
Quaternion-Based Self-Attentive Long Short-term User
Preference Encoding for Recommendation

Thanh Tran∗
Worcester Polytechnic Institute

tdtran@wpi.edu

Di You∗
Worcester Polytechnic Institute

dyou@wpi.edu

Kyumin Lee
Worcester Polytechnic Institute

kmlee@wpi.edu

ABSTRACT
Quaternion space has brought several benefits over the traditional
Euclidean space: Quaternions (i) consist of a real and three imagi-
nary components, encouraging richer representations; (ii) utilize
Hamilton product which better encodes the inter-latent interactions
across multiple Quaternion components; and (iii) result in a model
with smaller degrees of freedom and less prone to overfitting. Un-
fortunately, most of the current recommender systems rely on real-
valued representations in Euclidean space to model either user’s
long-term or short-term interests. In this paper, we fully utilize
Quaternion space to model both user’s long-term and short-term
preferences. We first propose a QUaternion-based self-Attentive
Long term user Encoding (QUALE) to study the user’s long-term
intents. Then, we propose a QUaternion-based self-Attentive Short
term user Encoding (QUASE) to learn the user’s short-term interests.
To enhance our models’ capability, we propose to fuse QUALE and
QUASE into one model, namely QUALSE, by using a Quaternion-
based gating mechanism. We further develop Quaternion-based
Adversarial learning along with the Bayesian Personalized Ranking
(QABPR) to improve our model’s robustness. Extensive experiments
on six real-world datasets show that our fused QUALSE model out-
performed 11 state-of-the-art baselines, improving 8.43% at HIT@1
and 10.27% at NDCG@1 on average compared with the best baseline.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Long-term and short-term user preferences; Quaternion-based

recommenders; Quaternion-based attention; adversarial training.

ACM Reference Format:
Thanh Tran, Di You, and Kyumin Lee. 2020. Quaternion-Based Self-Attentive
Long Short-term User Preference Encoding for Recommendation. In Proceed-
ings of the 29th ACM International Conference on Information and Knowledge
Management (CIKM ’20), October 19–23, 2020, Virtual Event, Ireland. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3340531.3411926

∗Denotes equal contribution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00
https://doi.org/10.1145/3340531.3411926

0 200 400
Time Interval (days)0.0

00
0

0.0
02
5

0.0
05
0

0.0
07
5

0.0
10
0

Pr
ob

ab
ili

ty
 d

en
si

ty

(a) Video Games

0 200 400
Time Interval (days)0.0

00
00.0

02
50.0

05
00.0

07
50.0

10
0

Pr
ob

ab
ili

ty
 d

en
si

ty

(b) Toys and Games

Figure 1: Density distribution of item-item similarity scores
on Amazon Video Games, and Toys and Games datasets.

1 INTRODUCTION
Recommender Systems [31] have become the heart of many online
applications such as e-commerce, music/video streaming services,
social media, etc. Recommender systems proactively helped (i) users
to explore new/unseen items, (ii) potentially the users stay longer
on the applications, and (iii) companies increase their revenue.

Matrix Factorization techniques [10, 13, 18] extracted features of
users and items to compute their similarity. Recently, deep neural
network boosted performance of a recommender system by pro-
viding non-linearity which helped modeling complex relationships
between users and items [9]. However, these prior works only fo-
cused on a user and a target item without considering the user’s
previously consumed items, some of which may be related to the
target item.While some prior works [14, 17] largely premised on un-
ordered user interactions, users’ interests are intrinsically dynamic
and evolving. Based on the observation, [5, 11, 15, 30, 32] followed
two paradigms to capture a user’s sequential pattern: (i) short-term
item-item transitions, or (ii) long-term item-item transitions.

However, user’s interests can be highly diverse, so modeling only
either short-term or long-term user intent does not fully capture the
user’s preferences, producing less effective recommendation results.
To illustrate the point, we conducted an empirical analysis on Ama-
zon Video Games, and Toys and Games datasets. First, we represent
each item by a multi-hot encoding, where item j is represented by
a vector t ∈ Rm , position i = 1 if user i consumed the current item,
andm denotes the total number of users in a dataset. For each user,
her consumed items are sorted in the chronological order. Then, we
calculated a cosine similarity score between each item and each of
its previously consumed items. Then we selected the largest cosine
similarity score per item per user. Figure 1 presents the density dis-
tribution of the consumed time interval (x-axis) between each pair
of item and its most similar previously consumed item. We observe
that there exists a bimodal distribution, where one (left) peak lays
at a relative short-term period and the other (right) peak locates in
a long-term period. The observation confirms that both long-term
and short-term preferences played important roles on the user’s

https://doi.org/10.1145/3340531.3411926
https://doi.org/10.1145/3340531.3411926

Input

rin ain bin cin

Real-valued representation

Output

w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34

w41 w42 w43 w44

rout aout bout cout

Dot Product

rin

ain

bin

cin

aout

rw

aw

-bw

cw

rin

ain

bin

cin

bout

rw

aw

bw

-cw

rin

ain

bin

cin

cout

rw

-aw

bw

cw

Quaternion representation

rin ain bin cin

r i j k

rw aw bw cw

-aw rw -cw bw

-bw cw rw -aw

-cw -bw aw rw

Dot Product

rout aout bout cout

r i j k

rin

ain

bin

cin

rout
rw

-aw

-bw

-cw

rin

ain

bin

cin

rout
w11
w21

w31

w41

rin

ain

bin

cin

aoutw12

w22

w32

w42

rin

ain

bin

cin

cout
w14

w24

w34

w44

rin

ain

bin

cin

bout
w13

w23

w33

w43

weight

Real-valued transformation Quaternion transformation

Figure 2: Comparison between real-valued transformation (Left) andQuaternion transformation (Right).We replaceHamilton
product in Quaternion space with an equivalent dot product in real space for an easy reference.

current purchasing intent. We observe the same phenomenon from
the other four datasets described in Section 6.

Based on the observation, we propose a Quaternion-based neural
recommender system that models both long-term and short-term
user preferences. Unlike the prior works [42, 46] which rely on
Euclidean space, our proposed recommender system models both
user’s long-term and short-term preferences in a hypercomplex
system (i.e., Quaternion Space) to further improve the recommenda-
tion quality. Concretely, we utilize Quaternion representations for
all users, items and neural transformations in our proposed models.
There are numerous benefits of the Quaternion utilization over
the traditional real-valued representations in Euclidean space: (1)
Quaternion numbers/vectors consist of a real component and three
imaginary components (i.e. i, j,k), encouraging a richer extent of
expressiveness; (2) instead of using dot product in Euclidean space,
Quaternion numbers/vectors operate on Hamilton product, which
matches across multiple (inter-latent) Quaternion components and
strengthens their inter-latent interactions, leading to a higher ex-
pressive model; (3) the weight sharing nature of Hamilton product
leads to a model with a smaller number of parameters.

To illustrate these benefits of the Quaternion utilization, we
show a comparison of a transformation process with Quaternion
representations vs. real-valued representations in Figure 2. In Eu-
clidean space, different output dimensions are produced by multi-
plying the same input with different weights. Given a real-valued
4-dimensional vector [rin,ain,bin, cin], it takes a total of 16 param-
eters (i.e. 16 degrees of freedom) to transform into [rout ,aout ,bout ,
cout]. For Quaternion transformation, the input vector now is rep-
resented with 4 components, where rin is the value of the real
component, ain , bin , cin are the corresponding values of the three
imaginary parts i , j, k . Due to the weight sharing nature of Hamil-
ton product (refer to the Equa (3) in Section 4), different output
dimensions take different combinations of the same input with only
4 weighting parameters {rw ,aw ,bw , cw }. The Quaternions provide a
better inter-dependencies interaction coding and reduce 75% of the
number of parameters compared with real-valued representations
in Euclidean space (e.g., 4 unique parameters vs. 16 parameters).

To our best of knowledge, we are the first work that fully utilizes
Quaternion space in modeling both user’s long-term and short
term interests. Furthermore, to increase our model’s robustness,
we propose a Quaternion-based Adversarial attack on Bayesian
Personalized Ranking (QABPR) loss. As far as we know, we are the

first, applying adversarial attack on Quaternion representations in
the recommendation domain.

We summarize our contributions in the paper as follows:
• We propose novel Quaternion based models to learn a user’s
long-term and short-term interests more effectively. As a part
of our framework, we propose Quaternion self-attention that
works in Quaternion space.

• We propose a Quaternion-based Adversarial attack on BPR-loss
to further improve the robustness of our model.

• We conduct extensive experiments to demonstrate the effective-
ness of our models against 11 strong state-of-the-art baselines
on six real-world datasets.

2 RELATEDWORK
General Recommenders. Matrix Factorization is the most pop-
ular method to encode global user representations by using un-
ordered user-item interactions [13, 18, 43]. Its basic idea is to repre-
sent users and items by latent factors and use dot product to learn
the user-item affinity. Despite their success, they cannot model
non-linear user-item relationships due to the linear nature of dot
product. To overcome the limitation, neural network based recom-
menders were recently introduced [1, 9, 36, 38]. [9] combined a
generalized matrix factorization component and a non-linear user-
item interactions via a MLP architecture. [21, 24, 25] substituted the
MLP architecture with the auto-encoder design. [35, 41] used mem-
ory augmentation to learn different user-item latent relationship.
When non-existed users come with some observed interactions (i.e.,
recently created user accounts with some item interactions), the
recommenders need to be rebuilt to generate their representations.
To avoid these issues, current works encode users by combining the
users’ consumed item embeddings in two main streams: (i) taking
average of the consumed items’ latent representations [14, 17], or
(ii) attentively summing [8] the consumed items’ embeddings.

Despite their success, general recommenders mostly consider all
users’ unordered consumed items, and produce global/long-term
user representations, which are supposed to be static, or changed
slowly. Thus, they failed to capture the user’s dynamic behavior,
that is captured by the user’s short-term preference (see Figure 1).
Sequential Recommenders. Sequential recommendation is known
for its superiority to capture temporal dependencies between his-
torical items [23]. Early works relied on Markov Chains to capture

item-item sequential patterns [2, 5, 30]. Other works exploited the
convolution architecture to capture more complex temporal depen-
dencies [32]. These methods used short-term item dependencies to
model a user’s dynamic interest. Other sequential recommenders
focused on modeling long-term user preferences using RNN-based
architectures [11, 20, 22, 40]. However, modeling either long-term
user interests or short-term user interests is suboptimal since they
concurrently affect a user’s intent (Figure 1). Recent works com-
bined both long and short-term user preferences in real-valued
representations to obtain satisfactory results [15, 42, 46].

Compared with the prior works which used real-valued represen-
tations , we propose Quaternion-based models to capture the user’s
long-term and short-term interests. Quaternion was first introduced
by [4] and it has recently shown its effectiveness over real-valued
representations in NLP and computer vision domains [3, 27, 33, 47].
We acknowledge that QCF model [44] is the first Quaternion-based
recommender. However, the authors used it as a simple extension of
the matrix factorization method, where users and items are Quater-
nion embeddings. Thus, the benefits of Quaternion representation
were not fully exploited in their network. Furthermore, they de-
signed the model for a general recommendation problem, which has
an inherent limitation of only modeling the user’s global interest.

3 PROBLEM DEFINITION
Denote U={u1,u2, ...,um } as a set of all users where m = |U | is
the total number of users, and P={p1,p2, ...,pn } as a set of all items
where n = |P | is the total number of items. Bold versions of those
variables, whichwewill introduce in the following sections, indicate
their respective latent representations/embeddings. Each user ui ∈
U consumes items in P , denoted by a chronological list T (ui). We
denote L(ui) as the chronological list of long-term consumed items
of ui , and S(ui) as the chronological list of short-term consumed
items of ui (i.e. s most recently consumed items in chronological
order of the user ui), Lui ∪ Sui = T (ui). Note that bold versions of
i, j,k are used to indicate the three imaginary parts of a Quaternion,
while their subscript versions are used as indices.

In this work, we propose and build Quaternion-based recom-
mender systems by using both long-term and short-term user
interests, denoted as P(pj |L(ui), S(ui)). Under an assumption that
L(ui) and S(ui) are independent given the target item pj , we model
P(pj |L

(ui), S(ui)) bymodeling the user’s long-term interest P(pj |L(ui))
and short-term interest P(pj |S(ui)) separately by using two different
Quaternion-based neural networks. Then, we automatically fuse
the two models to build a more effective recommender system.

4 PRELIMINARY ON QUATERNION
In this section, we cover important background on Quaternion Al-
gebra and Quaternion Operators that we use to design our models.
Quaternion number: In mathematics, Quaternions are a hyper-
complex number system. A Quaternion number X in a Quaternion
space H is formed by a real component (r) and three imaginary
components as follows:

X = r + ai + bj + ck, (1)

where ijk = i2 = j2 = k2 = −1. The non-commutative multipli-
cation rules of quaternion numbers are: ij = k , jk = i , ki = j,

ji = −k , kj = −i , ik = −j. In Equa (1), r ,a,b, c are real numbers
∈ R. Note that we can extend r ,a,b, c to real-valued vectors to
obtain a Quaternion embedding, which we use to represent each
user/item’s latent features and conduct neural transformations.
Operations on Quaternion embeddings are similar to Quaternion
numbers.
Component-wise Quaternion Operators: Let f define an alge-
braic operator in real space R. The component-wise Quaternion
operator f on two Quaternions X ,Y ∈ H is defined as:

f (X ,Y) = f (rX , rY) + f (aX ,aY)i + f (bX ,bY)j + f (cX , cY)k (2)

For instance, if f is an addition operator (i.e. f (a,b) = a + b), then
f (X ,Y) returns a component-wise Quaternion addition between X
andY . If f is a dot product operator (i.e. f (a,b) = aTb), then f (X ,Y)
returns a component-wise Quaternion dot product between X and
Y . A similar description is applied when f is either subtraction,
scalar multiplication, product, softmax, or concatenate operator, .etc.
Hamilton Product: The Hamilton product (denoted by the ⊗ sym-
bol) of two Quaternions X ∈ H and Y ∈ H is defined as:

X ⊗ Y =(rX rY − aXaY − bXbY − cX cY) +

(rXaY + aX rY + bX cY − cXbY)i +

(rxbY − aX cY + bX rY + cXaY)j +

(rX cY + aXbY − bXaY + cX rY)k

(3)

Activation function on Quaternions: Similar to [3, 28], we use
a split activation function because of its stability and simplicity. Split
activation function β on a Quaternion X is defined as:

β(X) = α(r) + α(a)i + α(b)j + α(c)k (4)

, where α is any standard activation function for real values.
Concatenate four components of a Quaternion: concatenates
all four Quaternion components into one real-valued vector:

[X] = [rX ,aX ,bX , cX] (5)

5 OUR PROPOSED MODELS
Figure 3 shows an overview of our proposals. First, our QUaternion-
based self-Attentive Long term user Encoding (QUALE) learns a
user’s long-term interest by using long-term consumed items and
the target item. Second, our QUaternion-based self-Attentive Short
term user Encoding (QUASE) encodes the user’s short-term intent
by using short-term consumed items and the target item. Then our
QUaternion-based self-Attentive Long Short term user Encoding
(QUALSE) fuses both of the user preferences by using a Quaternion-
based gating layer. We describe each component as follows:

5.1 QUaternion-based self-Attentive Long term
user encoding (our QUALE model)

The most widely used technique for modeling the user long-term
interests is the Asymmetric-SVD (ASVD) [17] model. Its basic idea
is to encode each user and item by latent representations where
the user representation is encoded by summing latent represen-
tations of the user’s interacted items. To an extent, we propose a
QUaternion-based self-Attentive Long term user Encoding (QUALE).
QUALE represents each user and each item as Quaternion embed-
dings. Then, we encode each user by attentively summing Quater-
nion embeddings of her interacted items as follows:

Input

Target
user u

Target
item p

Long-
term
items

Short-
term
items

Quaternion Embedding Lookup

r i j k

.

Users preferences encoding

Quaternion-
based self
attention

Quaternion-
based Self-

Attentive
LSTM

∑
r i j k

r i j k

short term user encoding
u(short)

∑

≀

1-

.

.

+

r i j k

long term user encoding
u(long)

long term user preference

Target
item p

r i j k

short term user preference

Quaternion-based
Gating layer

h

Prediction

user-item
preference

score
oij

+ Quaternion component-wise addition Quaternion component-wise summation on all quaternion embeddings∑

γ

1-γ

Figure 3: Our proposed architecture for modeling both long and short-term user interests using Quaternion representations.

u
(lonд)
i =

|L(ui) |∑
k=1

αk × p
(lonд)
k

(6)

where u(lonд)i ,p
(lonд)
k

∈ H. The summation “
∑
” and the multipli-

cation “×” are Quaternion component-wise operators, which are
calculated by using Equa (2). We use our proposed Quaternion
personalized self-attention mechanism to assign attentive scores
αk ∈ H for different long-term items pk .

OurQUALEmodel has four layers: Input, Quaternion Embedding,
Encoding, and Output layers. We detail each layer as follows:

5.1.1 Input. QUALE requires a target user ui , a target item pj , and
the user’s list of l long-term items L(ui) with |L(ui) | = l . l could
be simply set to the maximum number of long-term items among
all the users in a dataset. However, we observed that only several
users in our datasets consumed an extremely large number of items
compared to the majority of users. Hence, we set l to the upper
bound of the boxplot approach (i.e. Q3 + 1.5IQR, where Q3 is the
third quartile, and IQR is the Interquartile range of the sequence
length distribution of all users). If a user has consumed less than l
items, we pad the list with zeroes until its length reaches l .

5.1.2 Quaternion Embedding layer. It holds two Quaternion em-
bedding matrices: a user context Quaternion embedding matrix
U(lonд) ∈ Hm×d , and an itemQuaternion embeddingmatrixP(lonд)

∈ Hn×d . Here,m and n are the respective number of users and items
in the system. d is the Quaternion embedding size, and is measured
by the total size of real-valued vectors of four Quaternion compo-
nents (d = |r | + |a | + |b | + |c |, and |r | = |a | = |b | = |c | = d/4).
By passing the target user ui , the target item pj , and long-term
items pk in the Input layer through the two respective Quaternion
embedding matrices, we obtain the corresponding user context
Quaternion embedding q(lonд)i , target item Quaternion embedding

p
(lonд)
j and long-term item Quaternion embeddings p(lonд)

k
.

5.1.3 Encoding layer. Its main goal is to compute attentive scores
for l Quaternion item embeddings in Equa (6). To do so, we propose
a Quaternion personalized self-attention mechanism as follows:

We first compute the Hamilton product between each long-term
item Quaternion embedding p

(lonд)
k

(k = 1, l) and the Quater-

nion context embedding q
(lonд)
i of the target user ui . Next, we

use Equa (2) to multiply the results with the scaling factor 1/
√
d

to eliminate the scaling effects. Then, we apply Component-wise
Softmax (Equa (2)) to obtain Quaternion attention scores as follows:


α1
α2
. . .

αl

 = ComponentSoftmax

©­­­­­«

p
(lonд)
1 ⊗ q

(lonд)
i /

√
d

p
(lonд)
2 ⊗ q

(lonд)
i /

√
d

. . .

p
(lonд)
l

⊗ q
(lonд)
i /

√
d


ª®®®®®¬

(7)

.
To obtain the attentive long-term user encoding u(lonд)i of the

user ui , we first perform the component-wise product between the
attention scores [α1,α2, ...,αl] obtained in Equa (7) with its corre-
sponding itemQuaternion embeddings [p(lonд)1 ,p

(lonд)
2 , ...,p

(lonд)
l].

Then we sum them up to obtain u(lonд)i as follows:

u
(lonд)
i =

l∑
k=1

αk × p
(lonд)
k

(8)

Our proposed Quaternion personalized self-attentionmech-
anism vs. the existing self-attention mechanism: Our pro-
posed Quaternion personalized self-attention mechanism is dif-
ferent from the self-attention mechanism that has been widely used
in the NLP tasks in two aspects. First, unlike the prior work [45],
which uses a single global context to assign attentive scores for
different dialogue states, our attention mechanism provides person-
alized contexts for different users. In the recommendation domain,
the long-term/general user interests are supposed to be changed
slowly, but user interests are various across users. In other words, a
user’s long-term context is quite static, but different from another
user. Hence, using personalized contexts for different users is better
than using a single global context, which is not personalized. Sec-
ond, our attention mechanism adopts Hamilton product and works
for Quaternion embeddings as input, instead of the real-valued
embeddings like traditional self-attention mechanisms.

5.1.4 Output. We produce a long-term preference score o(lonд)i j
between the target user ui and the target item pj by computing the
Component-wise dot product between the user long-term Quater-
nion encoding u

(lonд)
i obtained in Equa (8) and the target item

Quaternion embedding p(lonд)j . This results in a Quaternion score .

To obtain a real-valued scalar preference score used in the parame-
ter estimation phase, we compute the average of the scalar values
of four Quaternion components by following [44]:

o
(long)
i j = Average(ComponentDot(u(lonд)i ,p

(lonд)
j)) (9)

5.2 QUaternion-based self-Attentive Short
term user Encoding (our QUASE model)

RNN-based models have gained a lot of attention because of their
capability to capture item-to-item relationships [26, 40, 46]. How-
ever, due to its limitation in modeling a long sequence, we only
exploit the RNN architecture to encode a user’s short-term interest.
Recently, [28] has introduced a Quaternion LSTM (QLSTM) model
and has shown its efficiency and effectiveness over a traditional
real-valued LSTM model. However, QLSTM used only the last hid-
den state as a latent summary of the input, which is suboptimal.
To an extent, we propose a Quaternion-based self-Attentive LSTM
model to learn a user’s short-term interest. We name our proposal
as a QUaternion-based self-Attentive Short term user Encoding
(QUASE). QUASE has 4 layers: Input, Quaternion Embedding, En-
coding, and Output layers. We describe each layer as follows:

5.2.1 Input. A target item pj , and the chronological list of s short-
term consumed items S(ui) of the target user ui with |S(ui) | =
s , where s represents the maximum number of short-term items
among all the users in a dataset. If a user has consumed less than s
items, we pad the list with zeroes until its length reaches s .

5.2.2 Quaternion Embedding layer. It holds an item Quaternion
Embedding matrix P(shor t) ∈ Hn×d . By passing the target item pj ,
and s short-term items in the S(ui) of the target user ui through
Pshor t , we obtain their corresponding Quaternion embeddings
p(shor t)j , and {p(shor t)1 ,p(shor t)2 , ...,p(shor t)s }.

5.2.3 Encoding layer. In this layer, we adapt the recently intro-
duced Quaternion-based LSTM to model the item-item sequential
transition. Denote p(shor t)t is the Quaternion embedding of the t th

short-term item pt ∈ S(ui) (t = 1, s). Let ft , it ,ot , ct , and ht be the
forget gate, input gate, output gate, cell state, and the hidden state
of a Quaternion LSTM cell at time step t , respectively. We compute
these variables as follows:

ft = σ (Wf ⊗ p(shor t)t + Rf ⊗ ht−1 + дf)

it = σ (Wi ⊗ p(shor t)t + Ri ⊗ ht−1 + дi)

ot = σ (Wo ⊗ p(shor t)t + Ro ⊗ ht−1 + дo)

ct = ft × ct−1 + it × tanh(Wc ⊗ p(shor t)t + Rc ⊗ ht−1 + дc)

ht = ot × tanh(ct)

(10)

, whereWf ,Rf ,Wi ,Ri ,Wo,Ro,Wc ,Rc are Quaternion weight ma-
trices. дf ,дi ,дo,дc are Quaternion bias vectors. ft , it ,ot , ct ,ht are
Quaternion vectors. The “×” sign denotes a component-wise prod-
uct operator, which is calculated using Equa (2). sigmoid σ and tanh
are split activation functions and are computed using the Equa (4).

Using Equa (10), given s short-term consumed items p1,p2, ...,ps ,
we obtain their respective output Quaternion hidden states h1,h2,
...,hs . Then, we propose a Quaternion self-attention mechanism

to combine all s output Quaternion hidden states before using it to
predict the next item. Different from the long-term user preferences
where they are supposed to be static or changed very slowly, the
short-term user interests are dynamic and changed quickly. Hence,
using a static user context for each user to make personalized at-
tention like what we did for the QUALE model is not ideal. Instead,
we define a Quaternion global context vector to capture the se-
quential transition patterns from item to item among all the users.
Denote q as a Quaternion global context vector, the Quaternion-
based self-attention score of each hidden state ht is measured by:

α
(shor t)
1

α
(shor t)
2
. . .

α
(shor t)
s


= ComponentSoftmax

©­­­«

h1 ⊗ q/

√
d

h2 ⊗ q/
√
d

. . .

ht ⊗ q/
√
d


ª®®®®¬

(11)

, where α (shor t)1 ,α
(shor t)
2 , ...,α

(shor t)
s are Quaternion numbers. To

achieve the final short-term user Quaternion encoding, we perform
a component-wise product between the Quaternion hidden states
and their respective Quaternion attention scores, followed by a
Hamilton product with a Quaternion weight matrixW and the split
activation function tanh:

u(shor t)i = tanh

(
W ⊗

(s∑
t=1

α
(shor t)
t × ht

))
(12)

Note that we also designed a Quaternion self-Attentive GRU ,
but its performance was slightly worse than the Quaternion self-
Attentive LSTM (see Table 2 in Section 6). Thus, we only described
the Quaternion self-Attentive LSTM due to space limitation.

5.2.4 Output. Similar to Equa (9), we produce the user ui short-
term preference score o(shor t)i j over the target item pj as follows:

o
(shor t)
i j = Averaдe

(
ComponentDot(u(shor t)i ,p(shor t)j)

)
(13)

5.3 QUaternion-based self-Attentive Long
Short term user Encoding (QUALSE): a
Fusion of QUASE and QUALE models

In this part, we aim to combine both user’s long-term and short-term
preferences modeling parts into one model, namely QUALSE, fusing
QUALE and QUASE models. Inspired by the gated mechanism in
LSTM [12] to balance the contribution of the current input and the
previous hidden state, we propose a personalized Quaternion gated
mechanism to fuse the long-term and short-term user interests
learned in QUALE and QUASE models. Our personalized gating
proposal is different to the traditional gating mechanism in two
folds. First, gating weights in our proposal are in Quaternion space
and the transformations are computed using the Hamilton product.
Second, as users’ behaviors differ from a user to another user, we
additionally input the target user embeddings ui to let the gating
layer assign personalized scores for different users. The long-term
and short-term interest fusion is computed as follows:

γ
(lonд)
i j =σ

(
W

(1)
д ⊗ [u

(lonд)
i ,u(shor t)i] +W

(2)
д ⊗ ui +W

(3)
д ⊗ pj

)
oi j =W

(1)
o

[
γ
(lonд)
i j × (u

(lonд)
i × p

(lonд)
j)

]
+

W
(2)
o

[
(1 − γ

(lonд)
i j) × (u(shor t)i × p(shor t)j)

] (14)

, whereW (1)
д ,W

(2)
д , andW (3)

д are Quaternionweightmatrices,u(lonд)i

and u(shor t)i are the user’s long-term Quaternion encoding and
short-term Quaternion encoding obtained in Equa (8) and (12),
respectively. [· , ·] is the component-wise concatenate (Equa (2))
of two input Quaternion vectors. To compute the long-term gate
γ
(lonд)
i j , ui and pj are introduced as an additional user context
Quaternion embedding and a target item context Quaternion em-
bedding to let the model know which long-term or short-term
interests are more relevant. To measure the final output oi j , since
γ
(lonд)
i j is a Quaternion vector while o(lonд)i j and o(shor t)i j are scalar
values, we reconstruct the user’s long-term interest by comput-
ing u

(lonд)
i × p

(lonд)
j and the short-term interest by measuring

u(shor t)i × p(shor t)j , which are also Quaternion vectors. Finally, to
combine multiple dimensional features from the weighted long-
term and short-term interest Quaternion vectors, we concatenate
all their components, denoted by [·] (Equa (5)), and use two real-
valued weight vectorsW (1)

o andW (2)
o to produce a fused preference

score as a scalar real number. Note that in QUALSE, QUASE and
QUALE hold separated item memory to increase the their flexibility.

5.4 Parameter Estimation
5.4.1 Training with Bayesian Personalized Ranking (BPR) loss. Given
a Quaternion matrix E ∈ H(m+n)×d as the Quaternion embeddings
of all users and items in the system, and Θ as other parameters of
the model, we aim to minimize the following BPR loss function:

LBPR (D|E,Θ)

= argmin
E ,Θ

(
−

∑
(i , j+, j−)

loдσ (oi j+ − oi j−) + λΘ∥Θ∥2 + λE ∥E∥2

)
(15)

, where (i , j+, j−) is a triplet of a target user, a target item, and a neg-
ative item that is randomly sampled from the items set P .D denotes
all the training instances. oi j+ and oi j− are the respective positive
and negative preference scores, that are computed by Equa (9), (13),
(14), corresponding to QUALE, QUASE and QUALSE models. λΘ and
λE are regularization hyper-parameters.

5.4.2 Training withQuaternion Adversarial attacks. Previous works
have shown that neural networks are vulnerable to adversarial
noise [7, 19]. Therefore, to increase the robustness of our models,
we propose a Quaternion Adversarial attack on BPR loss, namely
QABPR. QABPR inherits from traditional adversarial attacks for
computer visions [19] and recommendation systems [7] but differs
from them: QABPR applies for Quaternion space, while the formers
apply for real-valued space. To our best of knowledge, ours is the
first work using adversarial training on Quaternion space in the
recommendation domain.

In QABPR, we first define learnable Quaternion perturbation
noise δ on user and item Quaternion embeddings. Then, we per-
form the Quaternion component-wise addition (Equa (2)) to obtain
crafted Quaternion embeddings. The learnable Quaternion noise
δ is optimized such that the model mis-ranks between positive
items and negative items (i.e. negative items have higher prefer-
ence scores than positive items). Particularly, a max player learns

Table 1: Datasets’ statistics with # of long-term items l .

Dataset # of users # of items # of actions (density %) l

Toys Games 36k 55k 251k (0.013%) 1,112
Cellphone Accessories 47k 45k 262k (0.012%) 109
Pet Supplies 25k 23k 160k (0.027%) 176
Video Games 24k 20k 196k (0.040%) 856
Apps for Android 79k 18k 555k (0.038%) 478
Yelp 22k 21k 481k (0.104%) 930

δ by maximizing the following cost function under the L2 attack:

Ladv (D|E∗ + δ ,Θ∗)

= argmax
δ , ∥δ ∥2≤ϵ

(
−

∑
(i , j+, j−)

loдσ (oi j+ − oi j−) + λδ ∥δ ∥2

)
(16)

where ϵ is a noise magnitude hyper-parameter. E∗ and Θ∗ are op-
timal values of E and Θ that are pre-learned in Equa (15) and are
fixed in Equa (16). E∗ + δ is the crafted Quaternion embeddings.
λΘ∥Θ∥2 and λE ∥E∥2 in Equa (15) are ignored in Equa (16) as they
become constant terms. λδ ∥δ ∥2 is the noise regularization term.

Solving Equa (16) is expensive. Hence, we adopt the Fast Gradient
Method [19] to approximate δ as follows:

δ = ϵ
`
δ Ladv (D |E∗+δ ,Θ∗)

∥
`
δ Ladv (D |E∗+δ ,Θ∗) ∥2

(17)

Then, amin player aims to minimize the following cost functions
that incorporate both non-adversarial and adversarial examples:

LQABPR (D|E, E + δ∗,Θ)

= argmin
E ,Θ

(
LBPR (D|E,Θ) + λadvLBPR (D|E + δ∗,Θ)

)
(18)

where δ∗ is the adversarial noise that is already learned in Equa (17),
and is fixed in Equa (18). λadv is a hyper-parameter to balance the
effect of the partial adversarial loss. Training QABPR now becomes
playing a minimax game, where the min and max players play al-
ternatively. We stop the game after a fixed number of epochs (i.e. 30
epochs) and report results based on the best validation performance.

Note that we name our QUALE, QUASE, and QUALSE trained
with QABPR loss as AQUALE, AQUASE, and AQUALSE with “A”
denotes “adversarial”, respectively.

6 EMPIRICAL STUDY
In this section, we design experiments to answer the following
research questions:
• RQ1: How do our proposals work compared to the baselines?
• RQ2: How do a user’s long-term, short-term preference encod-
ing models and the fused model perform?

• RQ3: Is using Quaternion representation helpful and why?
• RQ4: Are the gating fusion mechanism and the Quaternion
BPR adversarial training helpful?

6.1 Datasets
We evaluate all models on six public benchmark datasets collected
from two real world systems as follows:
• Amazon datasets [6]: As top-level product categories on Ama-

zon are treated as independent datasets [15], we use 5 different
Amazon category datasets to vary the sparsity, variability, and

Table 2: HIT@100 and NDCG@100 of all models. Best performances are in bold, best baseline’s results are underlined. The
last two lines show the relative improvement of QUALSE and AQUALSE compared to the best baseline’s results.

Methods Toys Games Cellphone Acc. Pet Supplies Video Games Apps for Android Yelp

HIT NDCG HIT NDCG HIT NDCG HIT NDCG HIT NDCG HIT NDCG

(a) AASVD 0.4343 0.1809 0.5640 0.2443 0.5523 0.2307 0.5503 0.2229 0.7149 0.3182 0.7212 0.3580
(b) QCF 0.3869 0.1560 0.5514 0.2328 0.5319 0.2194 0.5217 0.1956 0.6638 0.2864 0.6774 0.3119
(c) NeuMF++ 0.3969 0.1553 0.5467 0.2291 0.5255 0.2174 0.4944 0.1934 0.6635 0.2791 0.6810 0.3208
(d) NAIS 0.4331 0.1796 0.5648 0.2427 0.5569 0.2302 0.5587 0.2303 0.7076 0.3138 0.7277 0.3573
(e) FPMC 0.3370 0.1335 0.4805 0.1970 0.4405 0.1812 0.5065 0.1980 0.6659 0.2847 0.6704 0.3204
(f) AGRU 0.3747 0.1400 0.5211 0.2030 0.4690 0.1798 0.5337 0.1958 0.6969 0.2960 0.4722 0.1995
(g) ALSTM 0.3886 0.1419 0.5159 0.2052 0.4630 0.1685 0.5156 0.1928 0.7043 0.2883 0.5644 0.2519
(h) Caser 0.3889 0.1507 0.5747 0.2289 0.4786 0.1859 0.5502 0.1967 0.7098 0.3124 0.6718 0.3201
(i) SASRec 0.4009 0.1545 0.5579 0.2239 0.5238 0.2124 0.5472 0.2107 0.6706 0.2781 0.7193 0.3381
(j) SLi-Rec 0.4267 0.1823 0.5661 0.2387 0.5502 0.2311 0.5438 0.2276 0.7062 0.3117 0.7201 0.3516
(k) ALSTM+AASVD 0.4394 0.1864 0.5701 0.2475 0.5542 0.2326 0.5502 0.2328 0.7173 0.3207 0.7222 0.3594

Our proposals
QUALE 0.4696 0.1997 0.6042 0.2685 0.5826 0.2483 0.5981 0.2503 0.7281 0.3248 0.7391 0.3723
QUASE (GRU) 0.4080 0.1632 0.5612 0.5807 0.2438 0.5413 0.2246 0.2207 0.7198 0.3223 0.6917 0.3324
QUASE (LSTM) 0.4095 0.1664 0.5844 0.2475 0.5453 0.2263 0.5591 0.2261 0.7300 0.3300 0.6929 0.3311
QUALSE 0.4760 0.2043 0.6127 0.2777 0.5913 0.2539 0.6018 0.2551 0.7373 0.3364 0.7442 0.3781

AQUALE 0.4831 0.2055 0.6105 0.2748 0.5902 0.2553 0.6045 0.2593 0.7346 0.3306 0.7440 0.3786
AQUASE (LSTM) 0.4495 0.1847 0.6056 0.2572 0.5520 0.2329 0.5762 0.2351 0.7285 0.3292 0.7048 0.3450
AQUALSE 0.4921 0.2098 0.6204 0.2842 0.6011 0.2612 0.6137 0.2605 0.7477 0.3440 0.7448 0.3814

Imprv. of QUALSE +8.33% +9.60% +6.61% +12.20% +6.18% +9.16% +7.71% +9.58% +2.79% +4.90% +2.27% +5.20%
Imprv. of AQUALSE +11.99% +12.55% +7.95% +14.83% +7.94% +12.30% +9.84% +11.90% +4.24% +7.27% +2.35% +6.12%

data size: Apps for Android, Cellphone Accessories, Pet Supplies,
Toys and Games, and Video Games.

• Yelp dataset: This is a user rating dataset on businesses. We
use the dataset obtained from [10].
For data preprocessing, we adopted a popular k-core preprocess-

ing step [6] (with k=5), filtering out users and items with less than
5 interactions. All observed ratings are considered as positive inter-
actions and the remaining as negative interactions. The maximum
number of short-term items is set to s = 5 in all datasets as it covers
the short-term peak (see Figure 1). Table 1 summarizes the statistics
of all datasets, as well as their number of long-term items l .

6.2 State-of-the-art Baselines
We compared our proposed models with 11 strong state-of-the-art
recommendation models as follows:
• AASVD: It is an attentive version of the well-known Asymmet-
ric SVD model (ASVD) [17], where real-valued self-attention
is applied to measure attentive contribution of previously con-
sumed items by a user.

• QCF [44]: It is a state-of-the-art recommender that represents
users/items by Quaternion embeddings.

• NeuMF++ [9]: It models non-linear user-item interactions by
using a MLP and a Generalized MF (GMF) component. We
pretrained MLP and GMF to obtain NeuMF’s best performance.

• NAIS [8]: It is an extension of ASVD where contribution of
consumed items to the target item is attentively assigned. We
adopt NAISprod version as it led to its best results.

• FPMC [30]: It is a state-of-the-art sequential recommender. It
uses the first-order Markov to model the transition between the
next item and the previously consumed items.

• AGRU: It is an extension of the well-known GRU4Rec [11],
where we use an attention mechanism to combine different
hidden states. We experiment with two attention mechanisms:
real-valued self-attention, and real-valued prod attention pro-
posed by [8]. Then we report its best performance.

• ALSTM: It is a LSTM based model. Similar to AGRU, we exper-
iment with the real-valued self-attention and the prod attention
[8], and then report its best results.

• Caser [32]: It embedded a sequence of recently consumed items
into an “image” in time and latent spaces, and uses convolution
neural network to learn sequential patterns as local features of
an image using different horizontal and vertical filters.

• SASRec [15]: It is a strong sequential recommender model. It
uses the self-attention mechanism with a multi-head design to
identify relevant items for next predictive items.

• Sli-Rec [42]: It uses a time-aware controller to control the state
transition. Then it uses an attention-based framework to fuse a
user’s long-term and short-term preferences.

• ALSTM+AASVD: It is our implementation that resembles the
same architecture as our proposed Quaternion fusion approach,
except that it uses Euclidean space instead of Quaternion space.
The purpose of implementing and using it as a baseline is to
present the effectiveness of our framework and Quaternion
representations over the real-valued representations.
First four baselines (AASVD, QCF, NeuMF++, and NAIS) are

classified as user’s long-term interest encoding models. Next four
baselines (FPMC, AGRU, ALSTM, and Caser) are user’s short-term
interest encoding models, and SASRec, SLi-Rec, and ALSTM+AASVD
encode both user’s long-term and short-term intents. Note that we
performed an experiment with DIEN [46] (i.e. a long short-term

modeling baseline) based on the authors’ public source code, which
produced surprisingly low results, so we omit its detailed results.
We also experimented with ASVD, LSTM, GRU and Quaternion
LSTM but do not report their results due to space limitation and
their worse results. Similarly, we omit BPR [29] and FISM [14]
results due to their less impressive performance.

6.3 Experimental Settings
Protocol: We adopt a well-known and practical 70/10/20 splitting
proportions to divide each dataset into train/validation (or devel-
opment)/test sets [21, 34]. All user-item interactions are sorted in
ascending order in terms of the interaction time. Then, the first 70%
of all interactions are used for training, the next 10% of all inter-
actions are used for development, and the rest is used for testing.
We follow [39, 41] to sample 1,000 unobserved items that the target
user has not interacted before, and rank all her positive items with
these 1,000 unobserved items for testing models.
Evaluation metrics: We evaluate the performances of all models
by using two well-known metrics: Hit Ratio (HIT@N), and Normal-
ized Discounted Cumulative Gain (NDCG@N). HIT@N measures
whether all the test items are in the recommended list or not, while
NDCG@N takes into account the position of the test items, and
assigns higher scores if test items are at top-rank positions.
Hyper-parameters Settings: All models are trained with Adam
optimizer [16]. A learning rate is chosen from {0.001, 0.0005}, and
regularization hyperparameters are chosen from {0, 0.1, 0.001, 0.0001}.
An embedding size d is chosen from {32, 48, 64, 96, 128}. Note that
for Quaternion embeddings, each component value is a vector of
size d

4 . The number of epochs is 30. The batch size is 256. The num-
ber of MLP layers in NeuMF++ is tuned from {1, 2, 3}. The number of
negative samples per one positive instance is 4 for training models.
The settings of Caser, NAIS, SASRec are followed by their reported
default settings. In training with QABPR loss, the regularization
λadv is set to 1. The noise magnitude ϵ is chosen from {0.5, 1, 2}. The
adversarial noise is added only in training process, and is initialized
as zero. All hyper-parameters are tuned by using the validation set.

6.4 Experimental Results
6.4.1 RQ1: Performance comparison. Table 2 shows that our
proposed fused models QUALSE and AQUALSE outperformed all
the compared baselines. On average, QUALSE improved Hit@100 by
5.65% and NDCG@100 by 8.44% compared to the best baseline’s per-
formances. AQUALSE gains additional improvement over QUALSE,
enhancing Hit@100 by 7.39% and NDCG@100 by 10.83% on average
compared to the best baseline. The improvement of our proposals
over the baselines is significant under the Directional Wilcoxon
signed-rank test (p-value < 0.015). We also observed similar results
on all six datasets when we measure Hit@1 and NDCG@1. In partic-
ular, our QUALSE improved Hit@1 by 6.87% and NDCG@1 by 8.71%
on average compared with the best baseline. AQUALSE improved
Hit@1 by 8.43% and NDCG@1 by 10.27% on average compared with
the best baseline, confirming its consistent effectiveness.
6.4.2 Varying top-N recommendation list and embedding size: To
further provide detailed effectiveness of our proposals, we compare
QUALSE and AQUALSE models with the top-5 baselines when
varying the embedding size from {32, 48, 64, 96, 128} and the top-N
recommendation list from {10, 20, 50, 100}.

N
D

C
G

 @
 to

p-
N

0.08

0.128

0.175

0.223

0.27

10 20 50 100

AASVD NAIS Caser SLi-Rec ALSTM+ASVD QUALSE AQUALSE

Video-Games data

@ top-N

N
D

C
G

 @
 to

p-
N

0.08

0.128

0.175

0.223

0.27

10 20 50 100

AASVD NAIS Caser SLi-Rec ALSTM+ASVD QUALSE AQUALSE

Video-Games data

@ top-N

(a) NDCG@topN inVideoGames

H
IT

 @
 1

00

0.64

0.675

0.71

0.745

0.78

32 48 64 96 128

AASVD NAIS Caser SLi-Rec ALSTM+ASVD QUALSE AQUALSE

Yelp data
very embeddings

HIT

embedding-size

(b) HIT@100 in Yelp.
Figure 4: Performance of ourmodels and the top-5 baselines
when varying a top-N recommendation list (left) and an em-
bedding size (right).

Figure 4a shows that even with small top-N values (e.g., @10),
our models consistently outperformed all the compared baselines
in the Video Games dataset, improving the ranking performance
by a large margin of 9.25%∼12.30% on average. Specifically, at top-
N=10 in Video Games dataset, QUALSE and AQUALSE improves
NDCG@10 over the best baseline by 9.9% and 12.97%, respectively.

Figure 4b shows the HIT@100 performance of our QUALSE
and AQUALSE models, and the top-5 baselines in the Yelp dataset
when varying the embedding size. We observe that our proposals
outperformed all the baselines. Interestingly, while non-adversarial
models are more sensitive to the change of the embedding size, our
adversarial AQUALSE model is relatively smoother when varying
the embedding size. The result makes sense because the adversarial
learning reduces the noise effect. Because of the space limitation,
we only show detailed results of the Video Games and Yelp datasets.

6.4.3 RQ2: Effect of the long-term and short-term encoding
components? Using reported results in Table 2, we first compare
long-term encoding models (i.e. (a)-(d), and QUALE, AQUALE) with
short-term encoding models (i.e. (e)-(h), and QUASE, AQUASE). In
general, long-term encoding models work better than short-term
encoding models. For instance, NAIS (i.e. best long-term encod-
ing baseline) improves 8.5% on average on six datasets compared
with Caser (i.e. best short-term encoding baseline). Similarly, our
long-term encoding QUALE model works better than our short-
term encoding QUASE model, enhancing 9.2% on average over six
datasets. To investigate this phenomenon, we plot the density distri-
bution of item-item similarity scores in test sets of two datasets Pet-
Supplies and Yelp in Figure 5. We observe higher peaks on long-term
item-item relationships in the curves, explaining why long-term
encoding models work better than short-term encoding models.

Next, we compare the fused models with models that encode ei-
ther long-term or short-term users preferences. Table 2 shows that
models, which consider both user’s long-term and short-term pref-
erences, work better than other models, which encode either user’s
long-term or short-term interests. Both (j) and (k) baselines gener-
ally work better than (a)–(h) baselines. Specifically, our QUALSE
and AQUALSE models improve 7.9%∼10.0% on average over six
datasets compared to the best baseline from (a)–(h). These obser-
vations show the effectiveness of modeling both user’s long-term
and short-term interests. Among models, which consider both user
long-term and short-term interests, SASRec performed the worst
compared to baselines (i)–(k) and our QUALSE and AQUALSE. This

0 200 400
Time Interval(days)0.0000

0.0025
0.0050
0.0075
0.0100

Pr
ob

ab
ilit

y d
en

sit
y

(a) Pet Supplies dataset.

0 200 400
Time Interval(days)0.000

0.008

0.016

0.024

Pr
ob

ab
ilit

y d
en

sit
y

(b) Yelp dataset.

Figure 5: Density distribution of item-item similarity scores
in train/vad/test sets of Pet Supplies and Yelp datasets.

is due to the fact that SASRec models user’s long-term and short-
term interests implicitly and concurrently by using the Transformer
multi-head attention mechanism. But, SLi-Rec, ALSTM+AASVD,
and our proposals model the two preferences explicitly and sep-
arately, and then combine them later on, increasing flexibility.
Note that, although SLi-Rec employed a time-aware attentional
LSTM to better model the user’s short-term preferences, our AL-
STM+AASVD implementation works slightly better than SLi-Rec
due to its two distinct properties: (i) the personalized self-attention
in AASVD, where each user is parameterized by her own context
vector, and (ii) the personalized gating fusion.
6.4.4 RQ3: Is using Quaternion representation helpful? In
Table 2, we compare different model pairs: AASVD vs. QUALE, AL-
STM vs.QUASE (LSTM),AGRU vs.QUASE (GRU), andALSTM+AASVD
vs. QUALSE. Two methods under the same pair have similar archi-
tecture (again, ALSTM+AASVD was implemented by us, following
our QUALSE architecture to show effectiveness of Quaternion rep-
resentation). But, the first method of each pair uses real-valued
representations and the second method of each pair uses Quater-
nion representations. Table 2 shows that QUALE works better than
AASVD. In six datasets, on average, QUALE improves Hit@100 by
5.60% and NDCG@100 by 7.71% compared to AASVD. Similarly,
we observe the same patterns from the other three model pairs.
Moreover, when comparing our long-term encoding QUALE and
AQUALE models with other long-term encoding baselines (a)-(e),
our models outperformed the baselines, improving HIT@100 by
5.16% and 6.55%, and enhancing NDCG@100 by 7.11% and 9.83%, re-
spectively. Similarly, our short-term encoding QUASE and AQUASE
using LSTM also work better than other short-term encoding base-
lines (f)-(h), improvingHIT@100 by 4.75% and 8.09%, and enhancing
NDCG@100 by 10.57% and 15.33%, respectively. All of these results
confirm the effectiveness of modeling user’s interests by using
Quaternion representations over Euclidean representations.

Why Quaternion representations help improve the per-
formance? Since attention mechanism is the key success in deep
neural networks [37], we analyze how our models assign attention
weights compared to their respective real-valued models. We first
measure the item-item Pointwise Mutual Information (PMI) scores
(i.e. PMI (j, t) = loд P (j ,t)

P (j)×P (t)) using the training set. The PMI score
between two items (j, t) gives us the co-occurrence information
between item j and item t , or how likely the target item j will be pre-
ferred by the target user when the item t is already in her consumed
item list. We perform softmax on all item-item PMI scores. Then,
we compare with the generated attention scores from our proposed
models and ones from their respective real-valued baseline models.

0.0 0.2 0.4
PMI score

0.2

0.4

At
te

nt
iv

e
sc

or
e

0.0 0.5 1.0
PMI score

0.00

0.25

0.50

0.75

1.00

At
te

nt
iv

e
sc

or
e

(a) QUALE vs AASVD.

0.0 0.5 1.0
PMI score

0.00

0.25

0.50

0.75

1.00

At
te

nt
iv

e
sc

or
e

0.0 0.5 1.0
PMI score

0.0

0.2

0.4

0.6

0.8

At
te

nt
iv

e
sc

or
e

(b) QUASE vs ALSTM.

Figure 6: Comparison of attention scores between (QUALE
vs AASVD) and (QUASE vs ALSTM) in the Apps for Android
dataset. Pearson correlation ρ between attention scores and
PMI scores are: ρQUALE = 0.232 > ρAASVD = 0.216, and
ρQUASE = 0.148 > ρALSTM = 0.1.

Figure 6 shows the scatter plots and Pearson correlation compari-
son using the Apps for Android dataset. We see that QUALE, QUASE
tend to correlate more positively with the PMI scores than their
respective real-valued models AASVD, ALSTM. In another word,
our Quaternion-based models assign higher scores for co-occurred
item pairs. We reason coming from two aspects of Quaternion repre-
sentations. First, Hamilton product in Quaternion space encourages
strong inter-latent interactions across Quaternion components. Sec-
ond, since our proposed self-attention mechanism produces scores
in Quaternion space, the output attention scores have four values
w.r.t four Quaternion components. This can be thought as similar
to the multi-head attention mechanism [37] (but not exactly same
because of the weight shared in Quaternion transformation), where
the proposed attention mechanism learns to attend different aspects
from the four Quaternion components. All of these explain why we
got better results compared to the respective real-valued models.
6.4.5 RQ4: Effect of the personalized gated fusion and the
QABPR loss? Table 2 shows that in real-valued representations,
ALSTM+ASVD works better than AASVD and ALSTM in all six
datasets. Similarly, in Quaternion representations, the fusedQUALSE
model generally works better than its two degenerated QUALE and
QUASE models. In the six datasets, both QUALSE and AQUALSE
perform better than their degenerated (adversarial) versions, im-
proving 2% on average w.r.t both HIT@100 and NDCG@100. The
results confirm the effectiveness of fusing long-term and short-term
user preferences in both of QUALSE and AQUALSE.

We further compare our gating fusion with a weight fixing
method, where we vary a contribution score c ∈ [0, 1] for the user’s
short-term preference encoding part and 1−c for the long-term part.
We see that the gating fusion improves 4.82% on average over six
datasets compared to the weight fixing method, again confirming
the effectiveness of our personalized gating fusion method.
Is Quaternion Adversarial training on BPR loss helpful?We
compare our proposed models training with BPR loss (i.e. QUALE,
QUASE (LSTM), and QUALSE models) and our proposed models
trainingwithQABPR loss (i.e.AQUALE,AQUASE (LSTM), andAQUALSE).

First, we observe that AQUASE boosted QUASE performance by
a large margin: improving HIT@100 by 3.2% and NDCG@100 by
4.29% on average in the six datasets. AQUALE and AQUALSE also
improveQUALE andQUALSE by 1.92% and 1.91% on average of both
HIT@100 and NDCG@100 over six datasets, respectively. These re-
sults show the effectiveness of the adversarial attack on Quaternion
representations with our QABPR loss.

7 CONCLUSION
In this paper, we have shown that user’s short-term and long-
term interests are complementary and both of them are indispens-
able. We fully utilized Quaternion space and proposed three novel
Quaternion-based models: (1) a QUALE model learned the user’s
long-term intents, (2) a QUASE model learned the user’s short-term
interests, and (3) aQUALSEmodel fusedQUALE andQUASE to learn
both user’s long-term and short-term preferences.We also proposed
a Quaternion-based Adversarial attack on Bayesian Personalized
Ranking (QABPR) loss to improve the robustness of our propos-
als. Through extensive experiments on six real-world datasets, we
showed that our QUALSE improved 6.87% at HIT@1 and 8.71% at
NDCG@1, and AQUALSE improved 8.43% at HIT@1 and 10.27% at
NDCG@1 on average compared with the best baseline. Our pro-
posed models consistently achieved the best results when varying
top-N (e.g., HIT@100 and NDCG@100). These results show the
effectiveness of our proposed framework.

8 ACKNOWLEDGMENTS
This work was supported in part by NSF grant CNS-1755536, AWS
Cloud Credits for Research, and Google Cloud.

REFERENCES
[1] Travis Ebesu, Bin Shen, and Yi Fang. 2018. Collaborative memory network for

recommendation systems. In SIGIR. 515–524.
[2] Shanshan Feng, Xutao Li, Yifeng Zeng, Gao Cong, Yeow Meng Chee, and Quan

Yuan. 2015. Personalized ranking metric embedding for next new POI recom-
mendation. In IJCAI. 2069–2075.

[3] Chase J Gaudet and Anthony S Maida. 2018. Deep quaternion networks. In IJCNN.
1–8.

[4] William Rowan Hamilton. 1844. LXXVIII. On quaternions; or on a new system of
imaginaries in Algebra: To the editors of the Philosophical Magazine and Journal.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
25, 169 (1844), 489–495.

[5] Ruining He, Wang-Cheng Kang, and Julian McAuley. 2017. Translation-based
recommendation. In RecSys. 161–169.

[6] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. In WWW. 507–
517.

[7] Xiangnan He, Zhankui He, Xiaoyu Du, and Tat-Seng Chua. 2018. Adversarial
personalized ranking for recommendation. In SIGIR. 355–364.

[8] Xiangnan He, Zhankui He, Jingkuan Song, Zhenguang Liu, Yu-Gang Jiang, and
Tat-Seng Chua. 2018. NAIS: Neural attentive item similarity model for recom-
mendation. IEEE TKDE 30, 12 (2018), 2354–2366.

[9] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In WWW. 173–182.

[10] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast
matrix factorization for online recommendation with implicit feedback. In SIGIR.
549–558.

[11] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-based recommendations with recurrent neural networks. In ICLR.

[12] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[13] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In ICDM. 263–272.

[14] Santosh Kabbur, Xia Ning, and George Karypis. 2013. Fism: factored item simi-
larity models for top-n recommender systems. In KDD. 659–667.

[15] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In ICDM. 197–206.

[16] Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-
mization. In ICLR.

[17] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted
collaborative filtering model. In KDD. 426–434.

[18] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30–37.

[19] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2017. Adversarial examples
in the physical world. ICLR Workshop (2017).

[20] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. 2017.
Neural attentive session-based recommendation. In CIKM. 1419–1428.

[21] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. 2018.
Variational autoencoders for collaborative filtering. In WWW. 689–698.

[22] Qiang Liu, Shu Wu, Diyi Wang, Zhaokang Li, and Liang Wang. 2016. Context-
aware sequential recommendation. In ICDM. 1053–1058.

[23] Chen Ma, Peng Kang, and Xue Liu. 2019. Hierarchical gating networks for
sequential recommendation. In KDD. 825–833.

[24] Chen Ma, Peng Kang, Bin Wu, Qinglong Wang, and Xue Liu. 2019. Gated
attentive-autoencoder for content-aware recommendation. In WSDM. 519–527.

[25] Chen Ma, Yingxue Zhang, Qinglong Wang, and Xue Liu. 2018. Point-of-interest
recommendation: Exploiting self-attentive autoencoders with neighbor-aware
influence. In CIKM. 697–706.

[26] Shumpei Okura, Yukihiro Tagami, Shingo Ono, and Akira Tajima. 2017.
Embedding-based news recommendation for millions of users. In KDD. 1933–
1942.

[27] Titouan Parcollet, Mohamed Morchid, and Georges Linarès. 2019. Quaternion
convolutional neural networks for heterogeneous image processing. In ICASSP.
IEEE, 8514–8518.

[28] Titouan Parcollet, Mirco Ravanelli, Mohamed Morchid, Georges Linarès, Chiheb
Trabelsi, Renato De Mori, and Yoshua Bengio. 2019. Quaternion recurrent neural
networks. In ICLR.

[29] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In UAI.
452–461.

[30] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing personalized markov chains for next-basket recommendation. InWWW.
811–820.

[31] Paul Resnick and Hal R Varian. 1997. Recommender systems. Commun. ACM 40,
3 (1997), 56–58.

[32] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommendation
via convolutional sequence embedding. In WSDM. 565–573.

[33] Yi Tay, Aston Zhang, Luu Anh Tuan, Jinfeng Rao, Shuai Zhang, Shuohang Wang,
Jie Fu, and Siu Cheung Hui. 2019. Lightweight and efficient neural natural
language processing with quaternion networks. In ACL. 1494–1503.

[34] Thanh Tran, Kyumin Lee, Yiming Liao, and Dongwon Lee. 2018. Regularizing
matrix factorization with user and item embeddings for recommendation. In
CIKM. 687–696.

[35] Thanh Tran, Xinyue Liu, Kyumin Lee, and Xiangnan Kong. 2019. Signed Distance-
based Deep Memory Recommender. In WWW. 1841–1852.

[36] Thanh Tran, Renee Sweeney, and Kyumin Lee. 2019. Adversarial mahalanobis
distance-based attentive song recommender for automatic playlist continuation.
In SIGIR. 245–254.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS. 5998–6008.

[38] Lucas Vinh Tran, Tuan-Anh Nguyen Pham, Yi Tay, Yiding Liu, Gao Cong, and
Xiaoli Li. 2019. Interact and decide: Medley of sub-attention networks for effective
group recommendation. In SIGIR. 255–264.

[39] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In SIGIR. 165–174.

[40] Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing.
2017. Recurrent recommender networks. In WSDM. 495–503.

[41] Xin Xin, Xiangnan He, Yongfeng Zhang, Yongdong Zhang, and Joemon Jose.
2019. Relational collaborative filtering: Modeling multiple item relations for
recommendation. In SIGIR. 125–134.

[42] Zeping Yu, Jianxun Lian, Ahmad Mahmoody, Gongshen Liu, and Xing Xie. 2019.
Adaptive user modeling with long and short-term preferences for personalized
recommendation. In IJCAI. 4213–4219.

[43] Hanwang Zhang, Fumin Shen,Wei Liu, XiangnanHe, Huanbo Luan, and Tat-Seng
Chua. 2016. Discrete collaborative filtering. In SIGIR. 325–334.

[44] Shuai Zhang, Lina Yao, Lucas Vinh Tran, Aston Zhang, and Yi Tay. 2019. Quater-
nion Collaborative Filtering for Recommendation. In IJCAI. 4313–4319.

[45] Victor Zhong, Caiming Xiong, and Richard Socher. 2018. Global-Locally Self-
Attentive Encoder for Dialogue State Tracking. In ACL. 1458–1467.

[46] Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang
Zhu, and Kun Gai. 2019. Deep interest evolution network for click-through rate
prediction. In AAAI, Vol. 33. 5941–5948.

[47] Xuanyu Zhu, Yi Xu, Hongteng Xu, and Changjian Chen. 2018. Quaternion
convolutional neural networks. In ECCV. 631–647.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Preliminary on Quaternion
	5 Our proposed models
	5.1 QUaternion-based self-Attentive Long term user encoding (our QUALE model)
	5.2 QUaternion-based self-Attentive Short term user Encoding (our QUASE model)
	5.3 QUaternion-based self-Attentive Long Short term user Encoding (QUALSE): a Fusion of QUASE and QUALE models
	5.4 Parameter Estimation

	6 Empirical Study
	6.1 Datasets
	6.2 State-of-the-art Baselines
	6.3 Experimental Settings
	6.4 Experimental Results

	7 Conclusion
	8 ACKNOWLEDGMENTS
	References

