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Abstract—Retweeting/sharing action has enabled information
to be cascaded to distant nodes on social network. Unfortunately,
malicious users as a group have taken advantage of the retweeting
function with coordinated behavior to falsely distort the volume
of specific keywords, topics or URLs for promotional purposes
(e.g., spreading fake news, and increasing public visibility of
products or services). Unfortunately, little is known about their
retweeting behavior as a group and how to detect them based on
group-based signals. To fill the gap, in this paper, we (i) propose
Attractor+ algorithm to extract retweeter groups, members of
each of which have similar retweeting behavior; (ii) analyze
underlying characteristics of malicious and legitimate retweeter
groups; (iii) propose group-based features to catch synchronized
and coordinated behavior; and build a predictor to classify if a
group is malicious. Experimental results show that our proposed
method outperformed existing approaches.

I. INTRODUCTION

Retweeting or sharing posts (e.g., messages, photos, videos)
is one of popular actions on online social networking sites
such as Twitter and Facebook. [1] found that a quarter of
tweets were retweeted by friends. According to Sysomos, 6%
of tweets is retweets, and 92% of retweets happened within
the first hour after the original tweets were posted [2], show-
ing how quickly people responded to spread information. A
retweeting or sharing function has provided users and society
with various benefits like spreading news and information
in emergency situations (e.g., Boston Marathon bombing,
Hurricane Sandy), supporting politicians (e.g., presidential
candidates), creating grass-roots campaigns, and so on.

However, some users and organizations have begun boosting
the number of retweets in inorganic ways such as purchasing
retweeting services (e.g., traffup.net/retweets), hiring crowd
workers from crowdsourcing platforms (e.g., fiverr.com and
seoclerk.com), and deploying bots.

In this paper, we call these paid retweeters, spammers and
bots malicious retweeters. A group of malicious retweeters,
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Fig. 1. Comparison between malicious groups and legitimate groups in terms
of their inter-retweeting times. The x and y axes are ith and (i+ 1)th inter-
retweeting times corresponding to each original tweet tw, respectively.

who often retweet paid or intentionally targeted tweets to-
gether, is called a malicious retweeter group. These malicious
retweeter groups create wrong impression about certain news,
topics and products by boosting the volume of retweets and
eventually degrade quality and trust of information systems.

Recently, researchers made attempts to detect individual
spammers based on their retweeting activity [3], [4] or cor-
related bots [5]. However, these approaches may not work for
malicious retweeter groups, each of which, has coordinated
and synchronized retweeting behavior.

In this paper, we aim to explore group-based characteris-
tics and build a framework to identify malicious retweeter
groups and to complement individual malicious user detection
methods. Prior work utilized collective signals by doing URL-
based and content-based detections for other problems [6], [7],
[8], [9]. However, detecting synchronized malicious retweeter
groups was not studied yet. To fill this gap, in this paper,
we (1) propose Attractor+ to extract retweeter groups; (2)
study latent properties of malicious and legitimate retweeter
groups; and (3) build a malicious retweeter group detector
based on temporal and content-based features. An interesting
feature is aggregated inter-retweeting times (IRT) inspired by
[10]. By gathering IRT of retweeters in a retweeter group
(e.g., the gap between two consecutive retweets of each target
tweet) and plotting IRT pairs in log-log scale, we observe
that malicious retweeter groups usually have short and similar
IRT (see Fig. 1(a)), whereas legitimate retweeter groups have
longer and diffuse IRT (see Fig.1(b)). Interestingly, malicious
and legitimate groups in the example shown in Figure 1 had
119,080 and 642,670 respectively. It contradicts the intuition
that malicious retweeters tend to retweet more to promote
products/services. Our main contributions are as follows:
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• First, we proposed Attractor+ to extract retweeter groups,
users in each of which had similar retweeting behavior.

• Second, we explored synchronized and coordinated
retweeting behavior of malicious retweeter groups in
terms of temporal and content-based properties. Based
on the analysis, we proposed novel group-based features.

• Finally, we built detectors based on the group-based fea-
tures. Our model achieved 0.914 AUC and 91% accuracy,
and outperformed other existing detection approaches.

II. RELATED WORK

Retweeting action is a means of disseminating information
across social network. Many recent efforts were made to
investigate this powerful function. Researchers studied to un-
derstand retweeting behavior [1], [11], derived the likelihood
that a tweet will be retweeted [12], [13], [14], and predicted
how many times a tweet will be retweeted [15]. Another
direction was to target right strangers for propagating content
when they were requested [16].

Unethical and malicious users took advantage of the
retweeting function in inorganic ways to boost popularity of
specific content on social network, leading to deterioration of
other users’ experience. To tackle the problem, some methods
were proposed. [3] ranked users based on their retweeting
similarity and following-follower graph. [4] extracted mixtures
of retweeters and their tweets to detect spammers. However,
these prior works neglected group-based signals of retweeters.
Some researchers exploited collective signals to categorize
retweet threads [9] and to detect fraudsters [7], [17]. The
goal of these works were different from ours since we focused
on detecting malicious retweeter groups. Besides, researchers
studied how to detect bots in social networking sites [18], [5].

Community detection algorithms [19] were adopted to ex-
tract disjointed connected subgraphs. Some previous works
employed these algorithms to detect URL and content-based
campaigns on Twitter [6], [8]. But their research problems are
different from ours. As retweeting brings people into a specific
conversation [11], we aim to explore malicious retweeter
groups and find discriminating patterns between malicious
retweeter groups and legitimate retweeter groups.

III. OUR PROPOSED APPROACH

In this section, we describe our approach to detect a
malicious retweeter group, users of which often retweeted paid
or intentionally targeted tweets together. A malicious retweeter
group detection problem is divided to two sub-problems: (a)
how can we extract retweeter groups?; and (b) how can we
determine whether the extracted group is malicious.

To solve these research problems, we propose an approach
consisting of the four steps: (i) measure pair-wise similarity of
users based on their retweeting behavior; (ii) build undirected
weighted graph; (iii) extract potential retweeter groups (i.e.,
subgraphs) from the user graph, and further decompose each
potential retweeter group to its subgraphs based on other prop-
erties (e.g., similar user names or email addresses), considering
each of the subgraphs as a retweeter group; (iv) extract group

features from each retweeter group and build a malicious
retweeter group detector. The purpose of (1)∼(3) and (4) is
to extract retweeter groups and predict whether each retweeter
group is malicious or not, respectively.

A. Building a User Graph Based on Retweet Behavior
For each user ui in our dataset, RT(ui) denotes the set of

retweets of ui. A tuple (|RT(ui)|, |RT(uj)|, |RT(ui)∩RT(uj)|)
indicates the number of retweets of user ui and user uj , and
their common retweets, respectively. We measure retweeting
similarity between ui and uj by proposing mixed-similarity
measure as follows:
sim(ui, uj) = α · cosine(ui, uj) + (1− α) · overlap(ui, uj) (1)

where cosine(ui, uj) and overlap(ui, uj) are defined below.

cosine(ui, uj) = |RT(ui) ∩ RT(uj)|/
√

|RT(ui)| × |RT(uj)|
overlap(ui, uj) = |RT(ui) ∩ RT(uj)|/min(|RT(ui)|, |RT(uj)|)
By using Equation 1, we build a weighted undirected graph

G(V,E), where V is a set of users and E = {(ui, uj)|ui, uj ∈
V, sim(ui, uj) > τ}. We only add an edge between users ui

and uj if their pair-wise similarity score is greater than τ .

B. Extracting retweeter groups

Given a user/retweeter graph, a common way to extract
groups of users is to run a community detection algorithm.
In prior work, community detection methods are adopted to
extract social campaigns [6], [8]. But, extracting near-clique
subgraphs [8] neglected the weight of edges and took long
running time. Louvain algorithm [19] has low-cost computa-
tion but its immediate subgraphs may not reflect underlying
hierarchical structure of the original graph [21]. Due to these
drawbacks, we propose Attractor+, a modified version of
the Attractor algorithm [20], which examine the changes
of distances among nodes over time. Attractor+ algorithm
consists of four phases: (i) initialize distance of directly linked
nodes (i.e., retweeters); (ii) perform dynamic interactions to
update distances; (iii) extract potential retweeter groups from
the graph; and (iv) if it is necessary, further decompose
each potential retweeter group to its subgraphs based on
other properties (e.g., similar user names or email addresses),
considering each of the subgraphs as a retweeter group. In the
first phase, Attractor+ algorithm initializes distance of edge
(u, v) as follows: d(u, v) = 1 − sim(u, v), where sim(u, v)
is the mixed similarity described in Equation 1.

In the second phase, Attractor+ measures dynamic in-
teractions including direct linked interaction (DI), common
interaction (CI) and exclusive interaction (EI). DI measures
influence of directly linked nodes and is defined as follows.
DI(u, v) = sin(1− d(u, v))/deg(u) + sin(1− d(u, v))/deg(v)

, where sin() is sine function and deg() is node degree.
CI(u, v) measures influence of common neighbors of u and

v, denoted as CN(u, v), and is equal to following expression:∑
c∈CN(u,v)(

(1−d(v,c))·sin(1−d(u,c))
deg(u) + (1−d(u,c))·sin(1−d(v,c))

deg(v) )

EI(u, v) measures influence of exclusive neighbors and is
equal to following expression:



∑
x∈EN(u)

ρ(x,v)·sin(1−d(x,u))
deg(u) +

∑
y∈EN(v)

ρ(y,u)·sin(1−d(y,v))
deg(v)

, where EN(u) is a set of exclusive neighbors of u, and
ρ(x, v) indicates influence of x on the d(u, v). Given an input
threshold λ ∈ [0; 1], ρ(x, v) depends on ϑ(x, v), the similarity
of unconnected nodes x and v. If ϑ(x, v) ≥ λ, ρ(x, v) =
ϑ(x, v) else ρ(x, v) = ϑ(x, v)− λ.

We measure the similarity of x and v as follows:

ϑ(x, v) =
∑

c∈CN(x,v)(1−d(x,c)+1−d(v,c))∑
k∈Neb(x)(1−d(x,k))+

∑
l∈Neb(v)(1−d(v,l))

, where Neb(x) is x’s neighbors. After computing DI, CI, EI
for edge (u, v), new distance at timestamp t+ 1 is updated:
d(u, v)t+1 = d(u, v)t −DI(u, v)− CI(u, v)− EI(u, v)

Attractor+ algorithm is looped until every edge is converged
(e.g., its distance becomes either 0 or 1).

In the third phase, Attractor+ removes edges with distance
equal to 1, and extracts connected components, each of which
is a potential retweeter group.

To decide if it is necessary to further decompose a connected
component, Attractor+ measures the density of a connected
component and pair-wise screen name similarity. In particular,
given a potential retweeter group, we build another graph,
in which nodes are screen names of users in the group and
the weight of each edge (u, v) is EditDistance(u,v)

max(|u|,|v|) . First, we
remove pairs of screen names with Edit Distance similarity
larger than a threshold ρ1. Then, if density of the new graph
is not larger than ρ2, this group will be further decomposed
by the decomposition algorithm presented in Algorithm 1. By
varying ρ1 and ρ2, Attractor+ extracts retweeter groups each
of which has a high density and/or similar screen names.
According to [22], Twitter accounts having similar screen
names may originate from the same person or organization
who created them to spread information. The input of Algo-
rithm 1 is a potential retweeter group which requires further
decomposition. The idea of this algorithm is to choose seed
nodes with the highest degree and perform breath first search
to find neighbors, which have smaller or equal degree with the
seed nodes. Each output subgraph is a retweeter group.

Algorithm 1 Decomposition algorithm
1: function DecomposeCommunity(V,E)
2: Sorting degree of vertices decreasingly; S = ∅
3: for ν ∈ V do: ν.seen = 0
4: for each vertex top in sorted list and top.seen ̸= 1 do
5: g = ∅ ; Q = {top} ▷ Initialize Queue
6: while Q is not empty do
7: u = Q.pop() ; u.seen = 1; g = g ∪ {u}
8: for υ ∈ Neb(u) and υ.seen ̸= 1 and dv ≤ du do
9: Q = Q ∪ {υ} ; υ.seen = 1

10: S = S ∪ {g}
11: return S

C. Identifying Malicious Groups

In the last step, we build predictive models based on 26
group-based features to detect malicious retweeter groups.
These features are extracted from each retweeter group

RTG(V ), where V is the set of retweeters/nodes in the group.
|V | indicates the number of retweeters of a group.

Retweet Related Features:
• Retweeted user related features (2 features): Retweeted users
are users whose tweets were retweeted by RTG(V ). First,
we computed |followers|/|followees| for each retweeted user.
Then, we find mean value of their ratios. In addition, we
counted the number of verified distinct retweeted users.
• Average similarity score of pairs of retweeters in a retweeter
group measured by Equation 1.
• Inter-posting time density: For every retweeter ri ∈ V , we
collected his tweets including retweets, and extracted posted
time of the tweets. Then, we merged all the posted times of the
retweeters, and sorted them increasingly, resulting in a sorted
list P = [p1, p2, p3, ..., pk]. Next, we measured inter-posting
times ∆ of P (i.e., ∆ = [p2 − p1, p3 − p2, ..., pk − pk−1]).
Then, each pair of consecutive inter-posting times (e.g., (∆1,
∆2), (∆2, ∆3)) was logarithmically binned into a square
grid in two-dimensional space (e.g., (log2 ∆i, log2 ∆i+1)). We
counted how many pairs were in each grid cell and stored it
in PT ∈ Rm×m. IPTDensity is defined as follows:

IPTDensity(V ) = max
i,j

(PTij /
∑m

i=1,j=1 PTij)

• Retweeter-centered retweeting time dispersion (3 features):
For each retweeter ri ∈ V , we extract a list of retweeting
times and measure the standard deviation of this list. From
|V | standard deviations, we measure three features – the mean,
standard deviation and coefficient of variance.
• Target-centered retweeting time dispersion (2 features):
First, we collected original tweets tw (also called target tweet)
retweeted by retweeters ri ∈ V . With each tw, we extracted a
list Ltw of retweeting times of retweets from all ri ∈ V . Then,
we measured coefficient of variance of Ltw. Now, we have a
list of coefficient of variances, each of which was obtained
from each target tweet tw. Then we computed two features,
the median and standard deviation of the list.
• Target-centered inter-retweeting time density: We use Ltw,
defined in the previous feature, for each original tweet tw .
Then, we sort Ltw in the ascending order and measure inter-
retweeting times. Now, we have a list L of inter-retweeting
times for tw. Then, each pair of consecutive inter-retweeting
times in L was logarithmically binned into a square grid in
2D space. We counted how many pairs were in each grid cell,
stored it in R ∈ Rm×m and derived following feature:

TIRTDensity(V ) = max
i,j

(Rij /
∑m

i=1,j=1 Rij)

• Coefficient of variance of response times: First, we measure
the median of response times for each retweeter ri ∈ V .
Response time means the gap between retweeting time and
original tweet’s posted time to see how long it took ri to
retweet the original tweet. Given a list of |V | medians, we get
the coefficient of variance of it as a feature.
• Response time density: This feature is used to capture what
range of response times that retweeters ri ∈ V usually have.
First, extract response times from all ri ∈ V . Then, merge and
sort the response times in the ascending order. Next, each pair
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Fig. 2. Comparison of four retweeter group extraction algorithms in four properties which reflect synchronized behavior.

of consecutive response times is logarithmically binned into
a square grid in 2D space. Then, we count how many pairs
are in each grid cell and store it in a matrix RE ∈ Rm×m.
Finally, we compute the following feature:
REDensity(V ) = 1/(i+ j) ·max

i,j
(REij /

∑m
i=1,j=1 REi,j)

, where i and j are indexes of a grid cell which has the largest
count. If most retweeters in RTG(V ) quickly retweet original
tweets, most response times will be mapped to the left and low
grid cell, and REDensity will be large.
• Pairwise retweeting time similarity: For every pair of
retweeters (ri, rj) where sim(ri, rj) > τ , we extract their
commonly retweeted target tweets CROT (ri, rj). For each
tweet tw of CROT (ri, rj), we find retweeting time difference:
diffTtw(ri, rj) =

(
rtT imeri(tw) − rtT imerj (tw)

)2
, where

rtT imer(tw) denotes the time when retweeter r retweeted an
original tweet tw. Finally, we compute their retweeting time
similarity as follows:

PRTSim(ri, rj) = 1/
(
1 +

√∑
tw∈CROT (ri,rj)

diffTtw(ri, rj)
)

The larger PRTSim(ri, rj) is, the more similar their retweet-
ing times are. Finally, we find the median PRTSim of all the
pairs/all edges in the group and use it as a feature.

Retweeter Related Features:
• Standard deviation of retweeters’ registration dates, mean
and coefficient of variance of retweeters’ |followers| (2 fea-
tures), mean of |followers| / |followees| of retweeters
• Bi-directional followers: For each retweeter ri, we get
|followers(ri)∩friends(ri)|

|followers(ri)| . Then, average retweeter’s value.
• Average length of retweeters’ screen names, |retweeters
who have URL in their bios|/|V |, |retweeters who have their
bios|/|V |, and |digits| in screen names/|V | (4 features).
• Average edit distance similarity: We find Edit Distance
similarity of screen names u and v and derive average value
based on the number of edges in RTG(V ).

URL, Hashtag and Mention based Features: Mean of
|URLs|, |mentions| and |hashtags| (3 features): We collected
each retweeter’s all tweets and then derived the three features.

IV. EXPERIMENTS

A. Data Collection and Building a User Graph

We collected 1.6 billion tweets from Twitter by using Twit-
ter Streaming API between November 2014 and November
2015. Since we were interested in users’ retweeting behavior,
we discarded less active users who had posted less than 5

retweets, resulting in 21 million users. We removed a pair of
users if the number of their commonly retweeted tweets was
less than four times because too few common retweets does
not reliably reflect similarity of their retweeting behaviors.
After the filtering, 57,628,118 pairs (of 795,381 distinct users)
were remained. Then, we computed mixed similarity of all
pairs by using Equation 1. It took only 3 hours to process 57M
pairs under our 40 cores-based Hadoop system. Ideally, we
should vary α to find the optimal value in the mixed similarity
measure. But, practically it’s not easy to validate which α
value returns optimal results. Therefore, we chose α = 0.5 to
balance contribution of Cosine and Overlap similarity.

When we build a user graph based on users’ retweeting
behavior, the size of graph depends on τ . If τ is too small,
the user graph will be too big, requiring longer computation
time, and extracted retweeter groups will be less similar and
less interesting. Thus, we chose τ = 0.3, keeping 2% of all
the pairs. Finally, we built a user graph G(V,E) where |V | =
199, 981 and |E| = 1, 159, 674. We also collected followees,
followers and recently posted 1,000 tweets of each user ∈ V .

B. Extracting Retweeter Groups

Now we turn to extract retweeter groups by using each
of the four subgraph detection algorithms to see how their
extracted groups are similar or different, and show the effec-
tiveness of our Attractor+. The four algorithms are Cohesive,
Louvain, Attractor and Attractor+. We use λ = 0.5 in both
Attractor and Attractor+ like [20]. In Attractor+, we varied
ρ1 ∈ [0, 1] and ρ2 ∈ [0, 0.1], and found that ρ1 = 0.3 and
ρ2 = 0.03 returned the best result (i.e., each group had similar
interest and purpose).

Now, we compare the largest 100 groups extracted by
each algorithm. The standard metrics (e.g., NMI, ARI, Purity)
to evaluate community detection algorithms do not reflect
coordinated behavior of retweeters. Instead, in this paper, our
goal is to extract retweeter groups, members in each of which
have coordinated behavior. Therefore, we used four properties
to understand which method found groups containing more
synchronized behaviors. Figure 2(a) shows CDF of coefficient
of variance of retweeter account creation dates. We measured a
coefficient of variance for each group and plotted the Figure.
Attractor+ achieved smaller coefficient of variance than the
others. Note that a small coefficient of variance means retweet-
ers in the same group created their accounts in similar date
or small range of the time. In Figure 2(b), retweeter groups
extracted by Attractor+ had smaller coefficient of variance in



retweeter-centered retweeting time dispersion described in the
previous section. It means retweeters in each group had similar
retweeting time. In Figure 2(c), retweeter groups extracted
by Attractor+ and Attractor had larger IPTDensity. A large
IPTDensity means that there is high concentration on inter-
posting times of retweeters in each group, an indication of
synchronized posting behavior. In Figure 2(d), Attractor+ and
Attractor had smaller entropy of mentioned users in tweets
posted by retweeters in each group. It means retweeters in each
group mentioned similar Twitter accounts. In the analysis and
comparison, Attractor+ found user groups which had more
synchronized behaviors than the other methods. When we
analyzed the largest 1,000 groups, we got consistent results.

C. The Ground Truth

By using Attractor+, we extracted 43,012 retweeter groups.
Labeling all the retweeter groups is not feasible because
labelers have to check each group’s all retweeters. Instead, we
sampled 1,000 retweeter groups, following the same group size
distribution of the 43,012 retweeter groups to avoid potential
bias. In particular, we used Sturges equation [23] to choose the
number of bins approximately equal to 17 ≈ 1+log2(43012),
and then selected 1,000 retweeter groups.

Labeling a retweeter group was more sophisticated and
required more careful examination than labeling individual
user as a spammer or not. Therefore, we hired 3 full-time
labelers rather than randomly hiring workers from crowd-
sourcing sites such as Amazon MTurk. The labelers spent one
month for labeling 1,000 groups on a scale from 1 (strongly
legitimate) to 5 (strongly malicious). In the labeling process,
they referred to Twitter’s terms of service to determine whether
a group is malicious or not. In particular, they looked at
retweeters’ timelines and their posting/retweeting behavior in
each retweeter group. The labelers did not have any knowledge
about what features are used in our paper, nor the authors did
not influence their rating criteria. After collecting their labeling
results, we averaged their ratings for each group. If an average
rating for a group was larger than 3, we finally labeled it as
a malicious group. If a rating was less than 3, we labeled it
as a legitimate group. If the rating was 3 (neutral), they re-
checked the group, and made decision together. Their Kappa
value was 0.350 which is fair agreement between labelers [24].
In particular, they had same rating for 427 groups, and two
of them had the same rating scores for 511 retweeter groups
which have max, min and mean standard deviation of three
rating scores are 1.414, 0.471, 0.529 respectively. Finally, 769
out of the 1,000 groups (76.9%) were labeled as malicious.
It makes sense because doing synchronized or coordinated
behavior is not usually normal behavior.

D. Identifying Malicious Retweeter Groups

First, we extracted 26 feature values from each of the
1,000 groups. All pairs of the features has Pearson coefficient
less than 0.5. When ranking features with χ2 values, we
observe that the most important features were mostly related
to temporal behaviors of retweeters (e.g., IPTDensity).

Method AUC F1 Precision Recall
[17] (**) 0.382 0.419 1.000 0.265
[6] (*) 0.894 0.843 0.845 0.848
Our approach 0.914 0.874 0.876 0.878

TABLE I
PERFORMANCE OF OUR APPROACH AND TWO BASELINES. WILCOXON

TEST CONFIRMS THE SUPERIORITY OF OUR APPROACH OVER [6] AND [17]
METHOD IS SIGNIFICANT. (*) P-VALUE<0.05, (**) P-VALUE<0.001

Method Accuracy FPR FNR
Baseline 1 [17] (***) 24.2% 0.242 0.757
Baseline 2 [3] (***) 46.3% 0.014 0.704
Baseline 3 [25] (**) 82.4% 0.305 0.172
Baseline 4 [6] (*) 86.1% 0.241 0.101
Our approach 91.0% 0.197 0.050

TABLE II
OUR APPROACH VS. FIVE BASELINES. WILCOXON TESTS CONFIRMED

THAT THE SUPERIORITY OF OUR METHOD OVER BASELINES IS
SIGNIFICANT. (*) P< 0.05, (**) P<0.01, (***) P< 0.001

We tried various machine learning algorithms and found out
that XGBoost classifier performed the best based on our group-
based features. Next, we compare our best classifier with two
group-based baselines [6], [17]. In [6], we extracted 9 group-
based features and built a predictive model. [17] used two
thresholds (i.e. number of retweeters in a group and median
of absolute time intervals) to identify malicious campaigns.
We optimized two thresholds based on training set and applied
them to test set. We conducted 10-fold cross-validation for the
three methods. Table I presents the results of XGBoost and two
baselines. Our approach achieved 0.914 AUC, significantly
outperforming two baselines.

Detection of Individual Malicious Retweeters. Next, we
compare our approach against existing malicious retweeter de-
tection approaches, focusing on detecting individual malicious
retweeters. To get the ground-truth of each user in the 1,000
retweeter groups, we assumed that users in malicious groups
are malicious retweeters and users in legitimate groups are
legitimate retweeters. With a sampling approach, we verified
that the assumption was correct. The 1,000 retweeter groups
consisted of 7,505 malicious and 2,809 legitimate retweeters.
We compared our approach with the following five baselines.
Baseline 1: [17] proposed validation methods to identify
spammers after extracting potentially malicious campaigns.
Based on their methods, we check if an URL is malicious. If
any tweet of a poster contains malicious URLs, we consider
the poster as malicious.
Baseline 2: [3] proposed a PageRank-based method in which
they built a weighted directed graph, where each node was a
retweeter and an edge (u, v) was formed if user u followed
user v. Edge weight of (u, v) was based on the similarity of u
and v’s retweet behavior. Given initial seed nodes, it computes
a spam score by using PageRank. Based on a threshold,
it decides which users are malicious retweeters. We found
optimal parameters in a training set and applied to a test set.
Baseline 3: [25] proposed a predictive model based on each
user’s behavior. Based on their proposed features, we built a
XGBoost-based classifier.
Baseline 4: We consider users in detected malicious groups
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Fig. 3. Malicious vs. legitimate groups in two properties. One-sided Mann-
Whitney U-test confirmed the difference is significant (p-value< 0.001).

by [6] as malicious and users in legitimate ones as organic.
We fairly conducted 10-fold cross validation for all the

methods. We computed accuracy, false positive rate (FPR) and
false negative rate (FNR). As shown in Table II, our approach
significantly outperformed the five baselines, achieving 91.0%
accuracy, 0.197 FPR and 0.050 FNR.
Robustness of our approach. We created another 9 datasets
from the original 1,000 groups by reducing the number of
malicious groups. In particular, we randomly selected 90% to
10% of the 769 malicious retweeter groups, decreasing 10%
for each dataset and keeping 231 legitimate retweeter groups.
Then we built and tested our model in each of 9 datasets. With
95% confidence interval, our approach achieved stable results
and outperformed all baselines, especially [6] and [25] (p-
value<0.01). In particular, the AUC and F1 of our malicious
retweeter group detection were 90.9%± 0.85%, and 85.3%±
0.88% respectively. The accuracy, FPR and FNR of detecting
individual malicious retweeters were 89.8%±0.93%, 11.6%±
2.98%, and 12.3%± 4.08%, respectively.

In addition, the labelers labeled the largest 1,000 retweeter
groups among 43,012 groups. Our approach in the dataset
achieved even better results – 0.954 AUC and 95.2% accuracy.
These results indicate the robustness of our proposed approach.

V. MALICIOUS GROUPS VS. LEGITIMATE GROUPS

In this section, we conduct analysis to understand behavioral
differences between malicious and legitimate retweeter groups.
RQ#1: What content did malicious retweeting groups post? We
analyzed all tweets of retweeters in 1000 groups and measured
entropy of hashtags, URLs and mentions. Figure 3(a) shows
that entropy value of malicious groups was smaller than that
of legitimate ones, indicating that retweeters in each malicious
group mentioned similar accounts to promote them. We also
observed similar patterns in entropy of hashtags and URLs.
RQ#2: Did malicious retweeters have synchronized behavior?

Figure 3(b) shows IPTDensity of two types of retweeter
groups. Malicious groups had much larger IPTDensity than
legitimate ones (0.364 vs. 0.119), indicating more synchro-
nized behavior. Malicious groups also had larger TIRTDensity
than legitimate groups (0.954 vs. 0.874). Figures 1(a) and 1(b)
show heat maps of two groups with their TIRTDensity. The
malicious group’s IRT for the same target tweets were 1∼2
seconds, leading to 0.99 TIRTDensity, whereas the legitimate
group’s IRT were diffuse, leading to 0.028 TIRTDensity.

VI. CONCLUSION

In this paper, we proposed a framework to detect malicious
retweeter groups. In particular, Attractor+ algorithm extracted

retweeter groups, the members of each of which had similar
retweeting behavior. Then, we proposed group-based features
to detect malicious retweeter groups. Our method achieved
0.914 AUC in the malicious group detection and 91.0%
accuracy in individual malicious retweeters detection.
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