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Abstract—Sequential recommendation aims to recommend the
next item that matches a user’s interest, based on the sequence
of items he/she interacted with before. Although effective, ex-
isting work suffers from the following limitations: (1) Existing
diffusion-based recommendation methods have undertaken tai-
lored refinements to the diffusion process without considering
the difference between recommendation and other tasks, leading
to the ignorance of the user’s personalized preferences; (2)
Self-supervised contrastive learning, widely used to mitigate
the data sparsity issue in sequential recommendation, typically
employs random augmentation to create multiple views of user
sequences. However, random augmentation can disrupt the
semantic integrity and interest patterns within the sequence,
resulting in semantically divergent augmented views that may
misrepresent user preferences. To address these challenges, we
propose the Context-Aware Diffusion-based Sequential Recom-
mendation (CADSR) model, which leverages context information
to generate more semantically consistent positive samples during
contrastive learning. This ensures that the model captures both
user preferences and their evolution more accurately. Exten-
sive experiments on four public benchmark datasets show that
CADSR outperforms 11 state-of-the-art baselines, achieving an
average improvement of 10.94% in Recall@10 and 10.54% in
NDCG@10 over the best baseline. Source code is available at
https://github.com/queenjocey/CADSR.

Index Terms—Diffusion Model, Recommender System, Se-
quential Recommendation, Contrastive Learning

I. INTRODUCTION

Recommender systems play a pivotal role in enhancing user
experience by providing personalized content and suggestions.
Among the various types of recommender systems, sequential
recommendation systems have gained prominence due to their
ability to capture the temporal dynamics of user interac-
tions. However, sequential recommendation is inherently time-
sensitive, requiring models that can efficiently handle temporal
data while providing personalized and accurate recommenda-
tions. In this context, diffusion models, which have shown
great success in various domains such as natural language
processing (NLP) [1] and computer vision (CV) [2]–[4], offer
a promising approach due to their capability in dealing with
temporal data and generating diverse representations.

Diffusion models, originally designed as probabilistic gen-
erative models, have achieved remarkable results in tasks
such as image synthesis, audio generation, and, more re-
cently, recommender systems. These models operate through
a denoising process that iteratively removes noise from an

Fig. 1: An example of augmented views (i.e., second, third
and fourth sequences) generated during reconstruction/reverse
process, serving as positive pairs for contrastive learning.

initial noisy input to generate high-quality data samples. This
iterative refinement introduces a level of uncertainty that aligns
well with the inherently diverse and dynamic nature of user
interests. The ability of diffusion models to simulate the spread
of information and preferences provides a nuanced method for
predicting user behavior, making them well-suited for the task
of sequential recommendation.

We use a toy-example in Fig. 1 illustrating how a diffusion
model reconstructs Alice’s movie preferences. The top/first
sequence shows Alice’s original movie preferences labeled
as the input sequence. Although not shown in this example,
in the forward diffusion process, noise is introduced. In the
reverse diffusion process, the diffusion model refines these
preferences, introducing variations or recovering familiar gen-
res (e.g., changing Romance to Action, Fiction to Adventure,
or Monday to Tuesday), as shown in the second, third and
fourth sequences in the figure. Simultaneously, the reverse
diffusion process generates high-quality augmented views,
which enhance contrastive learning by distinguishing similar
and dissimilar movie recommendations.

Despite their potential, applying diffusion models to recom-
mender systems presents significant challenges. First, the high
degree of personalization required in recommendation tasks
necessitates guidance during the diffusion generation process
to ensure that the generated recommendations align closely
with individual user preferences. This need for guidance
contrasts with their application in NLP or CV domains, where
the focus is often on generating generalizable outputs. Second,
the computational cost associated with diffusion models is sub-
stantial. The extensive diffusion steps required for high-quality



outcome generation lead to significant time and resource
consumption, presenting a big challenge for recommender
systems that must operate in real-time and deliver timely
responses to user queries.

To address these challenges, we propose a novel approach
that leverages the strengths of diffusion models while incorpo-
rating mechanisms to enhance their efficiency and personaliza-
tion for sequential recommendation tasks. Our motivation for
proposing this work is multi-fold: (1) We harness the ability of
diffusion models to handle complex sequence data and their
strength in generating diverse and uncertain representations.
This approach enables the model to effectively capture the
dynamic and varied nature of user preferences; (2) We incor-
porate context-aware guidance into the diffusion generation
process. By utilizing intermediate steps in the reverse diffusion
process, we generate augmented views for contrastive learning.
This ensures that the generated recommendations align closely
with the user’s contextual preferences, thereby enhancing their
personalization and relevance.

Our experimental results demonstrate that the proposed
Context-Aware Diffusion-based Sequential Recommendation
(CADSR) model significantly improves the performance of
sequential recommendation tasks. The model outperforms
existing state-of-the-art methods in terms of both accuracy
and diversity of recommendations, showcasing its ability to
generate highly personalized suggestions that cater to the
dynamic interests of users. In summary, this work makes
several important contributions:

• We demonstrate the effective application of diffusion
models to sequential recommendation tasks, leveraging
their strengths in handling temporal data and generating
diverse representations.

• By introducing context-aware guidance during the diffu-
sion process, we enhance the personalization and rele-
vance of the recommendations

• Experimental results show that the proposed CADSR
model outperforms 11 state-of-the-art baselines across 4
real-world datasets.

These contributions collectively advance the state-of-the-art
in sequential recommendation by offering a robust and effi-
cient solution that leverages the unique capabilities of diffusion
models to provide highly personalized recommendations.

II. RELATED WORKS

A. Sequential Recommendation
Sequential recommendation aims to model a user’s pref-

erence based on their historical interactions. In the initial
phase, researchers treated the evolution of user interests as
a Markov process and employed Markov chains to predict the
next item for each user [5], [6]. With the rapid advancements in
deep learning, various techniques such as convolutional neural
networks (CNN) and recurrent neural networks (RNN) have
been utilized in sequential recommendation [7]–[9], leading
to remarkable achievements. Subsequently, the introduction
of the attention mechanism has significantly enhanced rec-
ommendation performance. SASRec [10], for instance, is the

pioneering work that employs the self-attention mechanism
to model the evolution of user preference. Following that,
BERT4Rec [11] is proposed to use a bidirectional self-
attention encoder to capture context information of the user se-
quence. Recently, many self-attention-based and graph-based
methods have made improvements to existing approaches,
achieving notable progress [12]–[16].

B. Self-Supervised Contrastive Learning

Self-supervised learning is widely used to tackle challenges
associated with data sparsity and noise. It improves representa-
tion learning by constructing informative supervisory signals
from the unlabeled data itself. Self-supervised learning has
been extensively applied in various domains, such as CV [2]–
[4] and NLP [1].

Due to the inherent issues of user behavior sparsity and
noisy interaction records in recommendation scenarios, self-
supervised contrastive learning has played a crucial role in
multiple recommendation tasks [17]–[22]. When it comes
to sequential recommendation, researchers design informative
contrastive learning objectives for learning better user repre-
sentations from historical interactions. S3-Rec [23] introduces
a method that incorporates auxiliary self-supervised objectives
to learn the correlations among items, attributes, and segments.
CL4SRec [24] designs three data-level augmentation opera-
tors, namely crop, mask, and reorder. CoSeRec [25] suggests
substituting a specific item in the sequence with a similar
item. Later, DuoRec [26] proposes a model-level augment
strategy, which generates positive augment pairs by forward-
passing an input sequence twice with different Dropout masks.
However, this approach is also a kind of random augmentation
at the model level, lacking the ability to maintain semantic
consistency. In addition, ICLRec [27] attempts to extract user
intent from sequential information and subsequently performs
contrastive learning between user representations and intent
representations. ECL-SR [28] designs different contrastive
learning objectives for augmented views at different levels.
MCLRec [29] further combines data-level and model-level
augmentation strategies. It applies random data augmentation,
as proposed by CL4SRec, to the input sequence and then
feeds the augmented data into MLP layers for model-level
augmentation.

However, the intentions of these methods do not reflect the
constraints on semantic consistency in the augmented views,
which can potentially lead to the generation of incorrect pos-
itive samples. In addition, they overlook context information,
which is crucial for preserving the semantic consistency.

C. Diffusion Models

Diffusion Models have gained significant prominence as
a dominant approach in diverse generative tasks, such as
image synthesis [30]–[32] and text generation [33], [34].
They demonstrate superior generative capabilities compared
to alternative models such as GANs [35] and VAEs [36],
which can be attributed to their precise approximation of



the underlying data generation distribution and provision of
enhanced training stability.

Recently, diffusion models have been employed in the field
of sequential recommendation. Some methods [37]–[41] di-
rectly utilize diffusion models as the fundamental architecture
for sequential recommendation. Specifically, these methods
employ a left-to-right unidirectional Transformer to extract
guidance signals for the generation of the next item. In con-
trast, other approaches [42], [43] adopt a two-stage paradigm
for data augmentation. Initially, they train a diffusion model
to generate pseudo user interactions aimed at expanding the
original user sequences. These augmented datasets are then
used to train downstream recommendation models. It should
be noted that they solely rely on the unidirectional information
of user behavior sequences as the diffusion guidance.

Different from these existing methods, our approach lever-
ages the diffusion model for contrastive learning. Specifically,
we employ the diffusion model to generate semantic-consistent
augmented views of the original sequences and maximize the
agreement among different views from the same user.

III. PRELIMINARIES

A. Task Formulation

Let U and I denote the user and item set, respectively. In
this paper, we aim to estimate the users’ preferences on next-
item through a neural recommender (e.g., a diffusion model),
which can recommend the top-k items for a target user u.

Specifically, we represent historical interaction sequence of
user u as vu = [vu1 , v

u
2 , . . . , v

u
n−1], and denote the subsequent

consumed item of the sequence as vun. Let D stand for all
the sequences within the training data, and Dt denotes test
sequences(i.e. in our context, refers to vun). Each item vui is
represented as an embedding vector xu

i and the interaction
sequence is mapped to a matrix x ∈ R(n−1)×d, where d is the
embedding dimension. The matrix serves as the input to the
diffusion process.

The goal this work is to predict the next item at time step
n according to n− 1, which can be formulated as:

argmax
vu
i ∈I

P (vun = vui |xu), (1)

where the probability P represents the likelihood of item vui
being the next item, conditioned on user’s historical interaction
matrix xu.

B. Diffusion Model

A vanilla diffusion model involves two major components:
the forward process and reverse process, which uses latent
variable modelling to enable the progressive generation of
refined representations [44].
Forward Process: In the forward process of the diffusion
model, a data point initially sampled from a real-world dis-
tribution, x0 ∼ q(x), is progressively corrupted through a
Markov chain into a standard Gaussian noise, represented as
xT ∼ N (0, I). For each forward step t ∈ [1, 2, . . . , T ], this

corruption transforms the original representation x0 into a
noisy representation xt at each step t:

q (xt | xt−1) = N
(
xt;
√
1− βtxt−1, βtI

)
,

=
√
1− βtxt−1 +

√
βtϵ, ϵ ∼ N (0, I)

(2)

where N (x;µ, σ2) is a Gaussian distribution with a mean
µ =

√
1− βt and variance σ2 = βt, xt is sampled from

this Gaussian distribution, βt ∈ (0, 1) controls the level of
the added noise at the t-th diffusion step and I is an identity
matrix.

This approach shows the flexibility of the direct sampling
of xt conditioned on the input xt−1 at an arbitrary diffusion
step t by sampling from a random Gaussian noise ϵ.
Reverse Process: The primary purpose of the diffusion
models is to learn a denoising model capable of removing the
noise added to the data and to gradually recover the initial
distribution. Indeed, once a noisy embedding xt is obtained,
the reverse process aims to denoise this xt, with a trajectory
towards the direction of x0 and to gradually recover the initial
representation x0. The transition (xt → xt−1 → , . . . ,→ x0)
is defined as follows:

p (xt−1 | xt,x0) = N (xt−1;µθt (xt,x0) , βtI)

µθt (xt,x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt (1− ᾱt−1)

1− ᾱt
xt

βt =
1− ᾱt−1

1− ᾱt
βt

(3)

where µ and σ2 are the mean and variance of the user/item
embeddings, respectively; αt = 1− βt while ᾱt =

∏t
t′=1 αt.

The learning of the mean µθ is based on a neural network
fθ parameterized by θ. As such, to effectively recover x0,
neural models, such as a Transformer [45] and a U-Net [32],
are commonly used in practice [30].

IV. METHODOLOGY

In this section, we present the comprehensive methodology
of our proposed Context-Aware Diffusion-based Sequential
Recommender (CADSR). We provide an overview of the
proposed framework in Fig. 2. Diffusion model was originally
proposed to model continuous data, such as images and audios.
To adapt diffusion model for sequential recommendation, we
start the pipeline with a sequence encoder that transits the
initial input into latent space. In the forward pass, we gradually
add Gaussian noise to the encoded embeddings, creating noisy
representations, and denoise these embeddings step-by-step
under the contextual guidance of user history and the diffusion
steps. The final reconstructed embeddings are rounded to
predict the most relevant items for the target user.

A. Input Layer

Given users’ interaction sequence of v in one-hot encoding,
we first map it into hidden representation e, and then conduct
the following learning procedure. Unlike existing work [39],
[40] which mostly follow the common practice that directly



Fig. 2: Overview of proposed CADSR framework.

corrupts the initial state, we reweight the sequence with its
time interval and process it with a Transformer-based sequence
encoder before the diffusion process.
Time-aware reweigting As we formulated our task in
Sec.III-A, a big difference that distinguish sequential recom-
mendation from general recommendation is that the order
of interactions and its time interval play a crucial role in
predicting users’ next item preference. Thus, we reweight each
input with its timestamp TSu = tsu1 , ts

u
2 , . . . , ts

u
n−1. Each

item in the interaction sequence is assigned a weight that
is proportional to its temporal distance from the most recent
interaction. Formally, we define the weight for an item vuj at

timestamp tsuj as wu
j = wmin +

tsuj −tsu1
tsun−1−tsu1

(wmax − wmin),
where wmin and wmax are predefined lower bound and upper
bound of user interaction sequence, and tsu1 and tsun−1 are the
timestamp of the first and last interactions in the sequence.

We presents the effect of time-aware reweighting strategy
in Fig. 3a. Before reweighting (i.e. the upper-left subfigure),
all items in the user interaction sequence are treated with
equal importance, represented by bars of uniform height
(i.e., uniform weight). While after reweighting based on time
intervals(i.e. the lower-left subfigure), the importance of each
item is adjusted according to the temporal proximity to the
most recent interaction. The most recent items is assigned with
highest weights and items closer in time were assigned with
similar weights, thus resulting in varying bar heights. This
reweighting mechanism prioritizes more recent interactions,
thereby capturing the evolving nature of user preferences for
more accurate next-item prediction. The resulting reweighted
sequence zu = [zu1 , . . . , z

u
n−1] is computed as zuj = vuj · wu

j ,
where vuj is the one-hot encoded representation of the item.
Sequence Encoder As shown in Fig. 3b, we augmented time-
reweighted sequence with sinusoidal position embedding [45].
The position embedding is adjusted to have the same units as
the input, then add these parts element-wisely.

The output vector is then fed into a Transformer block to
learn the user sequence representations. We keep the consistent
architecture and configuration with the standard Transformer
block, consisting of a multi-head self-attention layer and a
feed-forward layer, defined as:

x = Transformer(z) (4)

, where x ∈ R(n−1)×d denotes the hidden states of user se-
quence. And we use the last layer outputs as the contextualized
representation of user interaction sequence.

(a) Toy example of time-aware
reweighting for input sequence. (b) Sequence Encoder

Fig. 3: Fig. (3a) illustrate proposed time-aware reweighting
mechainism and Fig. (3b) describe the architecture of input
sequence encoder.

B. Diffusion-based Sequential Recommendation

We depict the forward and reverse process along with
diffusion-augmented contrastive learning in Fig. 4.

1) Forward Process: Given pre-trained user embedding xu,
we begin the forward process and continuously incorporate
Gaussian noises into with adjustable scales and steps. In the
forward diffusion process, noisy embeddings xu

t are generated
at each step t.

The value of βt is generated from a pre-defined noise
schedule β which arranges how much noise is injected at
which step. The common noise schedule includes square-
root [33], cosine [30], and linear [46]. According to [30], at
an arbitrary diffusion step t, we can derive xt conditioned on
the input x0 in a straightforward way following the Markov
chain process. Then Eq. 2 can be rewritten as follows:

q(xt|x0) = N
(
xt;

√
αtx0, (1− αt)I

)
(5)

αt =

t∏
s=1

αs, αs = 1− βs (6)

A proper noise schedule is important in forward process to
control the noise injection. In this work, we follow [39] and
adopt a linear variance noise schedule as:

1− ᾱt = s ·
[
αmin +

t− 1

T − 1
(αmax − αmin)

]
, (7)

where αmin and αmax are the minimum and maximum of the
noise correspondingly, t is the current forward step, T is the
total forward step, and s ∈ (0, 1) controls the noise scale.

Denoting the maximum diffusion step as t, in the training
process, we adopt an importance sampling strategy [46] to
emphasize critical steps. For each item, we sample a diffusion
step s according to a predefined probability distribution p(s),
where p(s) is proportional to the magnitude of the loss at step



Fig. 4: Diffusion processes and diffusion augmented con-
trastive learning in CADSR.

s, where s = ⌊s′⌋, s′ ∼ U(0, t). The sampling strategy ensures
that steps with higher loss, which is more difficult to learn, are
sampled more frequently. Following Eq. 5, we can generate
xs in a range of 1 ≤ s ≤ T . Following reparameterization
trick [30], [47], we could generate xs as follows:

xs =
√
αsx0 +

√
1− αsϵ (8)

This approach enables more efficient and robutst training. We
present detailed evaluation on the influences of different noise
schedules in Section V-E1.

2) Reverse Process: In the reverse diffusion process, the
noisy embedding xu

t are iteratively denoised, resulting in
reconstructed embeddings x̂u

t . The process is natuarally in-
tractable as x0 is required at each reverse step, therefore we
need a well-designed approximator for estimation. The ap-
proximator serves as the backbone model to iteratively recover
user representations during the reverse process. While U-net
[48] is widely used in image domain, we choose Transformer
[45] as our approximator, which has proven to be effective in
sequence data modeling.
Context-aware guiding The original formulation of reverse
process is to recover the representation from pure Gaussian
noise. However, in this context, we expect the engagement
of users’ historical interaction to generate high-quality em-
bedding. In particular, we introduce two key components
as guidance: 1) users’ historical interaction sequence cu, 2)
diffusion step t. The noisy embedding xu

t is denoised to
reconstructed x̂u

t at each step:

x̂u
0 = Transformer(x̂u

t , cu, t) (9)

x̂t−1 = µ̃t(x̂t,x0) + β̃tϵ
′ (10)

where µ̃t(x̂
u
t ,x0) =

√
αt−1βt

1−αt
xu
0 +

√
αt(1−αt−1)

1−αt
x̂t and β̃t =

1−αt−1

1−αt
βt, and ϵ′ ∼ N (0, I) for x̂u

t−1 generation. Repeat the

above process until we arrive at x̂0. The reverse phase can be
illustrated in Algorithm 1.

Unlike tasks in other domains that general output with high
probability are usually expected, in recommendation tasks, we
want to keep personalized preference of each user, therefore,
we anticipate that these contextual information can serve
as guiding signals to help the model better preserve user
preferences and temporal dynamics of their behavior, allowing
for more informed and personalized predictions.

In corresponding to the transition at encoding layer, we use
a rounding function to map the learned embedding back into
embedding space, defined as:

Rounding(x̂u
0 , vi) = x̂u

0 · vi, i ∈ I (11)

where x̂u
0 denotes the reconstructed user embedding con-

ditioned on initial input xu
0 and current step embedding.

We rank the similarity score and select top-k candidate for
recommendation.

3) Training and Optimization: Our total loss consist of
three parts:

LTotal = LDiff + α · LRec + β · LCl (12)

Diffusion Optimization To ensure conditional generation,
it is essential to minimize the variational lower bound of
the predicted user and item embeddings. Following previous
methods [39], the reconstruction loss can be formulate as:

L′
vlb = E

qϕ(x0|v)
[Lvlb(x0) + log qϕ(x0|v)− log pθ(v|x0)] .

(13)
The above equation can be further simplified as:

LDiff = Eq(xT |v)

[(
N∑

n=2

∥∥x0
T − fθ(x

n
T , n)

∥∥2)
+ ∥E(v)− fθ(xT , 1)∥2

] (14)

where the first term and second term calculate the MSE
between the predicted hidden representation and the original
representation, fθ(·) denotes the approximator which is Trans-
former in this context.
Recommendation Loss Solely relies on the diffusion gen-
eration may lead to trivial representations because that the
LDiff tends to maximize the similarity between the predicted
mean and corrupted target item embedding. However, as a
ranking task, we anticipate to avoid high score for all items.
Consequently, we introduce LRec to guide the prediction of
recommendation task that also leverage dissimilar pairs.

LRec = −
∑

(i,j+,j−)

log σ
(
xij+ − xij−

)
(15)

Given recommendation data with the triplet (u, j+, j−),
item j+ and item j− are the positive item and negative item of
user u, respectively. Note that we only conduct denoising for
user and positive interacted item since denoising negative item
is relatively insignificant due to the random negative sampling
mechanism.



Algorithm 1 CADSR Training

Require: interaction data D̄, pre-trained user embedding xu
0 ,

diffusion step T , user reconstruction Transformer fθ,
noise schedule βs

1: repeat
2: Sample a batch of interactions D ⊂ D̄.
3: for all (u, i, j) ∈ D do
4: Sample diffusion step t ∼ U(1, T )
5: Sample random Gaussian noise ϵ ∼ N (0, I)
6: Compute xu

t given xu
0 and t via q(xu

t |xu
0 ) in Eq.

(5);
7: Reconstruct x̃u

0 and through fθ;
8: Calculate Lfinal by Eq. (12);
9: Take gradient descent step on ∇θ(Lfinal) to opti-

mize θ;
10: end for
11: until converged
Ensure: optimized θ.

Contrastive Learning To avoid drift of prediction because
of noise perturbation, we also designed a contrastive learning
module where the diffusion model serves as augmented view
generator. The reverse process is naturally a denoising process,
and generates multiple semantically consistent augmented
views of the user sequence at intermediate steps. We consider
these views as positive samples, and the constrastive learning
module should maximize agreement between similar represen-
tations while distancing from dissimilar representations. We
use the InfoNCE loss and define as follows:

Lt
cl =

1

N

N∑
i=1

log
exp(x̂i⊤

t xi
t/τ)∑

j

exp(x̂i⊤
t xj

t/τ) +
∑
j

1[j ̸=i] exp(x̂
i⊤
t x̂j

t/τ)
,

(16)
,where x̂i

t is the output of conditional denoising decoder of
position i at denoising step t, xi

t is the output of diffuser at
diffusion step t at position i of the sequence. The diffusion-
augmented contrastive learning mitigates the impact of noise.

4) Inference: During inference phase, our CADSR lever-
ages a modified reverse diffusion process to reconstruct user
preference efficiently. We start the reverse process from a mid-
point (T ′ < T ) rather than pure noise, preserving critical
personalized information of user preference. This approach
reduces noise while maintaining contextual features, ensur-
ing accurate reconstruction. We also employs a deterministic
sampling strategy that skips unnecessary intermediate steps,
and accelerate inference without sacrificing performance. We
manage to strike a balance between computational efficiency
and high-quality recommendations. See details at Algorithm 2

V. EXPERIMENTS

A. Experimental Settings

1) Datasets: We conduct experiments on four real-
world public datasets, including MovieLens, Amazon-Beauty,
Amazon-Book, Amazon-Music. The statistics of these datasets

Algorithm 2 CADSR Inference
Require: target item embedding vt ∼ N (0, I), sequence

length n, total reverse step t, noise schedule βn, hy-
perparameter λ sampling, reconstruction Transformer fθ,
inference user sequence vu = vu1 , v

u
2 , . . . , v

u
n−1, [unk]

1: Sample a batch of users U ⊂ Ū .
2: for all u ∈ U do
3: for t = T, . . . , 1 do
4: Compute x̂0

t via Eq. (9);
5: Compute x̂N

t given x̂i
0 and T via q(x̂i

T |x̂i
0) in Eq.

(3);
6: Compute x̂i

t−1 from x̂i
t and x̂i

0 via Eq. (10);
7: end for
8: Rounding via Eq. (11) to get the ideal item embedding

x;
9: end for

Ensure: the ideal item embedding x.

TABLE I: Dataset description.

Datasets #Users #Items #Actions Avg. Length Density

ML-1M 6,040 3,953 1,000,209 163.6 4.19%
Amazon-Beauty 22,363 12,101 198,502 8.8 0.07%
Amazon-Music 75,601 64,227 198,502 8.3 0.02%
Amazon-Book 604,592 368,743 8,898,041 10.4 0.004%

are shown in Table I. These datasets encompass a wide range
of application scenarios. The MovieLens1 dataset is a stable
benchmark dataset which collects movie ratings provided by
users. Beauty, Book, and Music datasets are obtained from
Amazon [49]2, one of the largest e-commerce platforms glob-
ally. We adopt the same preprocessing method as employed in
numerous previous studies [24], [25], filtering items and users
with fewer than five interaction records.

2) Evaluation Metrics: To evaluate the performance of our
model and baseline models, we employ widely recognized
evaluation metrics: Recall and Normalized Discounted Cu-
mulative Gain (NDCG), and report values of Recall@k and
NDCG@k for k=10 and 20. We use the standard leave-one-
out strategy, utilizing the last and second-to-last interactions
for testing and validation, respectively, while the remaining
interactions serve as training data. To ensure unbiased evalua-
tion, we rank all items in the item set and compute the metrics
based on the rankings across the entire item set.

3) Baseline Methods: To ensure a comprehensive assess-
ment, we compare our method with 11 baseline methods,
which can be divided into four categories: conventional rec-
ommender (BPR-MF [50], LightGCN [12]), sequential recom-
mender (SASRec [10], Bert4Rec [11], Caser [7]), generative
recommender (SVAE [51], ACVAE [52], CODIGEM [53]),
and diffusion-based recommender (DiffRec [39], DreamRec
[39], Diff-MSR [24]).

4) Implementation Details: We implement all baseline
methods according to their released code. The embedding size

1https://grouplens.org/datasets/movielens/
2http://jmcauley.ucsd.edu/data/amazon/



TABLE II: Performance comparison of different methods on four datasets. The best performance is bolded, and the runner-up
is underlined. Our proposed CADSR achieves state-of-the-art results among all baseline models, as confirmed by a paired t-test
with a significance level of 0.01.

Conventional
Recommender

Sequential
Recommender

Generative
Recommender

Diffusion-based
Recommender

mf LightGCN SASRec Bert4Rec Caser SVAE ACVAE CODIGEM DiffRec DreamRec Diff-MSR Ours Improvement

Amazon Book Recall@10 0.0437 0.0534 0.0592 0.0611 0.0621 0.0571 0.0576 0.0581 0.0671 0.0695 0.0627 0.072 3.60%
NDCG@10 0.0264 0.0325 0.0412 0.041 0.0405 0.0398 0.0395 0.0292 0.0451 0.0484 0.0442 0.0552 14.05%
Recall@20 0.0852 0.1007 0.1115 0.1260 0.1260 0.1129 0.1113 0.1104 0.1374 0.1349 0.1302 0.1385 8.01%
NDCG@20 0.0607 0.0632 0.0909 0.0882 0.0904 0.0841 0.0890 0.0600 0.0874 0.0913 0.0812 0.1063 16.43%

MovieLens-1M Recall@10 0.0876 0.0987 0.0992 0.1022 0.1045 0.0943 0.0958 0.0972 0.1058 0.1011 0.1007 0.1231 21.76%
NDCG@10 0.0749 0.0833 0.0874 0.0892 0.0902 0.0866 0.0859 0.0837 0.0921 0.0904 0.0896 0.1022 13.05%
Recall@20 0.1808 0.1889 0.2039 0.2011 0.2168 0.1947 0.1967 0.1971 0.2011 0.2162 0.2057 0.2205 17.07%
NDCG@20 0.1490 0.1629 0.1796 0.1853 0.1751 0.1639 0.1697 0.1592 0.1844 0.1823 0.1862 0.1891 2.55%

Amazon Beauty Recall@10 0.0444 0.0525 0.0671 0.595 0.0601 0.0642 0.0653 0.0671 0.611 0.715 0.603 0.0764 6.85%
NDCG@10 0.0335 0.0531 0.0522 0.0552 0.0615 0.0613 0.0629 0.0667 0.0673 0.0659 0.0644 0.0695 3.26%
Recall@20 0.0642 0.0746 0.0797 0.0751 0.0785 0.0739 0.0721 0.0719 0.0802 0.0786 0.0747 0.0871 8.6%
NDCG@20 0.0567 0.0618 0.0657 0.0627 0.0619 0.0604 0.0648 0.0695 0.0700 0.0697 0.0693 0.0745 6.43%

Amazon Music Recall@10 0.0642 0.0768 0.0727 0.0833 0.0863 0.0725 0.0744 0.0792 0.0874 0.0902 0.0822 0.1006 11.53%
NDCG@10 0.0389 0.0522 0.0505 0.0536 0.054 0.0487 0.0579 0.0585 0.0521 0.0611 0.0523 0.0683 11.78%
Recall@20 0.1370 0.1441 0.1492 0.1625 0.1680 0.1468 0.1517 0.1660 0.1659 0.1801 0.1648 0.1853 10.30%
NDCG@20 0.0756 0.1125 0.1060 0.1006 0.1097 0.1031 0.1067 0.1134 0.0944 0.1018 0.0979 0.1232 12.31%

for all methods is set to 64. Our method utilizes a bidirectional
Transformer architecture for the sequential recommenders,
comprising 1 layer and 2 attention heads each layer. The
total number of diffusion steps is set to a fixed value of
1000, and we adopt a linear noise schedule in practical use,
which improves convergence (see detailed discussion in V-E1).
Additionally, we sample the reverse step to 20 during inference
without significant performance degradation and facilitates
inference efficiency. We tune the coefficients of the two critical
terms in the loss function, α and β within the range of [0.1,
0.2, 0.4, 0.6, 0.8, 1.0]. The dropout rate is chosen from the
set {0.1, 0.2, 0.3, 0.4, 0.5} for both the embedding layer and
the hidden layers. We set the training batch size to 256 and
employ the Adam optimizer with a learning rate of 0.001.
Following most previous work [10], we set the maximum
sequence length to 50 for the three Amazon datasets and
to 200 for the MovieLens dataset. For sequences with fewer
interactions than the maximum sequence length, we will pad
them with a padding token to match the maximum sequence
length. For the recommendation task, we employ the negative
sampling strategy (Eq. 15) for all methods during training.
Specifically, for each positive sample, a negative sample is
randomly selected and optimization is performed using the
Bayesian Personalized Ranking (BPR) loss.

B. Overall Performance

In this section, we compare the overall performance of
our model and other baseline methods on four benchmark
datasets. We report the detailed results in Table II. We have
the following observations

• Our proposed CADSR consistently outperforms all base-
line methods across multiple scenarios from e-commerce
datasets (e.g. Amazon) to movie dataset (e.g. Movie-
Lens). On average, our proposed model improved 10.94%
at Recall@10 and 10.54% at NDCG@10 compared with
the best baseline. The results confirm the consistent ef-
fectiveness of our proposed method against all baselines.

• Conventional methods perform poorly compared to se-
quential baselines, which achieve better results. This is
likely due to the sequential baselines’ explicit incor-
poration of temporal and sequential features from the
input data, which are crucial for capturing the inherent
sequential patterns in user behavior.

• Generative and diffusion-based methods demonstrate
competitive performance, particularly with sparse
datasets. This is attributed to the generative models’
ability to introduce uncertainty during training, which
helps capture the complexity of user behavior. However,
generative baselines often struggle to learn high-quality
user representations in many scenarios, likely due to
unstable training dynamics and limited capacity to
effectively handle long-tail user sequences.

• Diffusion-based methods leverage a powerful framework
that models item representations as probability distribu-
tions, effectively capturing the uncertainty in user behav-
ior. Additionally, these methods learn the input sequence
in an autoregressive manner, which allows for better
modeling of sequential features.

• We attribute the success of our proposed CADSR to sev-
eral key factors: 1) The preprocessing steps of temporal
reweighting and sequential encoding effectively preserve
dependencies within the sequence, 2) The guiding signal
in the reverse process helps retain user preferences, and
3) The high-quality augmented views generated through
the diffusion process, combined with contrastive learning,
enhance the model’s robustness.

C. Ablation Study

To verify the effectiveness of each component in our pro-
posed CADSR, we design several variants as listed below:

• w/o Contextual Guidance: Contextual guidance cu and
diffusion step t are removed in reverse pass.

• w/o LRec: The recommendation loss is removed.
• w/o LCl: The contrastive learning loss is removed



TABLE III: Ablation Study.

Metrics Full
w/o

Contextual
Guidance

w/o
L Rec

w/o
L Cl

w/o
Time-interval
Reweighting

w/o
Sequence
Encoding

Amazon Book Recall@10 0.072 0.0689 0.0692 0.0712 0.0704 0.0701
NDCG@10 0.552 0.0501 0.521 0.549 0.0533 0.0545

ML-1M Recall@10 0.1231 0.1102 0.1121 0.1159 0.1162 0.1134
NDCG@10 0.1022 0.0844 0.0936 0.0971 0.0964 0.0952

Amazon Beauty Recall@10 0.0764 0.0611 0.0697 0.0711 0.0682 0.0721
NDCG@10 0.0695 0.0627 0.0651 0.0654 0.0663 0.0647

Amazon Music Recall@10 0.1006 0.0922 0.0969 0.0923 0.0955 0.0914
NDCG@10 0.0683 0.061 0.0622 0.0677 0.0652 0.0651

• w/o Time-interval Reweighting: The time-aware
reweighting block is removed.

• w/o Sequence Encoding: Sequential encoding layer is
removed.

We compare the performances of these variants with the
default setting. From the experiment results in Table III, we
have following observations:

The performance decreases when contextual guidance is
removed across all dataset. In particular, we can observe a
noticeable drop in NDCG metric, indicating that the guidance
signal plays a critical role in generating personalized rec-
ommendation. Removing the reconstruction loss (w/o LRec)
also reduces performance in all datasets. As for contrastive
learning, it also contributes positively to entire framework, as
seen in the results. Because that our contrastive learning mod-
ule is built on the high-quality augmented view generated by
diffusion model, which enhances recommendation robustness.
We observe that the effect of time-aware reweighting is more
data-dependent compared to other factors. We also observe
that the model benefits from sequence encoding. Removing
it reduces performance across all datasets, particularly in
Amazon Music and beauty datasets, where there’s a notable
decrease in NDCG.

To sum up, the full model outperforms all of its ablated
versions across all datasets, confirming the importance of each
component. Contextual guidance appears to contribute the
most significant improvements in performance, as its removal
results in the largest drops.

D. Cross-domain Recommendation

One of the benefits of using diffusion model is that by
applying the reverse diffusion process, the model recovers
useful user preferences from noisy or incomplete data, im-
proving the quality of knowledge transfer in cross-domain
scenarios [54]. In this case, we anticipate that the diffusion-
based recommender can capture complex patterns and generate
comprehensive user preference across both observed and un-
observed items, which helps the model to be more generalized,
especially when data from the target domain is limited.

Cross-domain recommendation (CDR) aims to transfer
knowledge from a source domain to a target domain, where
the source domain typically contains richer data and the target
domain contains sparser data. Theoretically, the knowledge
transfer process can benefit from the diffusion process, which
transfers data across distributions. This is analogous to infer-
ring user preferences from sparse interactions, making it ideal
for stable predictions even for cold-start users.

TABLE IV: Performance of CADSR on Cross Domain
datasets.

Source Domain Target Domain Training Set Methods Recall@10 NDCG@10

Music Book

Mixed
user sequence

DiffRec 0.0682 0.049

CADSR 0.0714 0.056

Overlapped
user sequence

DiffRec 0.0573 0.036

CADSR 0.0631 0.042

Book Music

Mixed
user sequence

DiffRec 0.0921 0.0611

CADSR 0.1021 0.0652

Overlapped
user sequence

DiffRec 0.0769 0.0588

CADSR 0.0825 0.0604

We conduct the experiments following classic CDR task
settings [55], [56]. Specifically, we perform the CDR task on
the Amazon Music and Amazon Books datasets, where there
are more than 17,000 overlapping users. We design two variant
settings to generate cross-domain behavior sequence: 1) by
merging the behavior sequences of each user from two single
domains in chronological order (called mixed user sequence),
and 2) by using the behavior sequences of only overlapping
users from both single domains, sorted in chronological order
(called overlapped user sequence), to predict the next-item
recommendation in the target domain.

The results presented in Table IV demonstrate that our
proposed CADSR model consistently outperforms DiffRec, a
state-of-the-art competitive baseline, across various settings,
indicating its effectiveness in handling other recommendation
tasks, such as cross-domain sequential recommendation. We
hypothesize that the inferior performance of DiffRec may be
attributed to the noise introduced during knowledge transfer.
Additionally, the experiment utilizing only overlapped user
sequences performs worse than the mixed user sequence
setting, which is expected given the extreme data sparsity.
In the first experimental setting (i.e., mixed user sequence),
the interactions from the source domain serve as auxiliary
data, effectively increasing the dataset size and enabling the
model to learn more complex user behaviors. In summary,
diffusion models enhance cross-domain recommendation by
leveraging their ability to handle uncertainty and generate
comprehensive user preferences, where effective cross-domain
knowledge transfer is critical. Furthermore, the alignment of
learned representations with the target domain is intuitively
important and will be explored in future work.

E. In-depth Analysis

1) Noise Schedule: In this section, we investigate the
impact of different schedules to the final results. Different
types of noise schedules control how to add noise iteratively to
the embeddings in the forward process, therefore influencing
the denoising process. Following [46], we plot the value of
ᾱt under different schedules as shown in Fig. 5, We consider
three kinds of noise schedules:

• The sqrt noise schedule [33] quickly rises the noise
levels at the first few diffusion steps and gradually slows
down the injection of diffusion noises at the latter diffu-
sion steps. It is defined as: ᾱn = 1−

√
n/N + 0.0001.



Fig. 5: Influences of different noise schedule. The left figure
visualizes the ᾱt under different noise schedules. Right figure
compares the performance of Recall@10 under different noise
schedule on four datasets.

TABLE V: Performance comparison with different approxi-
mator on four datasets.

Backbone Model Amazon Book Amazon Beauty Amazon Music ML-1M

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

MLP 0.0696 0.0547 0.0729 0.0681 0.0876 0.0664 0.1058 0.0941
GRU 0.0698 0.0522 0.0753 0.0672 0.0892 0.0621 0.1101 0.0941
Transformer 0.072 0.0552 0.0764 0.0695 0.1006 0.0683 0.1231 0.1022

• The cosine noise schedule [30] smoothly increases
diffusion noises using a cosine function to prevent sudden
changes in the noise level. It is defined as: ᾱn =
g(n)
g(0) , g(n) = cos(n/N+0.008

1+0.008 · π
2 )

2.
• The linear noise schedule [46] is our default setting. It

is originally proposed for image generation. It increases
βn linearly from β1 = 10−4 to βN = 0.02.

To compare their differences, we provide a visualization of
the noise schedules and and evaluate their performances on
four datasets. Since ᾱn and βn are mutually convertible3, we
plot the value of ᾱn with 1000 diffusion steps (default setting).
A lower value of ᾱn means higher noise level. All the results
are presented in Fig. 5.

As [57] emphasizes that different schedules will impact the
final outcomes to some extent but could not acquire huge
margin fluctuations. We observe that the performance does
not vary significantly between linear and sqrt noise schedules.
The default noise schedule, linear noise schedule, generally
performs well, achieving the best performance on Amazon-
Book, Amazon-Music and Amazon-Beauty dataset and com-
petitive in ML-1M dataset. The sqrt noise schedule shows
similar performance, while the cosine noise schedule shows
slightly lower performance. We anticipate that the superiority
of linear schedule lies in facilitating a smoother and more
gradual noise injection in the embeddings, which improves
the stability in the training phase.

2) Effect of Backbone Model: By default, we selected
Transformer as our approximator for estimation during diffu-
sion process, supposing that it can properly reveal the users’
current interest iteratively. We also conduct experiment with
other common alternatives, specifically MLP and GRU, and
present the results in Table V. Accordingly, we observe that
Transformer consistently achieves better performance than the
other network structures.

3ᾱn is defined as ᾱn =
∏n

i=1 1− βi and we note that βn = 1− ᾱn
ᾱn−1

(a) (b)

Fig. 6: Influences of varying diffusion steps and noise scales.

F. Hyper-parameter Analysis

Due to limited space, we only discuss the most important
hyper-parameters, diffusion steps N and noise scale s.
Diffusion Steps Generally speaking, diffusion models require
a large number of diffusion steps N to achieve satisfactory
performance. This is probably because a large N allows
for better approximation of the Gaussian diffusion process
[58]. To investigate the influences of diffusion steps, we train
CADSR using different diffusion steps, ranging from 50 to
1000, and report the performance in Fig. 6a. We can see
that model performs better with diffusion steps increasing and
reaches the best performance with 1000 diffusion steps.
Noise Level Another crucial hyperparameter is maximum
noise scale s, which controls the level of noise injection.
From the results in Fig. 6b, we observe that the performance
generally increases up to a noise scale of 10−4, after which
it decreases steadily. This pattern confirms our assumption
that injecting noise introduces uncertainty, which helps the
model learn more robust representations. However, increasing
the noise scale may compromise personalization.

We attribute the pattern observed in Fig. 6 to the combined
influence of sequence length and dataset sparsity. Longer
sequences (i.e., ML-1M dataset) inherently contain more noisy
interactions and thus require less noise injection. In contrast,
sparser datasets (e.g., Amazon Books) necessitate a higher level
of added noise.

VI. CONCLUSION

In this work, we propose a Context-Aware Diffusion-based
Sequential Recommendation (CADSR) model, introducing a
novel approach to tackle challenges in sequential recommen-
dation. CADSR leverages contextual information during the
diffusion process to generate more accurate user preferences,
and contrastive learning with diffusion-based augmented views
enhances the model’s robustness. Extensive experiments con-
ducted on four datasets demonstrate that CADSR consistently
outperforms 11 state-of-the-art baselines. These results vali-
date the effectiveness of our approach in improving recom-
mendation accuracy.

REFERENCES

[1] Y. Yan, R. Li, S. Wang, F. Zhang, W. Wu, and W. Xu, “Consert:
A contrastive framework for self-supervised sentence representation
transfer,” arXiv preprint arXiv:2105.11741, 2021.



[2] J. Li, P. Zhou, C. Xiong, and S. C. Hoi, “Prototypical contrastive learn-
ing of unsupervised representations,” arXiv preprint arXiv:2005.04966,
2020.

[3] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in ICML, 2020.

[4] X. Chen and K. He, “Exploring simple siamese representation learning,”
in CVPR, 2021.

[5] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “Factorizing
personalized markov chains for next-basket recommendation,” in WWW,
2010.

[6] R. He and J. McAuley, “Fusing similarity models with markov chains
for sparse sequential recommendation,” in ICDM, 2016.

[7] J. Tang and K. Wang, “Personalized top-n sequential recommendation
via convolutional sequence embedding,” in WSDM, 2018.

[8] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-
based recommendations with recurrent neural networks,” arXiv preprint
arXiv:1511.06939, 2015.

[9] B. Hidasi and A. Karatzoglou, “Recurrent neural networks with top-k
gains for session-based recommendations,” in CIKM, 2018.

[10] W.-C. Kang and J. McAuley, “Self-attentive sequential recommenda-
tion,” in ICDM, 2018.

[11] F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang, “Bert4rec:
Sequential recommendation with bidirectional encoder representations
from transformer,” in CIKM, 2019.

[12] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, “Lightgcn:
Simplifying and powering graph convolution network for recommenda-
tion,” in SIGIR, 2020.

[13] B. He, X. He, Y. Zhang, R. Tang, and C. Ma, “Dynamically expandable
graph convolution for streaming recommendation,” in WWW, 2023.

[14] M. Zhang, S. Wu, X. Yu, Q. Liu, and L. Wang, “Dynamic graph neural
networks for sequential recommendation,” TKDE, vol. 35, no. 5, 2022.

[15] B. He, X. He, R. Zhang, Y. Zhang, R. Tang, and C. Ma, “Dynamic
embedding size search with minimum regret for streaming recommender
system,” in CIKM, 2023.

[16] L. Xia, C. Huang, Y. Xu, and J. Pei, “Multi-behavior sequential
recommendation with temporal graph transformer,” TKDE, 2022.

[17] Y. Jiang, Y. Yang, L. Xia, and C. Huang, “Diffkg: Knowledge graph
diffusion model for recommendation,” arXiv preprint arXiv:2312.16890,
2023.

[18] J. Yu, H. Yin, X. Xia, T. Chen, L. Cui, and Q. V. H. Nguyen, “Are
graph augmentations necessary? simple graph contrastive learning for
recommendation,” in SIGIR, 2022.

[19] J. Wu, X. Wang, F. Feng, X. He, L. Chen, J. Lian, and X. Xie, “Self-
supervised graph learning for recommendation,” in SIGIR, 2021.

[20] L. Xia, C. Huang, C. Huang, K. Lin, T. Yu, and B. Kao, “Automated
self-supervised learning for recommendation,” in WWW, 2023.

[21] Y. Yin, Q. Wang, S. Huang, H. Xiong, and X. Zhang, “Autogcl:
Automated graph contrastive learning via learnable view generators,”
in AAAI, 2022.

[22] Y. Yang, C. Huang, L. Xia, C. Huang, D. Luo, and K. Lin, “Debiased
contrastive learning for sequential recommendation,” in WWW, 2023.

[23] K. Zhou, H. Wang, W. X. Zhao, Y. Zhu, S. Wang, F. Zhang, Z. Wang,
and J.-R. Wen, “S3-rec: Self-supervised learning for sequential recom-
mendation with mutual information maximization,” in CIKM, 2020.

[24] X. Xie, F. Sun, Z. Liu, S. Wu, J. Gao, J. Zhang, B. Ding, and B. Cui,
“Contrastive learning for sequential recommendation,” in ICDE, 2022.

[25] Z. Liu, Y. Chen, J. Li, P. S. Yu, J. McAuley, and C. Xiong, “Contrastive
self-supervised sequential recommendation with robust augmentation,”
arXiv preprint arXiv:2108.06479, 2021.

[26] R. Qiu, Z. Huang, H. Yin, and Z. Wang, “Contrastive learning for
representation degeneration problem in sequential recommendation,” in
WSDM, 2022.

[27] Y. Chen, Z. Liu, J. Li, J. McAuley, and C. Xiong, “Intent contrastive
learning for sequential recommendation,” in WWW, 2022.

[28] P. Zhou, J. Gao, Y. Xie, Q. Ye, Y. Hua, J. Kim, S. Wang, and S. Kim,
“Equivariant contrastive learning for sequential recommendation,” in
Recsys, 2023.

[29] X. Qin, H. Yuan, P. Zhao, J. Fang, F. Zhuang, G. Liu, Y. Liu, and
V. Sheng, “Meta-optimized contrastive learning for sequential recom-
mendation,” in SIGIR, 2023.

[30] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
NeurIPS, 2020.

[31] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and
B. Poole, “Score-based generative modeling through stochastic differ-
ential equations,” in ICLR, 2020.

[32] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image
synthesis,” NeurIPS, 2021.

[33] X. Li, J. Thickstun, I. Gulrajani, P. S. Liang, and T. B. Hashimoto,
“Diffusion-lm improves controllable text generation,” NeurIPS, 2022.

[34] S. Gong, M. Li, J. Feng, Z. Wu, and L. Kong, “Diffuseq: Sequence to
sequence text generation with diffusion models,” in ICLR, 2022.

[35] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
NeurIPS, 2014.

[36] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[37] Z. Yang, J. Wu, Z. Wang, X. Wang, Y. Yuan, and X. He, “Generate what
you prefer: Reshaping sequential recommendation via guided diffusion,”
arXiv preprint arXiv:2310.20453, 2023.

[38] Y. Wang, Z. Liu, L. Yang, and P. S. Yu, “Conditional denoising diffu-
sion for sequential recommendation,” arXiv preprint arXiv:2304.11433,
2023.

[39] W. Wang, Y. Xu, F. Feng, X. Lin, X. He, and T.-S. Chua, “Diffusion
recommender model,” SIGIR, 2023.

[40] Z. Li, A. Sun, and C. Li, “Diffurec: A diffusion model for sequential
recommendation,” arXiv preprint arXiv:2304.00686, 2023.

[41] H. Du, H. Yuan, Z. Huang, P. Zhao, and X. Zhou, “Sequential rec-
ommendation with diffusion models,” arXiv preprint arXiv:2304.04541,
2023.

[42] Q. Liu, F. Yan, X. Zhao, Z. Du, H. Guo, R. Tang, and F. Tian, “Diffusion
augmentation for sequential recommendation,” in CIKM, 2023.

[43] Z. Wu, X. Wang, H. Chen, K. Li, Y. Han, L. Sun, and W. Zhu, “Diff4rec:
Sequential recommendation with curriculum-scheduled diffusion aug-
mentation,” in MM, 2023.

[44] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep
unsupervised learning using nonequilibrium thermodynamics,” in ICML,
2015.

[45] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” NeurIPS, 2017.

[46] A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion proba-
bilistic models,” in ICML, 2021.

[47] E. Hoogeboom, D. Nielsen, P. Jaini, P. Forré, and M. Welling, “Argmax
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