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Abstract—Sequential recommendation has become an increas-
ingly prominent subject both in academia and industrial sectors,
particularly within the e-commerce domain. Its primary aim is
to extract user preference from a user’s historical item list and
predict the subsequent items that the user might purchase based
on that history. Recent trends show a surge in the application
of using contrastive learning and graph-based neural network to
extract more expressive representation from user’s historical item
list, where graph contains information of relationship between
nodes while ID based representation contains more specific infor-
mation. However, limited work has explored on multi-view con-
trastive learning, especially, between the ID and graph to further
improve quality of user and item representation learning when
only interaction data is available without auxiliary information.
To fill the gap, in this study, we propose a novel framework called
MultiView Contrastive learning for sequential recommendation
(MVCrec). This framework is designed to combine information
from both sequential/ID and graph views. It incorporates three
facets of contrastive learning: one for sequential view, another
one for graph view and the other one for cross-view. To leverage
the representations derived from the contrastive learning, we
propose a multi-view attention fusion module, which integrates
both global and local attentions and measures how likely a target
user will purchase a target item. Comprehensive experiments
demonstrate the superiority of our model over 11 state-of-the-
art baselines, as evidenced by its performance on five real-world
benchmark datasets. Our model achieves improvements of up
to 14.44% in NDCG@10 and up to 9.22% in HitRatio@10
compared to the best baseline. Our code and datasets are
available at https://github.com/sword-Lz/MMCrec.

Index Terms—Sequential recommendation, contrastive learn-
ing, graph

I. INTRODUCTION

Sequential recommendation has received increasing atten-
tion from both industry and academia, with the primary focus
being on recommending items based on users’ chronologi-
cally ordered purchase histories [1]–[7]. In the early stage,
researchers applied recurrent neural network (RNN) and con-
volutional neural network (CNN) to sequential recommen-
dation [8]–[10]. Additionally, self-supervised methods have
been employed in sequential recommendation; for example,
BERT4Rec [11] utilizes BERT as an encoder for sequential
lists. More recently, contrastive learning and related techniques

have been adopted in sequential recommendation to enhance
the effectiveness of learned representations [12]–[14].

However, the utilization of contrastive learning (CL) to
effectively capture the information of historical sequences
remains a challenging research area. Contrastive learning aims
to maximize the dissimilarity between different categories of
individuals (e.g., users or items) while minimizing the dissim-
ilarity within the same category. The first obstacle often lies
in selecting suitable augmentation operations for generating
similar instances. To date, three classes of augmentation oper-
ations have been established. The first class generates different
views of the same sequence through random operations like
‘masking’, ‘cropping’, or ‘reordering’ items [15], [16]. The
second class uses variable dropout probabilities at the model
level to create different views of the same sequential data
[13]. The third class combines ‘neural mask’, ‘layer drop’,
and ‘encoder complement’ with data augmentation techniques
for constructing positive and negative view pairs [17].

Most of the prior works leverage sequence information to
perform contrastive learning on individual sequences. They
employ data augmentation or model-level augmentation tech-
niques to augment the historical sequences. Subsequently, the
InfoNCE objective function [18] is utilized to compute the
contrastive loss. This objective function aims to minimize the
distance between augmented sequences generated from the
same original sequence, while maximizing the distance be-
tween augmented sequences generated from different original
sequences.

Although these prior methods have achieved some effec-
tiveness in sequential recommendation, they are suboptimal
because of the neglect of structural information which can
be obtained/learned from graph-based methods. Graph-based
recommendation systems provide a more comprehensive rep-
resentation of users and items by fully exploiting graph
structures, thereby making significant contributions to the
field of recommendation systems. In basic recommendation
approaches, NGCF [19] and LightGCN [20] integrate graph
convolutional networks into the recommendation systems.
UltraGCN [21] simplifies GCNs for collaborative filtering
by omitting feature transformations and nonlinear activations.



As contrastive learning has developed, VGCL [22] employs
variational graph reconstruction to estimate the Gaussian dis-
tribution of each node and generates multiple contrastive views
through multiple samplings from the estimated distributions.
CGCL [23] explore a new way to build contrastive pairs by
using similar semantic embeddings. In the realm of sequential
recommendation, graph contrastive learning also plays a sig-
nificant role; MAErec [24] applies graph contrastive learning
to adaptively and dynamically distill global item transitional
information in self-supervised augmentation scenarios with
scarce labels. However, cross-view contrastive learning be-
tween graph and sequence information remains a less explored
area in sequential recommendation, especially, when given
only interaction data without any auxiliary information.

To fill the gap, in this paper, we propose a novel framework
based on multi-view contrastive learning, named MultiView
Contrastive learning for sequential recommendation
(MVCrec). Initially, we use contrastive learning to learn
each user’s historical sequence representation. To make the
most of graph structure given the sequence information,
we also build an item-based graph and apply contrastive
learning to learn the structural representation from the
historical sequence. According to common sense, embedding
of item IDs provides more item-specific information, whereas
utilizing a graph structure to represent items captures more
information about their relationships with other items. To
further enhance our understanding of structural and sequential
representations, we introduce and implement a cross-view
contrastive learning strategy. This strategy is designed to
pull out more detailed features, generating extra contrastive
pairs, which are compared with data-augmented views
during the training. Finally, given the two different sequence
representations (i.e., item-based sequence representation and
graph-based sequence representation) which are created by
the contrastive learning, we run our proposed multi-view
attention fusion module to combine structural and sequential
features. In the experiment, we found that both sequence
and graph structures positively contributed to improving the
effectiveness, with the graph structure having a greater impact
than the sequence view.

In summary, the major contributions of our proposed
MVCrec are as follows:
• We propose a novel multi-view contrastive learning ap-

proach in the sequential recommendation domain. The
proposed model proficiently extracts relevant information
from both positive and negative samples by utilizing se-
quence and graph views derived from users’ historical item
lists (i.e., prior interaction data).

• A multi-view attention fusion module is proposed to be
seamlessly integrated into MVCrec to calculate the rec-
ommendation score, utilizing representations from diverse
views.

• Through comprehensive experiments across five public
benchmark datasets, we demonstrate that MVCrec outper-
forms 11 state-of-the-art baselines.

II. RELATED WORK

A. Sequential recommendation

Sequential recommendation is deployed to forecast user
preferences based on their historical purchases. In the initial
phase of sequential recommendation development, the Markov
chain was utilized to formulate predictions by modeling
stochastic transitions and uncovering sequential patterns [25],
[26].

With the growth of deep learning in many areas, RNN
and Transformer-based methods have been used in sequen-
tial recommendation and have achieved good results. They
are good at understanding both the long-term and short-
term information in users’ historical sequences. For example,
GRU4rec [8] uses Gated Recurrent Units (GRU) to learn
sequential information from the previously consumed items.
Caser [9] uses both horizontal and vertical CNNs to understand
sequential behaviors. SASRec [10] was the first to use the
attention mechanism in sequential recommendation. In terms
of Transformer, BERT4Rec [11] uses deep bidirectional self-
attention to understand the possible relationships between
items and sequences. LinRec [27] introduces a novel method
that enhances efficiency while retaining the learning capa-
bilities of traditional dot-product attention through a linear
attention module. MELT [28] mutually enhance user and item
bilateral branches to deal with long-tailed problem.

While these methodologies have made some advancements
in the field of sequential recommendation, most of them
have not incorporated structured information, such as graph
structures, into their considerations. Unlike the prior works,
our approach concurrently uses information derived from both
graphs and sequences.

B. Contrastive learning

To enable deep learning models to more accurately differ-
entiate instances pertaining to distinct individuals, contrastive
learning was introduced in [29]. The core concept of con-
trastive learning is to maximize the dissimilarity between vary-
ing individuals, and it has witnessed substantial advancements
in recent years. The work of [18] introduced the use of mutual
information to quantify the similarity between two individuals,
considering different views of the same individual as positive
pairs. Subsequently, [30] employed a queue to manage the
extensive dictionary associated with contrastive learning, while
[31] leveraged the remaining pairs in the batch as the negative
pairs for the positive pair, introducing a projector to enhance
the performance of contrastive learning further. Additionally,
[32] explored the execution of contrastive learning tasks
without the incorporation of negative samples. In multi-view
contrastive learning, MSM4SR [33] proposes fusing text and
image views before applying contrastive learning. However,
this approach overlooks the interrelationship of cross-view
contrastive learning. On the other hand, MMSSL [34] suggests
using GCN for cross-view contrastive learning, but it doesn’t
account for sequential data.
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Fig. 1: Our proposed framework, MVCrec, consists of multi-view contrastive learning and multi-view attention fusion module.

Recently, contrastive learning has been used in sequential
recommendation to handle issues like not having enough data
and having data that’s noisy. CL4rec [12] learns about users
by comparing different views of the same sequence data. It
uses random actions like ‘mask’, ‘crop’, or ‘reorder’ items
to create these different views. DuoRec [13] makes pairs to
compare by using “dropout” at the model level and suggests
using sequences with the same next interaction as matching
pairs instead of comparing different data views. MCLrec [14]
offers a meta-learning strategy to train contrastive learning
with the goal to address the problem of sparse data and
create more meaningful representations. EMKD [35] proposes
knowledge distillation, which uses contrastive learning to
facilitate knowledge transfer between parallel networks, and
uses the ensemble of different models as the final prediction.
DCrec [36] introduces a new global learning strategy to deal
with popularity bias in sequential recommendation. Wu et
al. [37] proposed a Multi-behavior Multi-view Contrastive
Learning Recommendation (MMCLR), which uses different
behaviors of users as positive pair for recommendation, which
requires multi-behavior data for implementation. MCLSR
[38] proposed multi-level contrastive learning framework for
sequential recommendation. Unlike our work utilizing only
target behavior with item-based sequence embeddings and
graph-based item embeddings, MMCLR employs cross-view
contrastive learning by constructing various types of graphs
to generate representations for users or items. It also neglects
the inner structure in different view, which deserves to apply
contrastive learning.

In this paper, the principle of contrastive learning is adapted
to extract superior representations of historical interaction
sequences, and a new multi-view contrastive learning approach
which includes inner view and cross view contrastive leaning
is proposed.

C. Graph-based recommendation

User and item interactions in the recommendation task nat-
urally form a graph structure; thus, the incorporation of graph

structures is prevalent in recommendation systems. Founda-
tional recommendations like NGCF [19] and LightGCN [20]
have advanced the field of recommendation by integrating
GCN structures, thus, enhancing the developmental trajectory
of recommendation systems. UltraGCN [21] further refines the
approach by streamlining GCNs for collaborative filtering and
omitting unnecessary feature transformations and nonlinear
activations. Additionally, works like CGCL [23] and VGCL
[22] have applied graph structures to contrastive learning, uti-
lizing auto-encoders to optimize the process. SRGNN [39] was
proposed to use GNN structure to train the sequential recom-
mendation. Within the realm of sequential recommendation,
MAErec [24] ingeniously employs graph data in contrastive
learning to address issues related to label scarcity. In this paper,
we also construct a graph for items to learn their embeddings
and user preference representation from the historical sequence
via multi-view contrastive learning.

III. PROBLEM DEFINITION

The primary objective of this paper is to predict the next
item, cn+1, which a user u is likely to purchase based on the
user’s historical sequence, denoted as Su = [c1, c2, . . . , cn].
In this notation, ci represents the i-th item that the user has
purchased, and n is the length of the user’s purchasing history.

IV. PROPOSED METHOD

A. Overview

As depicted in Figure 1, our proposed MVCrec learns
two types of item embedding (typical item embedding and
graph-based item embedding), and integrates two contrastive
learning approaches: graph-based and sequence-based con-
trastive learning. Each approach consists of a stochastic data
augmentation module, a sequence encoder, and a contrastive
loss function [12]. To optimally leverage information from
both graph and sequence data, MVCrec employs a cross-view
contrastive loss, complementing the two contrastive learning
approaches. Additionally, a multi-view attention fusion module



is formulated to amalgamate item-based sequence represen-
tation and graph-based sequence representation from both
views. In essence, MVCrec consists of five components: (1)
stochastic data augmentation module, (2) item embeddings,
(3) Transformer-based sequence encoder, (4) multi-view con-
trastive learning, and (5) multi-view attention fusion module.
Detailed information about these modules are described in the
following subsections.

B. Stochastic data augmentation module

This module aims to generate two positive views for each
historical sequence. Inspired by CL4rec [12], we apply three
stochastic data augmentations — ‘masking’, ‘cropping’, and
‘reordering’ — to the historical sequence. The procedure for
generating two augmented sequences is as follows:

S̃u
1 = g1 (S

u) , S̃u
2 = g2 (S

u) (1)

where g1 and g2 are a pair of different stochastic data
augmentation methods (i.e., randomly select two of ‘mask’,
‘crop’ and ‘reorder’), and S̃u

1 and S̃u
2 are a pair of positive

samples.

C. Two types of item embedding

Initially, we project all items into a common embedding
space [10]. In this paper, two types of item embedding are
used and learned: one is the typical item embedding, and
the other one is graph-based embedding. For the typical item
embedding, we project all items into Ms ∈ R|I|×d via an
embedding layer, where |I| denotes the total number of items,
and d represents the dimension of the embedding. For the
graph-based item embedding, we use a GCN-based graph
encoder to project all items into an embedding space.

D. Graph convolutional encoder

In particular, for the GCN-based graph encoder, we draw
upon the concepts presented in [19], [40]. We construct a
single graph for the entire dataset to capture node relationships
from a global perspective. To build the graph for items, each
item within a dataset is viewed as a node. If two items are
co-located in less than z distance in a historical sequence,
we add an edge between them. Here, z represents a prede-
termined maximum distance. Initially, we project all items
into a common embedding space, M0

g ∈ R|I|×d, where |I| is
the number of items and d is the dimension of embedding,
and we treat this as the first layer’s item embedding in
the graph. Following [19], we discard feature transformation
and nonlinear activation for improving efficiency. Then the
computation within the GCN-based graph encoder proceeds
as follows:

ml+1
i = ml

i +
∑
i′∈Ni

ml
i′ ; m̃i =

L∑
l=0

ml
i (2)

where L denotes the total number of layers, and Ni represents
one-hop neighbor nodes of mi. ml

i,m
l
i′ represent the embed-

ding of items i, i′ ∈ |I| in the l-th layer. Specifically, we

sum up the representations from all layers to obtain the final
embedding of an item i, denoted as m̃i. We call it graph-based
(item) embedding, and all items’ graph-based embeddings are
represented as a matrix Mg ∈ R|I|×d. The graph encoder is
designed to convert items into expressive representations based
on the structural information in the graph.

E. Transformer-based sequence encoder

Transformer-based sequence encoder is a vital step in the
sequential recommendation. It aims to extract the representa-
tion from the sequence list. First of all, we describe input to
the sequence encoder.
Input to the sequence encoder. Given the input as an inter-
action history sequence Su = [c1, c2, ..., cn], the Transformer
takes into account the positions of items by initializing the
history item list Su to eu ∈ Rn×d by:

eus = [ms1 + p1,ms2 + p2, ...,msn + pn].

eug = [mg1 + p1,mg2 + p2, ...,mgn + pn].
(3)

where msi ∈ Rd represents an item’s typical item embedding
at the i-th position in the sequence, mgi ∈ Rd represents the
item’s graph-based embedding at i-th position in the sequence,
pi ∈ Rd denotes the positional embedding, and n is the
sequence length. We note that msi and mgi are extracted from
embedding matrices Ms and Mg , respectively, described in the
previous subsections.
Sequence encoder. The sequence encoder derives the repre-
sentation of eu using a deep neural network (e.g., BERT4Rec)
[11]. We use two sequence encoders: one for the sequence
of item-based embeddings (eus ) and the other one for the
same sequence of graph-based embeddings (eug ). The sequence
encoders are defined as fθ and fϕ, respectively, where θ and ϕ
represent each model’s parameters. The output representation
Hu

s ∈ Rn×d and Hu
g ∈ Rn×d are calculated as follows:

Hu
s = fθ(e

u
s )

Hu
g = fϕ(e

u
g )

(4)

Since our main task is to predict the next item, we employ
the final vectors hsn in Hu

s = [hs1 , hs2 , ..., hsn ] and hgn

in Hu
g = [hg1 , hg2 , ..., hgn ] as the item-based sequence rep-

resentation and graph-based sequence representation of the
historical sequence, respectively. We can interpret them as two
types of user representation.

F. Multi-view contrastive learning

Inner view contrastive learning. Inspired by the prior work
[12], [14], we utilize InfoNCE as the objective function to
optimize features extracted from contrastive learning. We
denote the number of historical sequences in each batch by
B. Given B historical sequences in the batch, each historical
sequence goes through the stochastic data augmentation mod-
ule and returns two augmented sequences, so totally there are
2B augmented sequences. Since contrastive learning requires
positive pairs and negative pairs, given a user’s historical
sequence (i.e., one of B historical sequences in the batch),



we create a positive pair of the sequence via the stochastic
data augmentation module. We use the remaining 2(B − 1)
augmented sequences as negative samples for the positive pair.

For each positive pair, contrastive loss is calculated by:

Lcon
(
h1
n, h

2
n

)
=− log

exps(h
1
n,h

2
n)

exps(h
1
n,h

2
n) +

∑
hn∈ neg exps(h

1
n,hn)

− log
exps(h

2
n,h

1
n)

exps(h
2
n,h

1
n) +

∑
hn∈ neg exps(h

2
n,hn)

(5)
where h1

n and h2
n are the positive pair’s sequence represen-

tations learned from the same Transformer-based sequence
encoder (i.e., either fθ or fϕ). s(, ) represents the inner
product, and neg indicates the set of negative sample embed-
dings/representations. Since we can create 2(B − 1) negative
pairs for each of h1

n and h2
n, the loss function consists of two

terms.
Then, the objective function for optimizing the contrastive

learning over the two different views (i.e., item-based sequence
representation and graph-based sequence representation via the
sequence encoders) is as follows:

LInner = Lcon
(
h1
sn , h

2
sn

)
+ Lcon

(
h1
gn , h

2
gn

)
(6)

Where h1
sn and h2

sn are item-based sequence representations
of the positive pair, and h1

gn and h2
gn are graph-based sequence

representations of the positive pair.

Cross-view contrastive learning. In addition to the inner
view contrastive learning, we propose a cross view contrastive
learning, which learns discriminative features that capture the
correspondence between the item-based sequence representa-
tion and graph-based sequence representation.

Firstly, the mean of the h1
sn and h2

sn obtained from a
positive pair is calculated as hm

sn , and the mean of the h1
gn

and h2
gn obtained from the same positive pair is calculated as

hm
gn . Likewise, given 2(B-1) negative samples in the batch,

each two negative samples were originated from the same
historical sequence (i.e., B-1 negative sample pairs). Therefore,
we also get each negative sample pair’s mean of item-based
sequence representations and mean of graph-based sequence
representations.

Given the positive pair’s mean representations hm
sn and hm

gn ,
cross-view contrastive loss is calculated as follows:

Lcross = Lcon
(
hm
sn , h

m
gn

)
(7)

Lcross is designed to maximize the similarity between hm
gn and

hm
sn . This approach compels the model to learn similar item-

based and graph-based representations of the same historical
sequence (or augmented sequences originated from the same
sequence), yielding enhanced representation capability.

Consequently, we combine the aforementioned two con-
trastive loss functions as follows:

LMM = Lcross + LInner (8)

G. Multi-view attention fusion module & recommendation
prediction

To further utilize the extracted representations, we propose
a multi-view attention fusion module designed to amalgamate
information from two disparate views – item-based sequences
and graph-based sequences – and ultimately predict a target
user’s preference score for a given item.

The multi-view attention fusion module is executed through
an interactive cross-view attention mechanism, which is de-
vised to uncover multi-view global and local dependencies.
Given a user’s two different view representations, hm

gn ∈ R1×d

and hm
sn ∈ R1×d, as depicted in Figure 1 (the rightmost figure),

we initially calculate the global attention score, sattention
global , and

the local attention score, sattention
local :

sattentionglobal = Averagepool
(
hm
gn + hm

sn

)
⊗Wg

sattentionlocal = σ
((
hm
gn + hm

sn

)
⊗Wl

) (9)

where Wg ∈ R1×1 and Wl ∈ Rd×d represent global weight
and local weight matrix, respectively. Averagepool represents
an average pool function, which deals the representations from
a global view, returns a single numeric value, which is the
average of the d values. d is the dimension of a view’s
sequence representation, and ⊗ denotes matrix product. σ
represents an activation function. In this paper, we employ
ReLU as the activation function.

Given the global and local attention scores, a new fusion
task arises as follows:

sattention = sigmoid
(
sattentionglobal ⊕ sattentionlocal

)
(10)

where ⊕ represents the summation between the sattentionglobal

and sattentionlocal with broadcasting to handle their different
dimensions. We employ the sigmoid function to normalize the
scores. These scores are considered as weights for different
view representations.

Finally, fused representation ffusion
(
hm
sn , h

m
gn

)
∈ R1×dis

calculated as follows:

ffusion
(
hm
sn , h

m
gn

)
=

(
sattention ◦ hm

gn

)
⊕
((
1− sattention

)
◦ hm

sn

) (11)

where ◦ represents elements-wise product.
Since our final goal is to use this representation for rec-

ommendation, we propose a novel strategy to leverage the
generated representation:

ŷ = ffusion
(
hm
sn , h

m
gn

)
MT

s + ffusion
(
hm
gn , h

m
sn

)
MT

g (12)

where hm
sn and hm

gn are a target user’s item-based sequence rep-
resentation and graph-based sequence representation, respec-
tively. Ms and Mg are the typical item embedding matrix and
graph-based item embedding matrix, respectively, described in
Section IV-C.

In our paper, we utilize cross-entropy loss as the objective
function, optimizing to improve prediction accuracy.

Lrec = H(y, ŷ) = −
∑
i

yi log(ŷi) (13)



where y represents the ground truth label for the user’s true
preference scores to items.

H. Overall Objective

Finally, the total loss function during the training stage can
be represented as:

L = Lrec + λLMM (14)

where Lrec is the recommendation objective function in
Eq. 13, LMM represents multi-view contrastive loss, which
consists of the inner-view contrastive loss and cross-view
contrastive loss, as defined in Eq. 8, and λ is a hyperparameter.

V. TIME COMPLEXITY

The time complexity of MVCRec is primarily influenced by
the training phase, which includes both multi-view contrastive
learning and embedding calculations. Training is split into two
stages. In the first stage, MVCRec generates augmented views
of user sequences and computes item-based and graph-based
embeddings, resulting in a complexity of O(|U |d2 + |U |d),
where |U | is the number of users and d is the embedding
dimension.

The second stage, which dominates the complexity, involves
inner-view and cross-view contrastive learning with a com-
plexity of O(|U |2d). This is due to pairwise comparisons
across augmented views within each type (item-based and
graph-based), enhancing MVCRec’s ability to capture user
preferences.

However, in the testing phase, the model only requires the
multi-view attention fusion module, simplifying the complex-
ity to O(nd), similar to that of an attention-based encoder like
SASRec, where n is the sequence length.

VI. EXPERIMENT

In this section, we conduct extensive experiments using
five real-world datasets to investigate the following research
questions (RQs):

• RQ1: How is the performance of our MVCrec compared
with existing baselines?

• RQ2: How effective are the key components of MVCrec
in terms of enhancing the model’s performance?

• RQ3: How do hyperparameters (i.e., the weight of the
multi-view contrative loss λ, a batch size, and an embbe-
ding size) affect the performance of MVCrec?

A. Experimental settings

1) Dataset: To verify the effectiveness of our model, we
evaluate its performance using five real-world benchmark
datasets: Amazon (Beauty, Sports and Home & Kitchen)1,
Yelp2 and Reddit dataset3. The Amazon datasets contain a
series of Amazon product reviews. In our experiments, we
use three sub-categories of the Amazon: Beauty, Sports, and

1https://jmcauley.ucsd.edu/data/amazon/
2https://www.yelp.com/dataset
3https://www.kaggle.com/datasets/colemaclean/subReddit-interactions/data

Home & Kitchen. The Yelp dataset, containing reviews of
businesses listed on Yelp, serves a similar purpose as the
Amazon datasets. Reddit dataset contains user interaction on
the Reddit platform. In the following experiments, we only use
interaction data without any auxiliary data (e.g., text, image).
Following the preprocessing steps described in [16], [41], we
removed users and items with fewer than five interactions. The
statistics of the datasets are summarized in Table I.

TABLE I: The statistics of datasets.

Dataset #users #items #interactions avg.length sparsity
Sports 33.6K 18.3K 296.3K 8.3 99.95%
Beauty 22.3K 12.1K 198.5K 8.8 99.93%
Yelp 30.4K 20.0K 316.3K 10.4 99.95%

Home & Kitchen 66.5K 28.2K 551.6K 8.3 99.97%
Reddit 14.5K 15.4K 28.9K 20.95 99.99%

2) Baselines: We compare our model with 11 state-of-the-
art recommendation models, which can be divided into three
parts:

Non-sequential models. These baselines are based on collab-
orative learning and graph convolutional network:

• BPRMF [42] uses Bayesian Personalized Ranking (BPR)
loss to optimize the matrix factorization model.

• LightGCN [19] simplifies the design of GCN to make it
more concise and appropriate for recommendation.

General sequential models. These baselines are based on
RNN, attention-based neural networks, memory neural net-
works, GCN-based networks:

• SRGNN [39] models the historical item sequence as a
graph-structured data to deal with sequential recommen-
dation.

• GRU4rec [8] uses Gated Recurrent Unit (GRU) to model
for the sequential recommendation.

• Caser [9] embeds a sequence of recent items into an
“image” in the time and latent spaces, and learns sequential
patterns as local features of the image using convolutional
filters.

• SASRec [10] proposes the first self-attention based sequen-
tial model to capture long-term dependencies.

Self-supervised sequential models. These baselines are based
on Transformer and collaborative learning:

• BERT4Rec [11] trains the bidirectional model using the
Cloze task, predicting the masked items in the sequence
by jointly conditioning on their left and right context.

• CL4rec [12] leverages contrastive learning on the sequen-
tial recommendation.

• MCLSR [38] learns the representations of users and items
through a cross-view contrastive learning paradigm from
four specific views at two different levels (i.e., interest-
and feature-level).

• MCLrec [14] innovates the standard contrastive learning
framework by contrasting data, and models augmented



views for adaptively capturing the informative features
hidden in stochastic data augmentation.

• DCrec [36] proposes a global collaborative learning strat-
egy to tackle with the popularity bias for sequential recom-
mendation, considering dependencies between users across
sequences.

We note that other existing methods (e.g., UltraGCN,
VGCL, CGCL, MAErec, MMSSL [34], MSM4SR [33]) which
are not aimed for sequential recommendation or require aux-
iliary data, are excluded in the baseline list except well-
known BPRMF and LightGCN because their performance
would be much lower than sequential recommendation models
or sometimes it is hard to run some of their models without
auxiliary data (again, in this paper, we only utilize a target
behavior’s interaction data without any auxiliary data).

3) Evaluation metric: In accordance with [12], [43]–[46],
we employ the leave-one-out strategy to split each dataset
into training, validation, and test sets based on the timestamp
provided by the dataset. Specifically, we use the last interaction
of every user for the test set, and the second-to-last interaction
for every user is allocated for the validation set; all remaining
interactions are used in the training set. Following the proce-
dure in [47]–[50], we rank the entire item set.

We adopt Hit Ratio (HR) and Normalized Discounted Cu-
mulative Gain (NDCG) as evaluation metrics. HR@k measures
whether the positive item appears in the top-k recommendation
list, and NDCG@k additionally considers its position in the
ranking list, where k ∈ {5, 10, 20}.

4) Implementation Details: We implement our method
using PyTorch, aligning the implementation of BPRMF,
LightGCN, FPMC, GRU4rec, Case, SASRec, CL4rec, and
BERT4Rec with the methodologies described in their re-
spective papers. We implemented MCLSR ourselves as the
authors did not provide their code in the paper. A graph for
the graph encoder is constructed based on the training set.
To ensure fairness, we employ BERT as the representation
encoder for CL4rec, MCLrec, DCrec, and our MVCrec, setting
the number of self-attention blocks and attention heads to
2, and we set the item-to-item distance z as 3 (as men-
tioned in Section IV-D). All parameters are consistent with
those reported in the original papers, and optimal settings
are chosen based on model performance on the validation
set. We set the embedding size d as 64 and the maximum
length of recently consumed items in each user’s histori-
cal sequence n as 50, selecting a hyperparameter λ from
{0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. The learn-
ing rate lr is chosen from {1e−3, 1e−4}, and weight decay is
selected from {0, 1e−1, 1e−2, 1e−3, 1e−4, 1e−5, 1e−6}. For
fairness, we standardize the batch size B to 256 for all models
and fix temperature of contrastive learing for all contrastive
learning method as 1. The models are optimized using the
Adam optimizer [22] and are trained with an early stopping
strategy based on the performance of the validation set, with
the maximum step set to 100. All experiments are conducted
on a Tesla T4 GPU.

B. RQ1: overall performance

To clarify the contributions made by MVCrec, we compare
its performance with the baselines. The results presented in
Table II lead us to several insights:

• Our method outperforms the baselines, attributed to
the graph view and the multi-view fusion strategy.
For instance, our model surpasses the best baseline by
1.18%∼14.44% on NDCG@10 and 5.03% ∼ 9.22% on
HR@10 over the five datasets. This superior performance
can be explained as follows: (1) The multi-view contrastive
learning strategy incorporating both sequence and graph
information facilitates the generation of more expres-
sive representations; and (2) The multi-view attention fu-
sion strategy effectively amalgamates item-based sequence
representation and graph-based sequence representation.
These results confirm the effectiveness of our multi-view
contrastive recommendation model, learning more accurate
and better representations.

• Self-supervised models (e.g., MCLrec, DCrec) exhibit
pronounced efficacy, markedly surpassing classical models
such as BPRMF, LightGCN, GRU4rec and Caser. Fun-
damental Transformer-based methods like SASRec and
BERT4Rec excel beyond the classical models, establishing
themselves as the secondary tier in sequential recommen-
dation and emphasizing the power of Transformer methods
in this realm. In contrast to SASRec and BERT4Rec, mod-
els like CL4rec, MCLrec, DCrec, and MVCrec integrate
contrastive learning and data augmentation methods for
training in the recommendation tasks. This demonstrates
contrastive learning’s capability to harness more intri-
cate representations from historical sequences by learning
features that discern between distinct instances. Interest-
ingly, LightGCN manifests substantial prowess on the Yelp
dataset, aligning closely with CL4rec and underscoring the
proficiency of graph networks in recommendation systems.

• In comparison to CL4rec, our findings substantiate that
a graph structure tailored for sequential recommendation
can notably enhance performance. LightGCN also eclipses
BPRMF substantially, elevating the graph structure; the
graph convolutional network unveils connections between
users and items as their interaction is inherently graphical.
Concurrently, the results show that our sequence-based
graph construction method adeptly discern interactions
between varied items by weighing the positioning of items
within the sequence.

C. RQ2: ablation study

Next, we conduct an ablation study to test whether each
proposed component positively contribute to the performance
improvement or not.

To further comprehend the efficacy of our proposed model
MVCrec, we compare it with three variants of our model:
MVCrec(s), MVCrec(g) and MVCrec(mlp). MVCrec(s) em-
ploys a single contrastive learning approach based on only



TABLE II: Overall coverage where bold means the best performance and underline means the second-best performance. The
p-value for the result is less than 0.01.

Dataset Metric BPRMF LightGCN GRU4rec Caser SASRec BERT4Rec SRGNN CL4rec MCLrec MCLSR DCrec MVCrec Improv.(%)
Sport HR@5 0.0144 0.0171 0.0113 0.0060 0.0242 0.0222 0.0214 0.0258 0.0281 0.0186 0.0333 0.0352 5.71

NDCG@5 0.0092 0.0107 0.0073 0.0043 0.0158 0.0147 0.0144 0.0171 0.0191 0.0123 0.0231 0.0238 3.03
HR@10 0.0255 0.0289 0.0182 0.0092 0.0369 0.0351 0.0330 0.0403 0.0428 0.0287 0.0481 0.0523 8.73

NDCG@10 0.0127 0.0146 0.0095 0.0053 0.0199 0.0189 0.0181 0.0218 0.0239 0.0155 0.0278 0.0293 5.4
HR@20 0.0414 0.0471 0.0317 0.0138 0.0550 0.0527 0.0508 0.0607 0.0662 0.0444 0.0683 0.0760 11.27

NDCG@20 0.0168 0.0191 0.0129 0.0065 0.0245 0.0233 0.0226 0.0269 0.0297 0.0195 0.0329 0.0352 6.99
Beauty HR@5 0.0235 0.0262 0.0166 0.0107 0.0466 0.0439 0.0433 0.0516 0.0564 0.0275 0.0614 0.0647 5.37

NDCG@5 0.0143 0.0165 0.0108 0.0068 0.0311 0.0291 0.0304 0.0354 0.0388 0.0189 0.0439 0.0460 4.78
HR@10 0.0397 0.0433 0.0273 0.0174 0.0656 0.0643 0.0620 0.0749 0.0837 0.0410 0.0846 0.0924 9.22

NDCG@10 0.0195 0.0220 0.0142 0.0089 0.0372 0.0356 0.0364 0.0428 0.0476 0.0233 0.0513 0.0548 6.82
HR@20 0.0614 0.0695 0.0446 0.0267 0.0944 0.0935 0.0910 0.1068 0.1166 0.0639 0.1145 0.1275 11.35

NDCG@20 0.0250 0.0286 0.0186 0.0113 0.0444 0.0430 0.0437 0.0509 0.0560 0.0290 0.0588 0.0637 8.33
Yelp HR@5 0.0336 0.0502 0.0134 0.0060 0.0409 0.0419 0.0269 0.0447 0.0531 0.0491 0.0478 0.0597 12.43

NDCG@5 0.0223 0.0357 0.0082 0.0043 0.0331 0.0337 0.0180 0.0328 0.0380 0.0342 0.0374 0.0447 17.63
HR@10 0.0512 0.0730 0.0218 0.0092 0.0551 0.0562 0.0431 0.0642 0.0751 0.0714 0.0654 0.0811 7.99

NDCG@10 0.0280 0.0430 0.0109 0.0053 0.0377 0.0383 0.0232 0.0391 0.0450 0.0414 0.0431 0.0515 14.44
HR@20 0.0812 0.1060 0.0371 0.0138 0.0778 0.0800 0.0673 0.0938 0.1076 0.1025 0.0913 0.1107 2.88

NDCG@20 0.0355 0.0513 0.0147 0.0065 0.0434 0.0443 0.0293 0.0466 0.0532 0.0492 0.0496 0.0589 10.71
Home & kitchen HR@5 0.0054 0.0073 0.0039 0.0042 0.0113 0.0116 0.0066 0.0141 0.0153 0.0046 0.0198 0.0207 4.55

NDCG@5 0.0035 0.0046 0.0024 0.0026 0.0074 0.0076 0.004 0.0096 0.0106 0.0029 0.0146 0.0147 0.68
HR@10 0.0094 0.0122 0.0066 0.0072 0.0180 0.0172 0.0116 0.0211 0.0227 0.0079 0.0269 0.0288 7.06

NDCG@10 0.0048 0.0061 0.0032 0.0036 0.0096 0.0094 0.0057 0.0118 0.0129 0.0039 0.0169 0.0171 1.18
HR@20 0.0158 0.0202 0.0127 0.0129 0.0275 0.0265 0.0196 0.0307 0.0331 0.0144 0.0362 0.0407 12.43

NDCG@20 0.0064 0.0082 0.0048 0.0050 0.0120 0.0117 0.0077 0.0142 0.0156 0.0056 0.0193 0.0201 4.15
Reddit HR@5 0.2805 0.3103 0.1820 0.1662 0.2132 0.2221 0.2458 0.3072 0.3217 0.1767 0.3142 0.3374 4.88

NDCG@5 0.2241 0.2444 0.1525 0.1418 0.1726 0.1756 0.1881 0.2436 0.2557 0.1459 0.2477 0.2661 4.07
HR@10 0.3418 0.3744 0.2166 0.1920 0.2618 0.2750 0.3024 0.3769 0.3859 0.2117 0.3727 0.4053 5.03

NDCG@10 0.2438 0.2650 0.1636 0.1501 0.1883 0.1928 0.2064 0.2561 0.2765 0.1571 0.2667 0.2880 4.16
HR@20 0.4098 0.4526 0.2626 0.2267 0.3280 0.3444 0.3655 0.4483 0.4560 0.2615 0.4417 0.4773 4.67

NDCG@20 0.2610 0.2847 0.1752 0.1588 0.2050 0.2103 0.2223 0.2741 0.2941 0.1696 0.2840 0.3063 4.15
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Fig. 2: Performance at different λ under NDCG@20.

TABLE III: Ablation study at HR@20 and NDCG@20.

Model MVCrec MVCrec(s) MVCrec(g) MVCrec(mlp)

Beauty HR 0.1275 0.1068 0.1183 0.1017
NDCG 0.0637 0.0509 0.0559 0.0489

Sport HR 0.0760 0.0607 0.0705 0.0590
NDCG 0.0352 0.0269 0.0319 0.0271

Yelp HR 0.1107 0.0938 0.1020 0.0923
NDCG 0.0589 0.0466 0.0523 0.0449

Home & Kitchen HR 0.0407 0.0307 0.0362 0.0349
NDCG 0.0201 0.0142 0.0164 0.0160

Reddit HR 0.4773 0.4218 0.4348 0.4013
NDCG 0.3063 0.2697 0.2780 0.2651

item-based sequence information without graph-based se-
quence information. MVCrec(g) denotes utilization of con-
trastive learning solely on the graph-based sequence informa-
tion without item-based sequence information. MVCrec(mlp)
denotes the use of multilayer perceptron (MLP) by concate-

nating representations of two views as input and then going
through the MLP layers instead of our proposed multi-view
attention fusion module. Following [14], we adopt HR@20
and NDCG@20 as evaluation metrics in the ablation study
for simplification.

The results are presented in Table III. Analyzing the com-
parison between our model and three variants yields the
following insights:

• A comparison between MVCrec(s) and MVCrec(g) reveals
that the graph convolutional layer is more pivotal in terms
of representing the history sequence. The information in
the graph, constructed by the sequence data, encapsulates
extensive user preference.

• Comparing MVCrec(s) and MVCrec shows that our full
method significantly outperforms MVCrec(s) – analogous



to CL4rec – attributed to our novel multi-view attention
fusion module that harnesses information from both graph
and sequence structures to generate more expressive rep-
resentations.

• Comparing MVCrec(mlp) and MVCrec shows that our
proposed multi-view attention fusion module outperforms
the MLP significantly, this is because the multi-view
attention fusion module utilizes attention to weigh the im-
portance of different views and their features dynamically.

D. RQ3: hyperparameter analysis

1) Hyperparameter Analysis on λ: In this section, we
examine the impact of varying λ, a hyperparameter in Eq. 14.
We assess the performance of MVCrec across five datasets
using different values of λ. Because of the limited space, we
report NDCG@20 as the evaluation metric, and the results
are illustrated in Figure 2. In the Amazon datasets (i.e.,
Beauty, Sports, and Home & Kitchen), optimal performance
is achieved when λ is set to 0.01. In the Yelp dataset,
performance improves with increasing λ, reaching its highest
at 0.5. For the Reddit dataset, the best performance is observed
with λ set to 0.1. It means both recommendation loss and
contrastive loss positively contributed to correctly estimate
user-item matching scores and learn better representations. The
discrepancy of optimal λ among the datasets can be potentially
explained that Amazon dataset have smaller average historical
sequence length than Yelp and Reddit datasets. Although we
do not report HR@20, We observed similar trends in both
HR@20 and NDCG@20.
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Fig. 3: Performance with different batch sizes under
NDCG@20. The results from Reddit have been divided by
10 to ensure its line fits to the same figure with the other four
datasets.

2) Hyperparameter Analysis on batch size and embedding
size: In this section, we explore how a batch size and
an embedding size impact the performance of our MVCrec
model. We evaluate MVCrec across five datasets using various
batch and embedding sizes. NDCG@20 serves as the main
metric, similar to the previous section. The batch size ranges
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Fig. 4: Performance with different embedding sizes under
NDCG@20. The results from Reddit have been divided by
10 to ensure its line fits to the same figure with the other four
datasets.

from 16 to 256. Results are illustrated in Figure 3. Optimal
batch size varies by each dataset: 32 for Beauty, 16 for Sports,
32 for Yelp, 16 for Home & Kitchen, and 32 for Reddit.

The embedding size ranges from 16 to 128. Results are
illustrated in Figure 4. We observe that larger embedding size
generally enhances performance across all datasets. Although
we do not report HR@20 because of the limited space, we
observe that HR@20 has the same trend as NDCG@20 in
these experiments.

VII. CONCLUSION

In this paper, we have proposed a novel contrastive learning
framework. Our contrastive learning strategy integrated con-
trastive learning from two views (i.e., item-based sequence
and graph-based sequence), enabling our model to learn bet-
ter sequence representations. To combine the representations
extracted from the two views, we employ the concept of
multi-view attention fusion method, to generate/learn more
expressive sequence representations. Extensive experiments
across five benchmark datasets demonstrated the superiority
of our model. In this work, we only used the sequence of
consumed items without considering the actual time span
between them. In the future, we will explore other potential
contrastive learning methods based on the temporal sequence
to learn even better user and item representations.
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