systems, Ph.D. thesis,
Cornell University, ILthaca, New York, January 1971.

Holt [1971b]
Holt, R. C., "Comments on Prevention of Systems Deadlocks",
Communications of the ACM, Vol. 14, No. 1, January 1971.

-146-

Horning and Randell [1969])
Horning, J. J. and B. Randell, Structuring Complex Processes,
Report Rc 2459 IBM Thomas J. Watson Research Center, Yorktown
Heights, New York, 1969,

IBM Corporation [1970a]
IBM Corporation, Time Sharing Syste@/360: Concepts and Facili~-
ties, Reference Manual, Poughkeepsie, New York, 1970.

IBM Corporation [1970b]
IBM Corporation, Operating System/360: Concepts and Facilities,
Reference Manual, Poughkeepsie, New York, 1970.

IBM Corporation [1970c]
IBM Corporation, System/360: Principles of Operation, Reference
Manual, Poughkeepsie, New York, 1970.

King [1969]
King, J. C., A Program Verifier, Ph.D. thesis, Carnegie-Mellon
University, Pittsburgh, Pa., 1969,

Knuth [1966]
Knuth, D. E., "Additional Comments on a Problem in Concurrent
Programming Control", Communications of the ACM, Vol. 9,
pp. 321-322, May 1966.

Knuth [1969]
Knuth, D. W., The Art of Computer Programming, Volume 1 (Funda-
mental Algorithms), Addison Wesley, Reading, Mass., 1969.

Ladner [1970]
Ladner, R., Verification of Transmission Algorithms, Ph.D. thesis,
Case Western Reserve University, Cleveland, Ohio, September, 1970.

Lampson [1968]
Lampson, B., "A Scheduling Philosophy for Multiprocessing Systems',
Communications of the ACM, Vol., 11, 5, p. 347, 1968, '

London, [1970]
London, R. L., "C245: Proof of Algorithms - A New Kind of Certi-
fication'", Communications of the AM, Vol. 13, pp. 371-373,
June 1970.

Luconi [1968]
Luconi, F. L., Asynchronous Computation Structures, Report w
MAC-TR-49, Project MAC (Ph.D. thesis), Massachussetts Institute
of Technology, Boston, Mass., 1968.

Lynch [1968]
Lynch, W. C., "Reliable Full-duplex File Transmission over Half-
Duplex Telephone Lines'", Communications of the ACM, Vol. 11,
No. 6, pp. 407-410, June 1968,

-147-

Lynch [1971]
Lynch, W. C., Reliable Data Transmission Sub-Channelization and
Full Duplex, University of Newcastle Upon Tyne, Computing Lab-
oratory, Technical Report No. 14, January 1971.

Manna [1968]
Manna, Z., Termination of Algorithms, Ph.D., thesis, Carnegie-
Mellon University, Pittsburgh, Pa., 1968.

Manna and Pnueli [1970]
Manna, Z. and A, Pnueli, "Formalization of Properties of Func-
tional Programs", Journal of the ACM, Vol. 17, No. 3, p. 555,
July 1970.

Naur [1969]
Naur, P., "Programming by Action Clusters'", BIT, Vol. 9, pp. 250-
258, 1969,

Randell [1971]

' Randell, B., "Operating Systems: The Problems of Performance
and Reliability", Invited paper, 1971 IFIPS Congress, Ljubljana,
Yugoslavia, 1971.

Rodriguez [1969]
 Rodriguez, J. E., A Graph Model for Parallel Computations,
D.Sc. thesis, Massachussetts Institute of Technology, Boston,
Mass., MIT-Project MAC, Report MAC-TR-64, September 1969.

Saltzer [1966]
Saltzer, J. H., Traffic Control in a Multiplexed Computer System,
Ph.D. thesis, Massachussetts Institute of Technology (Project
MAC), Boston, Mass., June 1966.

Snowden [1971]
Snowden, R. A., PEARL: An Interactive System for the Preparation
and Validation of Structured Programs', University of Newcastle
Upon Tyne, Computing Laboratory Technical Report, 1971.

Van Horn [1966]
Van Horn, E. C., Computer Design for Asynchronously Reproducible
Multiprocessing, Ph.D. thesis, Massachusetts Institute of Tech-
nology, Project MAC, 1966.

Wirth [1969]
Wirth, N., "On Multiprogramming, Machine Coding, and Computer
Organization", Communications of the A(M, Vol. 12, No. 9,
pp. 489-498, September 1969. '

Wirth [1971]
Wirth, N., "Program Development by Stepwise Refinement", Com-
munications of the AQM, Vol. 14, No. 4, p. 221, April 1971.

-148-

Zurcher and Randell [1968]
Zurcher, F. W. and B. Randell, "Iterative Multi-level Modelling -

A Methodology for Computer Design', IFIPS 1968 Congress,
Edinburgh, Scotland, 1968.

