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ABSTRACT
Body Sensor Network (BSN) – a network of body-worn wire-
less health monitoring sensors – have a tremendous poten-
tial to remove the space and time restrictions on health
management. Given the importance of the data BSNs col-
lect for improved health outcomes, securing the data from
unauthorized tampering is essential. A compromised (or
externally influenced) sensor in a BSN may generate erro-
neous patient data leading to, among other things, wrong
diagnosis and treatment. In this paper, we present a novel
approach to address the problem of detecting maliciously
induced morphological alterations in the ECG signal (i.e.,
inducing changes to its shape). Our approach works by
correlating the ECG signals with synchronously measured
arterial blood pressure (ABP) signal measured using a dis-
tinct (and un-compromised) sensor. Initial analysis of our
system demonstrates promising results, with 99.75% accu-
racy in detecting ECG signal morphological alterations for
healthy patients with normal sinus rhythms.

1. INTRODUCTION
Body Sensor Networks have already demonstrated great

potential in a broad range of applications w.r.t. healthcare
and wellbeing. The fact that BSNs collect and act on sensi-
tive data makes them attractive targets for tech-criminals to
exploit. As BSNs become increasingly available, the threats
posed to them by adversaries will also increase. One such
threat is sensor compromise, where adversaries stealthily al-
ter patient health data collected from the BSNs to some-
thing plausible but incorrect. This problem, though akin
to the issues of detecting faulty sensors or lack/loss of sen-
sor calibration, is a considerably tougher. The reason be-
ing, obvious/arbitrary modifications to the sensor data can
be easily detected by the end-users of the data (i.e., clini-
cians, patients). The adversaries we consider in this work
are advanced persistent, and therefore try to introduce sub-
tle changes to the patient data which presents an incorrect
picture of the patient’s state over time.

In this regard, we focus on detecting ECG sensor com-
promise in a BSN. In general, compromising an ECG sensor
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in a BSN allows the adversary to alter its signal (i.e., data
is measured) in two possible ways: (i) temporal alteration,
which involves modifying the timing information of ECG
complex (e.g., inter-beat-interval); (ii) morphological alter-
ation, which involves modifying the shape of ECG complex.
In our previous work [1], we focused on detecting temporal
alterations in an ECG signal by correlating it with other sig-
nals that represent and influence the cardiac process, namely
arterial blood pressure(ABP) and respiration signals. The
advantage of the approach in [1] was that it did not require
redundant ECG sensors or access to historical ECG data to
detect current sensor misbehaviors. In this paper, we work
on the complementary problem of detecting morphological
alterations in the ECG signal using only the ABP signal
as reference. Initial analysis of our system demonstrates
promising results, with 99.75% accuracy in detecting mor-
phological alterations for patients without cardiac issues.

2. ECG MORPHOLOGY ALTERATION DE-
TECTION

Our approach to detecting morphological alteration of ECG
signal is to build a portrait of synchronously measured ECG
and ABP signals. A portrait is an n-dimensional repre-
sentation of the relationship of several time-series in a one
multi-dimensional space. Once the portrait is created we ex-
tract specific features from it, which are then used to train
a patient-specific model, which forms the basis for detecting
morphological alterations to the ECG signal. The intuition
being that if the ECG signal being tested has been mod-
ified then the portrait built for this altered ECG and syn-
chronously measured reference ABP will not possess features
similar to the portrait used to create the patient-specific
model. We now describe each of the steps involved our ap-
proach in more detail.
Portrait Creation: To generate a portrait, first, we syn-
chronously measure w secs ABP signal and ECG signal and
normalize. Normalization is needed as the magnitude and
units of ECG and ABP signals are different. Let a(t) and
e(t) be the normalized ABP and ECG signals at time t. We
then create a 2-dimensional portrait P = [a(t), e(t)], thus
capturing the time-varying relationship between both the
ECG and ABP (see Figure 1).
Feature Generation: Once a portrait is generated, the
next step is to extract appropriate features from it. Based
on the work in [3, 4], we extract a total of eight features.

Matrix Features: These features describe the distribution
of points in the portrait which captures the shape of ECG
signal with respect to the ABP signal. Matrix features are
obtained by viewing the portrait under n×n grid and count-
ing the number of points from the portrait that fall in each
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Figure 1: A typical ECG and ABP Portrait

cell in the grid. This information is stored in an n× n ma-
trix C where each element c(i, j), where i, j ≤ n, is the count
of the number of points in the corresponding grid element
(i, j). From the matrix C, we extract three features: (i)
spatial filling index, which represents the sum of the square
of the fraction of points in each element of the matrix C;
(ii) standard deviation of column averages of matrix C; and
(iii) area under the curve formed by the column averages.

Geometric Features: Geometric features are another way
of describing the relationship between ECG signal w.r.t.
ABP signal through the capture of the absolute and relative
location of certain characteristic points in the signals. The
characteristic points represent important peaks and troughs
in the signal, such as P, Q, R, S and T points in the ECG
signal, systolic (C) and diastolic (D) points in the ABP sig-
nal. In this preliminary work, we only consider the R and
the C peaks in the ECG and ABP signals, respectively as
characteristic points of interest. To identify where the char-
acteristic points lie on the portrait, for each w secs of ECG
and ABP signals, we first perform peak detection for both
R peak and C peak and label them. Note that, depending
upon duration of w, a portrait can have multiple characteris-
tic points from ECG and ABP in it. We extract five geomet-
ric features based on these labeled characteristic points in
the portrait: (i) the average of the angles (w.r.t. x-axis) for
the ECG’s characteristic points; (ii) the average of the an-
gles (w.r.t. x-axis) for the ABP’s characteristic points; (iii)
average distance between ECG’s characteristic points from
the origin; (iv) average distance between ABP’s characteris-
tic points from the origin; and (v) average distance between
the ECG’s characteristic point and its corresponding ABP
characteristic point.
Model Training and Evaluation: In order to account
for the individual variation in the physiological processes,
we build a patient-specific model for each patient. Figure 2
illustrates the training and evaluation process. It has four
main steps. (1) Generate positive examples for the model by
building w second portraits (from a larger ∆ second snippets
of synchronously measured ECG and ABP signals from the
same patient) and extracting the aforementioned features
from them. (2) Similarly, use the patient’s ABP snippets
and other patients’ ECG snippets during feature generation
to generate negative examples for our model. (3) Use Naive
Bayes classifier to train the model. (4) Use the trained model
for the patient to decide if any newly received ECG signal
snippet has been altered or not.
Preliminary Results: In this preliminary work, we se-
lected 12 healthy patients with normal sinus rhythm from
MIT PhysioBank Fantasia database [2]. The data set con-
sists of data from 5 males and 7 females with average age at
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Figure 2: Morphological Alteration Detection

46.5 years. We collected ECG and ABP signals for ∆ = 480
seconds, chose w = 3 seconds sliding window size and n =
50 for the grid size, thus generating 160 positive examples
and 1760 negative examples for each patient. We trained a
patient-specific model for each of the 12 patients using the
Naive Bayes classifier, and used 10-fold cross validation to
test each patient’s model. Our preliminary results show an
average accuracy of 99.75% with false positive 1.3% and false
negative 0.16%. We define false positive as the case where
an unaltered ECG snippet is classified as altered. False neg-
ative is the case where an altered ECG data is classified as
unaltered.

3. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a novel approach to detect ma-

licious morphological alterations of ECG signals in a BSN
using data from synchronously measured ABP signal. We
plan to continue our work in following directions: (1) con-
sider the rest of characteristic points for the feature gen-
eration process to capture the morphology alteration with
higher fidelity, and (2) test the approach on patients with
cardiac issues whose morphological variations are much more
non-uniform compared to patients with normal sinus rhythms.

4. REFERENCES
[1] H. Cai and K. K. Venkatasubramanian. Sift: Multi

physiological signal feature correlation-based sensor
compromise detection in body sensor networks.
Technical Report WPI-CS-TR-14-04, Worcester
Polytechnic Institute - Computer Sciences Department,
July 2014.

[2] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M.
Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus,
G. B. Moody, C.-K. Peng, and H. E. Stanley.
Physiobank, physiotoolkit, and physionet: Components
of a new research resource for complex physiologic
signals. Circulation, 101(23):e215–e220, 2000.

[3] O. Malgina, J. Milenkovic, E. Plesnik, M. Zajc, and
J. F. Tasic. Ecg signal feature extraction and
classification based on r peaks detection in the phase
space. In GCC Conference and Exhibition (GCC), 2011
IEEE, pages 381–384. IEEE, 2011.

[4] T. Rocha, S. Paredes, P. de Carvalho, J. Henriques,
and M. Antunes. Phase space reconstruction approach
for ventricular arrhythmias characterization. In
Engineering in Medicine and Biology Society, 2008.
30th Annual International Conference of the IEEE,
pages 5470–5473. IEEE, 2008.


