
Adversarial Mahalanobis Distance-based Attentive Song
Recommender for Automatic Playlist Continuation

Thanh Tran, Renee Sweeney, Kyumin Lee
Department of Computer Science
Worcester Polytechnic Institute

Massachusetts, USA
{tdtran,rasweeney,kmlee}@wpi.edu

ABSTRACT
In this paper, we aim to solve the automatic playlist continuation
(APC) problem by modeling complex interactions among users,
playlists, and songs using only their interaction data. Prior meth-
ods mainly rely on dot product to account for similarities, which
is not ideal as dot product is not metric learning, so it does not
convey the important inequality property. Based on this observa-
tion, we propose three novel deep learning approaches that utilize
Mahalanobis distance. Our first approach uses user-playlist-song
interactions, and combines Mahalanobis distance scores between
(i) a target user and a target song, and (ii) between a target playlist
and the target song to account for both the user’s preference and
the playlist’s theme. Our second approach measures song-song
similarities by considering Mahalanobis distance scores between
the target song and each member song (i.e., existing song) in the
target playlist. The contribution of each distance score is measured
by our proposed memory metric-based attention mechanism. In the
third approach, we fuse the two previous models into a unified
model to further enhance their performance. In addition, we adopt
and customize Adversarial Personalized Ranking (APR) for our three
approaches to further improve their robustness and predictive capa-
bilities. Through extensive experiments, we show that our proposed
models outperform eight state-of-the-art models in two large-scale
real-world datasets.

ACM Reference Format:
Thanh Tran, Renee Sweeney, Kyumin Lee. 2019. Adversarial Mahalanobis
Distance-based Attentive Song Recommender for Automatic Playlist Con-
tinuation. In Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR ’19), July 21–25,
2019, Paris, France. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3331184.3331234

1 INTRODUCTION
The automatic playlist continuation (APC) problem has received in-
creased attention among researchers following the growth of online
music streaming services such as Spotify, Apple Music, SoundCloud,
etc. Given a user-created playlist of songs, APC aims to recommend

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’19, July 21–25, 2019, Paris, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6172-9/19/07. . . $15.00
https://doi.org/10.1145/3331184.3331234

one or more songs that fit the user’s preference and match the
playlist’s theme.

Due to the inconsistency of available side information in public
music playlist datasets, we first attempt to solve the APC problem
using only interaction data. Collaborative filtering (CF) methods,
which encode users, playlists, and songs in lower-dimensional latent
spaces, have been widely used [14, 15, 18, 24]. To account for the
extra playlist dimension in this work, the term item in the context
of APC will refer to a song, and the term user will refer to either a
user or playlist, depending on the model. We will also use the term
member song to denote an existing song within a target playlist. CF
solutions to the APC problem can be classified into the following
three groups:

Group 1: Recommending songs that are directly relevant to
user/playlist taste. Methods in this group aim to measure the
conditional probability of a target item given a target user using
user-item interactions. In APC, this is either P(s |u) – the conditional
probability of a target song s given a target user u by taking users
and songs within their playlists as implicit feedback input –, or
P(s |p) – the conditional probability of a target song s given a target
playlist p by utilizing playlist-song interactions. Most of the works
in this group measure P(s |u)1 by taking the dot product of the user
and song latent vectors [5, 15, 18], denoted by P(s |u) ∝ −→u T · −→s .
With the recent success of deep learning approaches, researchers
proposed neural network-based models [14, 27, 58, 62].

Despite their high performance, Group 1 is limited for the APC
task. First, although a target song can be very similar to the ones in
a target playlist [9, 38], this association information is ignored. Sec-
ond, these approaches only measure either P(s |u) or P(s |p), which
is sub-optimal. P(s |u) omits the playlist theme, causing the model
to recommend the same songs for different playlists, and P(s |p) is
not personalized for each user.

Group 2: Recommending songs that are similar to existing
songs in a playlist.Methods in this group are based on a principle
that similar users prefer the same items (user neighborhood design),
or users themselves prefer similar items (item neighborhood design).
ItemKNN [42], SLIM[35], and FISM[21] solve the APC problem by
identifying similar users/playlists or similar songs. These works
are limited in that they give equal weight to each song in a playlist
when calculating their similarity to a candidate song. In reality,
certain aspects of a member song, such as the genre or artist, may
be more important to a user when deciding whether or not to add

1Measuring P (s |p) is easily obtained by replacing the user latent vector u with the
playlist latent vector p .

https://doi.org/10.1145/3331184.3331234
https://doi.org/10.1145/3331184.3331234
https://doi.org/10.1145/3331184.3331234

u1 p1 s1
u1 p1 s2
u2 p2 s1
u2 p2 s2
u2 p2 s3

s1 s2 s3
u1 ✔ ✔

u2 ✔ ✔ ✔

s1 s2 s3

p1 ✔ ✔

p2 ✔ ✔ ✔

1

1

-1

u1

u2

s1 s2

s3

1

1

-1

p1

p2

s1 s2

s3

1

1

-1

u1

u2

s1 s2 s3

1

1

-1

s1 s2 s3
p1

p2

dot product metric learninginput
interactions

Figure 1: Learning with dot product vs. metric learning.

another song into the playlist. This calls for differing song weights,
which are produced by attentive neighborhood-based models.

Recently, [7] proposed a Collaborative Memory Network (CMN)
that considers both the target user preference on a target item
as well as similar users’ preferences on that item (i.e., user neigh-
borhood hybrid design). It utilizes a memory network to assign
different attentive contributions of neighboring users. However,
this approach still does not work well with APC datasets due to
sparsity issues and less associations among users.
Group 3: Recommending next songs as transitions from the
previous songs. Methods in this group are called sequential rec-
ommendation models, which rely on Markov Chains to capture
sequential patterns [41, 54]. In the APC domain, these methods
make recommendations based on the order of songs added to a
playlist. Deep learning-based sequential methods are able to model
even more complex transitional patterns using convolutional neu-
ral networks (CNNs) [45] or recurrent neural networks (RNNs)
[6, 16, 20]. However, Sequential recommenders have restrictions in
the APC domain, namely that playlists are often listened to on
shuffle. It means that users typically add songs based on an overar-
ching playlist theme, rather than song transition quality. In addition,
added song timestamps may not be available in music datasets.
Motivation. A common drawback of the works listed in the three
groups above is that they rely on the dot product to measure simi-
larity. Dot product is not metric learning, so it does not convey the
crucial inequality property [17, 39], and does not handle differently
scaled input variables well. We illustrate the drawback of dot prod-
uct in a toy example shown in Figure 12, where the latent dimension
is size d = 2. Assume we have two users u1, u2, two playlists p1, p2,
and three songs s1, s2, s3. We can see that p1 and p2 (or u1 and u2)
are similar (i.e., both liked s1, and s2), suggesting that s3 would be
relevant to the playlist p1. Learning with dot product can lead to the
following result: p1 = (0, 1),p2 = (1, 0), s1 = (1, 1), s2 = (1, 1), s3 =
(1,−1), because pT1 s1 = 1, pT1 s2 = 1, pT2 s1 = 1, pT2 s2 = 1, pT2 s3=1
(same for users u1, u2). However, the dot product between p1 and
s3 is -1, so s3 would not be recommended to p1. However, if we
use metric learning, it will pull similar users/playlists/songs closer
together by using the inequality property. In the example, the dis-
tance between p1 and s3 is rescaled to 0, and s3 is now correctly
portrayed as a good fit for p1.

There exist several works that adopt metric learning for rec-
ommendation. [17] proposed Collaborative Metric Learning (CML)

2This Figure is inspired by [17]

which used Euclidean distance to pull positive items closer to a user
and push negative items further away. [4, 8, 11] also used Euclidean
distance but for modeling transitional patterns. However, these
metric-based models still fall into either Group 1 or Group 3, inher-
iting the limitations that we described previously. Furthermore, as
Euclidean distance is the primary metric, these models are highly
sensitive to the scales of (latent) dimensions/variables.
Our approaches and main contributions. According to the lit-
erature, Mahalanobis distance3 [57, 59] overcomes the drawback
(i.e., high sensitivity) of Euclidean distance. However, Mahalanobis
distance has not yet been applied to recommendation with neural
network designs.

By overcoming the limitations of existing recommendation mod-
els, we propose three novel deep learning approaches in this paper
that utilize Mahalanobis distance. Our first approach, Mahalanobis
Distance Based Recommender (MDR), belongs to Group 1. Instead
of modeling either P(s |p) or P(s |u), it measures P(s |u,p). To com-
bine both a user’ preference and a playlist’ theme, MDR measures
and combines the Mahalanobis distance between the target user
and target song, and between the target playlist and target song.
Our second approach, Mahalanobis distance-based Attentive Song
Similarity recommender (MASS), falls into Group 2. Unlike the prior
works, MASS uses Mahalanobis distance to measure similarities
between a target song and member songs in the playlist. MASS in-
corporates our proposed memory metric-based attention mechanism
that assigns attentive weights to each distance score between the
target song and each member song in order to capture different
influence levels. Our third approach, Mahalanobis distance based
Attentive Song Recommender (MASR), combines MDR and MASS to
merge their capabilities. In addition, we incorporate customized Ad-
versarial Personalized Ranking [13] into our three models to further
improve their robustness.

We summarize our contributions as follows:
• We propose three deep learning approaches (MDR, MASS, and

MASR) that fully exploit Mahalanobis distance to tackle the APC
task. As a part of MASS, we propose the memory metric-based
attention mechanism.

• We improve the robustness of our models by applying adver-
sarial personalized ranking and customizing it with a flexible
noise magnitude.

• We conduct extensive experiments on two large-scale APC
datasets to show the effectiveness and efficiency of our ap-
proaches.

2 OTHER RELATEDWORK
Music recommendation literature has frequently made use of avail-
able metadata such as: lyrics [33], tags [19, 28, 33, 50, 51], au-
dio features [28, 33, 50, 51, 56], audio spectrograms [36, 52, 55],
song/artist/playlist names [1, 20, 22, 37, 46], and Twitter data [19].
Deep learning and hybrid approaches havemade significant progress
against traditional collaborative filtering music recommenders [36,
50, 51, 55]. [56] uses multi-arm bandit reinforcement learning for
interactive music recommendation by leveraging novelty and music
audio content. [28] and [52] perform weighted matrix factorization

3https://en.wikipedia.org/wiki/Mahalanobis_distance

using latent features pre-trained on a CNN, with song tags and
Mel-frequency cepstral coefficients (MFCCs) as input, respectively.
Unlike these works, our proposed approaches do not require or
incorporate side information.

Recently, attention mechanisms have shown their effectiveness
in various machine learning tasks including document classification
[61], machine translation [3, 29], recommendation [30, 31], etc. So
far, several attention mechanisms are proposed such as: general at-
tention [29], dot attention [29], concat attention [3, 29], hierarchical
attention [61], scaled dot attention and multi-head attention [53],
etc.. However, to our best of knowledge, most of previously pro-
posed attention mechanisms leveraged dot product for measuring
similarities which is not optimal in our Mahalanobis distance-based
recommendation approaches because of the difference between dot
product space and metric space. Therefore, we propose a memory
metric-based attention mechanism for our models’ designs.

3 PROBLEM DEFINITION
Let U = {u1,u2,u3, ...,um } denote the set of all users, P = {p1, p2,
p3, ..., pn } denote the set of all playlists, S = {s1, s2, s3, ..., sv } denote
the set of all songs. Bolded versions of these variables, which we
will introduce in the following sections, denote their respective
embeddings. m, n, v are the number of users, playlists, and songs
in a dataset, respectively. Each user ui ∈ U has created a set of
playlists T (ui) ={p1, p2, ..., p |T (ui) | }, where each playlist pj ∈ T (ui)

contains a list of songs T (pj) ={s1, s2, ..., s |T (pj) | }. Note that T
(u1) ∪

T (u2) ∪ ... ∪T (um) = {p1,p2,p3, ...,pn }, T (p1) ∪T (p2) ∪ ... ∪T (pn) =
{s1, s2, s3, ..., sv }, and the song order within each playlist is often not
available in the dataset. The Automatic Playlist Continuity (APC)
problem can then be defined as recommending new songs sk < T (pj)

for each playlist pj ∈ T (ui) created by user ui .

4 MAHALANOBIS DISTANCE PRELIMINARY
Given two points x ∈ Rd and y ∈ Rd , the Mahalanobis distance
between x and y is defined as:

dM (x ,y) = ∥x − y∥M =
√
(x − y)TM(x − y) (1)

whereM ∈ Rd×d parameterizes the Mahalanobis distance metric to
be learned during model training. To ensure that Eq. (1) produces a
mathematical metric4, M must be symmetric positive semi-definite
(M ⪰ 0). This constraint on M makes the model training process
more complicated, so to ease this condition, we rewriteM = ATA

(A ∈ Rd×d) since M ⪰ 0. The Mahalanobis distance between two
points dM (x ,y) now becomes:

dM (x ,y) = ∥x − y∥A =
√
(x − y)TATA(x − y)

=

√(
A(x − y)

)T (
A(x − y)

)
= ∥A(x − y)∥2 = ∥Ax −Ay∥2

(2)

where ∥ · ∥2 refers to the Euclidean distance. By rewriting Eq. (1)
into Eq. (2), the Mahalanobis distance can now be computed by
measuring the Euclidean distance between two linearly transformed
points x → Ax and y → Ay. This transformed space encourages
the model to learn a more accurate similarity between x and y.

4https://en.wikipedia.org/wiki/Metric_(mathematics)

dM (x ,y) is generalized to basic Euclidean distance d(x ,y) when
A is the identity matrix. If A in Eq. (2) is a diagonal matrix, the
objective becomes learning metricA such that different dimensions
are assigned different weights. Our experiments show that learning
diagonal matrix A generalizes well and produces slightly better
performance than ifAwere a full matrix. Therefore in this paper we
focus on only the diagonal case. Also note that when A is diagonal,
we can rewrite Eq. (2) as:

dM (x ,y) = ∥A(x − y)∥2 = ∥diaд(A) ⊙ (x − y)∥2 (3)

where diaд(A) ∈ Rn returns the diagonal of matrix A, and ⊙ de-
notes the element-wise product. Therefore, we can parameterize
B = diaд(A) ∈ Rn and learn the Mahalanobis distance by simply
computing ∥B ⊙ (x − y)∥2.

In our models’ calculations, we will adopt squared Mahalanobis
distance, since quadratic form promotes faster learning.

5 OUR PROPOSED MODELS
In this section, we delve into design elements and parameter esti-
mation of our three proposed models: Mahalanobis Distance based
Recommender (MDR), Mahalanobis distance-based Attentive Song
Similarity recommender (MASS), and the combined model Maha-
lanobis distance based Attentive Song Recommender (MASR).

5.1 Mahalanobis Distance based Recommender
(MDR)

As mentioned in Section 1,MDR belongs to the Group 1.MDR takes
a target user, a target playlist, and a target song as inputs, and
outputs a distance score reflecting the direct relevance of the target
song to the target user’s music taste and to the target playlist’s
theme.Wewill first describe how to measure each of the conditional
probabilities – P(sk |ui), P(sk |pj), and finally P(sk |ui ,pj) – using
Mahalanobis distance. Then we will go over MDR’s design.
5.1.1 Measuring P(sk |ui). Given a target userui , a target playlistpj ,
a target song sk , and the Mahalanobis distance dM (ui , sk) between
ui and sk , P(sk |ui) is measured by:

P(sk |ui) =
exp(−(d2M (ui , sk) + βsk))∑
l exp(−(d2M (ui , sl) + βsl))

(4)

where βsk , βsl are bias terms to capture their respective song’s
overall popularity [23]. User bias is not included in Eq.(4) because
it is independent of P(sk |ui) when varying candidate song sk . The
denominator

∑
l exp(−dM (ui , sl) + βsl) is a normalization term

shared among all candidate songs. Thus, P(sk |ui) is measured as:

P(sk |ui) ∝ −
(
d2M (ui , sk) + βsk

)
(5)

Note that training with Bayesian Personalized Ranking (BPR) will
only require calculating Eq. (5), since for every pair of observed
song k+ and unobserved song k− , we model the pairwise ranking
P(sk+ |ui) > P(sk− |ui). Using Eq. (4), this inequality is satisfied only
if d2M (ui , sk+) + βsk+ < d2M (ui , sk−) + βsk− , which leads to Eq. (5).
5.1.2 Measuring P(sk |pj). Given a target playlist pj , a target song
sk , and the Mahalanobis distance dM (pj , sk) between pj and sk ,
P(sk |pj) is measured by:

P(sk |pj) =
exp(−(d2M (pj , sk) +γsk))∑
l exp(−(d2M (pj , sl) +γsl))

(6)

target user target song

song
embedding

element-wise
subtraction

user-song
distance

user
embedding

target playlist

playlist
embedding

playlist-song
distance

—
B1

—

+
element-wise
summation

Transpose

+

element-wise
multiplication

x
x

—
B2

x

user-playlist-song
distance o(MDR)

Embedding
layer

Mahalanobis
Distance
Module

T

T

T

Figure 2: Architecture of our MDR.
whereγsk andγsl are song bias terms. Similar to P(sk |ui), we shortly
measure P(sk |pj) by:

P(sk |pj) ∝ −(d2M (pj , sk) +γsk) (7)

5.1.3 Measuring P(sk |ui ,pj). P(sk |ui ,pj) is computed using the
Bayesian rule under the assumption thatui and pj are conditionally
independent given sk :

P(sk |ui ,pj) ∝ P(ui |sk)P(pj |sk)P(sk)

=
P(sk |ui)P(ui)

P(sk)
P(sk |pj)P(pj)

P(sk)
P(sk)

∝ P(sk |ui)P(sk |pj)
1

P(sk)

(8)

In Eq. (8), P(sk) represents the popularity of target song sk among
the song pool. For simplicity in this paper, we assume that selecting
a random candidate song follows a uniform distribution instead
of modeling this popularity information. P(sk |ui ,pj) then becomes
proportional to: P(sk |ui ,pj) ∝ P(sk |ui)P(sk |pj). Using Eq. (4, 6), we
can approximate P(sk |ui ,pj) as follows:

P(sk |ui ,pj) ∝
exp

(
− (d2M (ui , sk) + βsk)

)∑
l exp

(
− (d2M (ui , sl) + βsl)

) × exp
(
− (d2M (pj , sk) +γsk)

)∑
l exp

(
− (d2M (pj , sl) +γsl)

)
=

exp
(
− (d2M (ui , sk) + βsk) − (d2M (pj , sk) +γsk)

)∑
l exp

(
− (d2M (ui , sl) + βsl)

) ∑
l ′ exp

(
− (d2M (pj , sl ′) +γsl ′)

)
(9)

Since the denominator of Eq. (9) is shared by all candidate songs
(i.e., normalization term), we can shortly measure P(sk |ui ,pj) by:

P(sk |ui ,pj) ∝ −
(
d2M (ui , sk) + d2M (pj , sk)

)
−
(
βsk +γsk

)
= −

(
d2M (ui , sk) + d2M (pj , sk) + θsk

) (10)

With P(sk |ui ,pj) now established in Eq. (10), we can move on
to our MDR model.
5.1.4 MDR Design. TheMDR architecture is depicted in Figure 2. It
has an Input, Embedding Layer, and Mahalanobis Distance Module.
Input: MDR takes a target user ui (user ID), a target playlist pj
(playlist ID), and a target song sk (song ID) as input.
Embedding Layer: MDR maintains three embedding matrices of
users, playlists, and songs. By passing user ui , playlist pj , and song
sk through the embedding layer, we obtain their respective em-
bedding vectors ui ∈ Rd , pj ∈ Rd , and sk ∈ Rd , where d is the
embedding size.
MahalanobisDistanceModule: As depicted in Figure 2, this mod-
ule outputs a distance score o(MDR) that indicates the relevance of
candidate song sk to both user ui ’s music preference and playlist
pj ’s theme. Intuitively, the lower the distance score is, the more
relevant the song is. o(MDR)(ui ,pj , sk) is computed as follows:

...

song
embedding

matrix
S

user
embedding

matrix
U

...
... ∑

song
embedding

matrix
S(a)

user
embedding

matrix
U(a)

...
...

input Embedding layer Processing layer Output

Memory metric-based Attention

Distance
scores

Distance
scores

Attentive
scores

Target user

Target song

Target song

Target user

\

 member
songs

 member
songs

... ...

qik

qik(a)

o(MASS)

softmin

Ta
rg

et
 p

la
yl

is
t

Ta
rg

et
 p

la
yl

is
t

Figure 3: Architecture of our MASS.

o(MDR) = o(ui , sk) + o(pj , sk) + θsk (11)

where θsk is song sk ’s bias, and o(ui , sk),o(pj , sk) are quadratic
Mahalanobis distance scores between user ui and song sk , and be-
tween playlistpj and song sk , shown in the following two equations.
B1 ∈ Rd and B2 ∈ Rd are two metric learning vectors. And,

o(ui , sk) =
(
B1 ⊙ (ui − sk)

)T (
B1 ⊙ (ui − sk)

)
o(pj , sk) =

(
B2 ⊙ (pj − sk)

)T (
B2 ⊙ (pj − sk)

)
5.2 Mahalanobis distance-based Attentive Song

Similarity recommender (MASS)
As stated in the Section 1, MASS belongs to Group 2, where it
measures attentive similarities between the target song andmember
songs in the target playlist. An overview of MASS’s architecture is
depicted in Figure 3. MASS has five components: Input, Embedding
Layer, Processing Layer, Attention Layer, and Output.
5.2.1 Input: The inputs to our MASS model include a target user
ui , a candidate song sk for a target playlist pj , and a list of l member
songs within the playlist, where l is the number of songs in the
largest playlist (i.e., containing the largest number of songs) in the
dataset. If a playlist contains less than l songs, we pad the list with
zeroes until it reaches length l .
5.2.2 Embedding Layer: This layer holds two embedding matrices:
a user embedding matrix U ∈ Rm×d and a song embedding matrix
S ∈ Rv×d . By passing the input target user ui and target song sk
through these two respective matrices, we obtain their embedding
vectors ui ∈ Rd and sk ∈ Rd . Similarly, we acquire the embedding
vectors for all l member songs in pj , denoted by s1, s2, ..., sl .
5.2.3 Processing Layer: We first need to consolidate ui and sk .
Following widely adopted deep multimodal network designs [43],
we concatenate the two embeddings, and then transform them into
a new vector qik ∈ Rd via a fully connected layer with weight
matrixW1 ∈ R2d×d , bias term b ∈ R, and activation function ReLU.
We formulate this process as follows:

qik = ReLU

(
W1

[
ui
sk

]
+ b1

)
(12)

Note that qik can be interpreted as a search query in QA systems
[2, 60]. Since we combined the target user ui with the query song
sk (to add to the user’s target playlist), the search query qik is
personalized. The ReLU activation function models a non-linear

combination between these two target entities, and was chosen
over sigmoid or tanh due to its encouragement of sparse activations
and proven non-saturation [10], which helps prevent overfitting.

Next, given the embedding vectors s1, s2, ..., sl of the l member
songs in target playlist pj , we approximate the conditional proba-
bility P(sk |ui , s1, s2, ..., sl) by:

P(sk |ui , s1, s2, ..., sl) ∝ −
(l∑
t=1

αikt d
2
M (qik , st) + bsk

)
(13)

where dM (·) returns the Mahalanobis distance between two vectors,
bsk is the song bias reflecting its overall popularity, and αikt is the
attention score to weight the contribution of the partial distance
between search query qik and member song st . We will show how
to calculate d2M (qik , st) below, andαikt in Attention Layer at 5.2.4.

As indicated in Eq. (3), we parameterize B3 ∈ Rd , which will
be learned during the training phase. The Mahalanobis distance
between the search query qik and each member song st , treating
B3 as an edge-weight vector, is measured by:

d2M (qik , st) =
eT

ikt
eikt

2
2 where eikt = B3 ⊙ (qik − st) (14)

Calculating Eq. (14) for every member song st yields the follow-
ing l-dimensional vector:

d2M (qik , s1)
d2M (qik , s2)
. . .

d2M (qik , sl)

 =

eTik1eik122eTik2eik222
. . .eTikleikl 22

(15)

Note that B3 is shared across all Mahalanobis measurement pairs.
Now we go into detail of how to calculate the attention weights
αikt using our proposed Attention Layer.
5.2.4 Attention Layer: With l distance scores obtained in Eq. (15),
we need to combine them into one distance value to reflect how
relevant the target song is w.r.t the target playlist’s member songs.
The simplest approach is to follow the well-known item similarity
design [21, 35] where the same weights are assigned for all l dis-
tance scores. This is sub-optimal in our domain because different
member song can relate to the target song differently. For example,
given a country playlist and a target song of the same genre, the
member songs that share the same artist with the target song would
be more similar to the target song than the other member songs
in the playlist. To address this concern, we propose a novel mem-
ory metric-based attention mechanism to properly allocate different
attentive scores to the distance values in Eq. (15). Compared to
existing attention mechanisms, our attention mechanism maintains
its own embedding memory of users and songs (i.e., memory-based
property), which can function as an external memory. It also com-
putes attentive scores usingMahalanobis distance (i.e., metric-based
property) instead of traditional dot product. Note that the memory-
based property is also commonly applied to question-answering
in NLP, where memory networks have utilized external memory
[44] for better memorization of context information [25, 34]. Our
attention mechanism has one external memory containing user
and song embedding matrices. When the user and song embedding
matrices of our attention mechanism are identical to those in the
embedding layer, it is the same as looking up the embedding vectors
of target users, target songs, and member songs in the embedding

layer (Section 5.2.2). Therefore, using external memory will make
room for more flexibility in our models.

The attention layer features an external user embedding matrix
U(a) ∈ Rm×d and external song embedding matrix S(a) ∈ Rv×d .
Given the following inputs – a target user ui , a target song sk ,
and all l member songs in playlist pj – by passing them through
the corresponding embedding matrices, we obtain the embedding
vectors of ui , sk , and all the member songs, denoted as u(a)i , s(a)

k
,

and s(a)1 , s
(a)
2 , ..., s

(a)
l

, respectively.

We then forge a personalized search query q(a)
ik

by combining

u(a)i and s(a)
k

in a multimodal design as follows:

q(a)
ik
= ReLU

(
W2

[
u(a)i
s(a)k

]
+ b2

)
(16)

whereW2 ∈ R2d×d is a weight matrix and b2 is a bias term. Next,
we measure the Mahalanobis distance (with an edge weight vector
B4 ∈ Rd) from q(a)

ik
to a member song’s embedding vector s(a)t

where t ∈ 1, l :

d2M (q(a)
ik
, s(a)t) =

(e(a)
ikt

)T e(a)
ikt

2
2 where e(a)

ikt
= B4 ⊙

(
q(a)
ik

− s
(a)
t

)
(17)

Using Eq. (17), we generate l distance scores between each of l
member songs and the candidate song. Then we apply softmin on
l distance scores in order to obtain the member songs’ attentive
scores5. Intuitively, the lower the distance between a search query
and a member song vector, the higher its contribution level is w.r.t
the candidate song.

αikt =
exp

(
−
(e(a)

ikt

)T e(a)
ikt

2
2
)∑l

t ′=1 exp
(
−
(e(a)

ikt ′
)T e(a)

ikt ′
2
2
) (18)

5.2.5 Output: We output the total attentive distances o(MASS)

from the target song sk to target playlist pj ’s existing songs by:

o(MASS) = −
(l∑
t=1

αikt d
2
M (qik , st) + bsk

)
(19)

where αikt is the attentive score from Eq. (18), dM (qik , st) is the
personalized Mahalanobis distance between target song sk and a
member song st in user ui ’s playlist (Eq. (15)), bsk is the song bias.

5.3 Mahalanobis distance based Attentive Song
Recommender (MASR = MDR + MASS)

We enhance our performance on the APC problem by combining
our MDR and MASS into a Mahalanobis distance based Attentive
Song Recommender (MASR) model. MASR outputs a cumulative
distance score from the outputs of MDR and MASS as follows:

o(MASR) = αo(MDR) + (1 − α)o(MASS) (20)

where o(MDR) is fromEq. (11), o(MASS) is fromEq. (19), andα ∈ [0, 1]
is a hyperparameter to adjust the contribution levels of MDR and
MASS. α can be tuned using a development dataset. However, in the
following experiments, we set α = 0.5 to receive equal contribution
from MDR and MASS. We pretrain MDR and MASS first, then fix
MDR and MASS’s parameters in MASR. There are two benefits of
this design. First, if MASR is learnable with pretrained MDR and
5Note that attentive scores of padded items are 0.

MASS initialization, MASR would have too high a computational
cost to train. Second, by making MASR non-learnable, MDR and
MASS in MASR can be trained separately and in parallel, which is
more practical and efficient for real-world systems.

5.4 Parameter Estimation
5.4.1 Learning with Bayesian Personalized Ranking (BPR) loss. We
apply BPR loss as an objective function to train our MDR, MASS,
MASR as follows:

L(D|Θ) = argminΘ
(
−∑

(i, j,k+,k−) log σ (oi jk− − oi jk+) + λΘ∥Θ∥2
)
(21)

where (i, j,k+,k−) is a quartet of a target user, a target playlist, a
positive song, and a negative song which is randomly sampled. σ (·)
is the sigmoid function; D denotes all training instances; Θ are the
model’s parameters (for instance, Θ = {U, S,U(a), S(a),W1,W2,B3,
B4, b} in the MASS model); λΘ is a regularization hyper-parameter;
and oijk is the output of either MDR, MASS, or MASR, which is
measured in Eq. (11), (19), and (20), respectively.
5.4.2 Learning with Adversarial Personalized Ranking (APR) loss. It
has been shown in [13] that BPR loss is vulnerable to adversarial
noise, and APR was proposed to enhance the robustness of a simple
matrix factorization model. In this work, we apply APR to further
improve the robustness of our MDR, MASS, and MASR. We name
ourMDR,MASS, andMASR trained withAPR loss asAMDR,AMASS,
AMASR by adding an “adversarial (A)” term, respectively. Denote
δ as adversarial noise on the model’s parameters Θ. The BPR loss
from adding adversarial noise δ to Θ is defined by:

L(D|Θ̂ + δ) = argmax
Θ=Θ̂+δ

(
−

∑
(i, j,k+,k−)

log σ (oi jk− − oi jk+)
)

(22)

where Θ̂ is optimized in Eq. (21) and fixed as constants in Eq. (22).
Then, training with APR aims to play a minimax game as follows:

arg min
Θ

max
δ, ∥δ ∥≤ϵs(Θ̂)

L(D|Θ) + λδL(D|Θ̂ + δ) (23)

where ϵ is a hyper-parameter to control the magnitude of perturba-
tions δ . In [13], the authors fixed ϵ for all the model’s parameters,
which is not ideal because different parameters can endure different
levels of perturbation. If we add too large adversarial noise, the
model’s performance will downgrade, while adding too small noise
does not guarantee more robust models. Hence, we multiply ϵ with
the standard deviation s(Θ̂) of the targeting parameter Θ̂ to provide
a more flexible noise magnitude. For instance, the adversarial noise
magnitude on parameter B3 in AMASS model is ϵ ×s(B3). If the val-
ues in B3 are widely dispersed, they are more vulnerable to attack,
so the adversarial noise applied during training must be higher in
order to improve robustness. Whereas if the values are centralized,
they are already robust, so only a small noise magnitude is needed.

Learning with APR follows 4 steps: Step 1: unlike [13] where
parameters are saved at the last training epoch, which can be over-
fitted parameter values (e.g. some thousands of epoches for matrix
factorization in [13]), we first learn our models’ parameters by min-
imizing Eq. (21) and save the best checkpoint based on evaluating
on a development dataset. Step 2: with optimal Θ̂ learned in Step 1,
in Eq. (22), we set Θ = Θ̂ and fix Θ to learn δ . Step 3: with optimal
δ̂ learned in Eq. (22), in Eq. (23) we set δ = δ̂ and fix δ to learn new
values for Θ. Step 4: We repeat Step 2 and Step 3 until a maximum

Table 1: Statistics of datasets.

Statistics 30Music AOTM

of users 12,336 15,835
of playlists 32,140 99,903
of songs 276,142 504,283
of interactions 666,788 1,966,795
avg. # of playlists per user 2.6 6.3
avg. & max # of songs per playlist 18.75 & 63 17.69 & 58
Density 0.008% 0.004%

number of epochs is reached and save the best checkpoint based on
evaluation on a development dataset. Following [13, 26], the update
rule for δ is obtained by using the fast gradient method as follows:

δ = ϵ × s(Θ̂) ×
`
δ (L(D|Θ̂ + δ))`
δ (L(D|Θ̂ + δ))

2

(24)

Note that update rules of parameters in Θ can be easily obtained
by computing the partial derivative w.r.t each parameter in Θ.

5.5 Time Complexity
Let Ω denote the total number of training instances (=

∑
j N (pj)

where N (pj) refers to the number of songs in training playlist
pj). ω = max(N (pj)), ∀j = 1,n denotes the maximum number
of songs in all playlists. For each forward pass, MDR takes O(d)
to measure o(MDR) (in Eq. (11)) for a positive training instance,
and another forward pass with O(d) to calculate o(MDR) for a
negative instance. The backpropagation for updating parameters
take the same complexity. Therefore, the time complexity of MDR
is O(Ωd). Similarly, for each positive training instance,MASS takes
(i) O(2d2) to make each query in Eq. (12) and Eq. (16); (ii) O(ωd) to
calculateω distance scores fromω member songs to the target song
in Eq. (15); and (iii) O(ωd) to measure attention scores in Eq. (18).
Since embedding size d is often small, O(ωd) is a dominant term
and MASS’s time complexity is O(Ωωd). Hence, both MDR and
MASS scale linearly to the number of training instances and can
run very fast, especially with sparse datasets. When training with
APR, updating δ in Eq. (24) with fixed Θ̂ needs one forward and
one backward pass. Learning Θ in Eq. (23) requires one forward
pass to measure L(D|Θ) in Eq. (21), one forward pass to measure
L(D|Θ̂ + δ) in Eq. (22), and one backward pass to update Θ in
Eq. (23). Hence, time complexity when training with APR is h times
higher (h is small) compared to training with BPR loss.

6 EMPIRICAL STUDY
6.1 Datasets
To evaluate our proposed models and existing baselines, we used
two publicly accessible real-world datasets that contain user, playlist,
and song information. They are described as follows:
• 30Music [49]: This is a collection of playlists data retrieved

from Internet radio stations through Last.fm6. It consists of 57K
playlists and 466K songs from 15K users.

• AOTM [32]: This dataset was collected from the Art of the Mix7
playlist database. It consists of 101K playlists and 504K songs
from 16K users, spanning from Jan 1998 to June 2011.

6https://www.last.fm
7http://www.artofthemix.org/

For data preprocessing, we removed duplicate songs in playlists.
Then we adopted a widely used k-core preprocessing step [12, 47]
(with k-core = 5), filtering out playlists with less than 5 songs. We
also removed users with an extremely large number of playlists,
and extremely large playlists (i.e., containing thousands of songs).
Since the datasets did not have song order information for playlists
(i.e., which song was added to a playlist first, then next, and so on),
we randomly shuffled the song order of each playlist and used it in
the sequential recommendation baseline models to compare with
our models. The two datasets are implicit feedback datasets. The
statistics of the preprocessed datasets are presented in Table 1.

6.2 Baselines
We compared our proposed models with eight strong state-of-the-
art models in the APC task. The baselines were trained by using
BPR loss for a fair comparison:
• Bayesian Personalized Ranking (MF-BPR) [40]: It is a pair-
wise matrix factorization method for implicit feedback datasets.

• Collaborative Metric Learning (CML) [17]: It is a collabo-
rative metric-based method. It adopted Euclidean distance to
measure a user’s preference on items.

• Neural Collaborative Filtering (NeuMF++) [14]: It is a neu-
ral network based method that models non-linear user-item
interactions. We pretrained two components of NeuMF to ob-
tain its best performance (i.e., NeuMF++).

• Factored Item Similarity Methods (FISM) [21]: It is a item
neighborhood-based method. It ranks a candidate song based
on its similarity with member songs using dot product.

• Collaborative Memory Network (CMN++) [7]: It is a user-
neighborhood based model using a memory network to assign
attentive scores for similar users.

• Personalized Ranking Metric Embedding (PRME) [8]: It
is a sequential recommender that models a personalized first-
order Markov behavior using Euclidean distance.

• Translation-based Recommendation (Transrec) [11]: It is
one of the best sequential recommendation methods. It models
the third order between the user, the previous song, and the
next song where the user acts as a translator.

• Convolutional Sequence Embedding Recommendation
(Caser) [45]: It is a CNN based sequential recommendation. It
embeds a sequence of recent songs into an “image” in time and
latent spaces, then learns sequential patterns as local features
of the image using different horizontal and vertical filters.
We did not compare our models with baselines that performed

worse than above listed baselines like item-KNN [42], SLIM[35], etc.
MF-BPR, CML, and NeuMF++ used only user/playlist-song inter-

action data to model either users’ preferences over songs P(s |u) or
playlists’ tastes over songs P(s |p). We ran the baselines both ways,
and report the best results. Two neighborhood-based baselines
utilized neighbor users/playlists (i.e., CMN++) or member songs
(i.e., FISM) to recommend the next song based on user/playlist sim-
ilarities or song similarities (i.e., measure P(s |u, s1, s2, ..., sl) and
P(s |p, s1, s2, ..., sl), of which we report the best results).

Table 2: Performance of the baselines, and our models. The
last two lines show the relative improvement of MASR and
AMASR compared to the best baseline.

Methods 30Music AOTM

hit@10 ndcg@10 hit@10 ndcg@10

(a) MF-BPR 0.450 0.315 0.699 0.473
(b) CML 0.600 0.452 0.735 0.481
(c) NeuMF++ 0.623 0.461 0.741 0.498
(d) FISM 0.544 0.346 0.686 0.446
(e) CMN++ 0.536 0.397 0.722 0.505
(f) PRME 0.426 0.260 0.570 0.354
(g) Transrec 0.570 0.417 0.710 0.450
(h) Caser 0.458 0.289 0.681 0.448

Ours

MDR 0.705 0.524 0.820 0.631
MASS 0.670 0.500 0.834 0.639
MASR 0.731 0.564 0.854 0.654

AMDR 0.764 0.581 0.850 0.658
AMASS 0.753 0.581 0.856 0.659
AMASR 0.785 0.604 0.874 0.677

Imprv.
(%)

MASR +17.34 +22.34 +13.36 +28.24
AMASR +26.00 +31.02 +17.95 +34.19

6.3 Experimental Settings
Protocol: We use the widely adopted leave-one-out evaluation set-
ting [14]. Since both the 30Music and AOTM datasets do not contain
timestamps of added songs for each playlist, we randomly sample
two songs per playlist–one for a positive test sample, and one for a
development set to tune hyper-parameters–while the remaining
songs in each playlist make up the training set. We follow [14, 48]
and uniformly random sample 100 non-member songs as negative
songs, and rank the test song against those negative songs.
Evaluation metrics: We evaluate the performance of the models
with two widely used metrics: Hit Ratio (hit@N), and Normalized
Discounted Cumulative Gain (NDCG@N). The hit@N measures
whether the test item is in the recommended list or not, while the
NDCG@N takes into account the position of the hit and assigns
higher scores to hits at top-rank positions. For the test set, we
measure both metrics and report the average scores.
Hyper-parameters settings:Models are trained with the Adam
optimizer with learning rates from {0.001, 0.0001}, regularization
terms λΘ from {0, 0.1, 0.01, 0.001, 0.0001}, and embedding sizes from
{8, 16, 32, 64}. The maximum number of epochs is 50, and the batch
size is 256. The number of hops in CMN++ are selected from {1, 2, 3,
4}. In NeuMF++, the number of MLP layers are selected from {1, 2,
3}. The number of negative samples per one positive instance is 4,
similar to [14]. The Markov order L in Caser is selected from {4, 5, 6,
7, 8, 9, 10}. ForAPR training, the number ofAPR training epochs is 50,
the noise magnitude ϵ is selected from {0.5, 1.0}, and the adversarial
regularization λδ is set to 1, as suggested in [13]. Adversarial noise
is added only in training process, and are initialized as zero. All
hyper-parameters are tuned by using the development set. Our
source code is available at https://github.com/thanhdtran/MASR.git.

6.4 Experimental Results
6.4.1 Performance comparison. Table 2 shows the performance of
our proposed models and baselines on each dataset. MDR and base-
lines (a)-(c) are inGroup 1, butMDR showsmuch better performance

Table 3: Performance of variants of our MDR and MASS.
RI indicates relative average improvement over the corre-
sponding method.

Methods 30Music AOTM RI(%)
hit@10 ndcg@10 hit@10 ndcg@10

MDR_us 0.684 0.500 0.815 0.594 +3.68
MDR_ps 0.654 0.476 0.746 0.547 +10.79

MDR_ups (i.e., MDR) 0.705 0.524 0.818 0.613

MASS_ups 0.651 0.479 0.789 0.581 +4.12
MASS_ps 0.621 0.450 0.764 0.523 +10.82

MASS_us (i.e., MASS) 0.670 0.500 0.820 0.631

compared to the (a)-(c) baselines, improving at least 11.14% hit@10
and 18.81% NDCG@10 on average. CML simply adopts Euclidean
distance between users/playlists and positive songs, but has nearly
equal performance with NeuMF++, which utilizes a neural network
to learn non-linear relationships between users/playlists and songs.
This result shows the effectiveness of using metric learning over
dot product in recommendation. MDR outperforms CML by 19.04%
on average. This confirms the effectiveness of Mahalanobis distance
over Euclidian distance for recommendation.

MASS outperforms both FISM and CMN++, improving hit@10
by 18.4%, and NDCG@10 by 25.5% on average. This is because FISM
does not consider the attentive contribution of different neigh-
bors. Even though CMN++ can assign attention scores for different
user/playlist neighbors, it bears the flaws of Group 1 by considering
only either neighbor users or neighbor playlists. More importantly,
MASS uses a novel attentive metric design, while dot product is
utilized in FISM and CMN++. Sequential models, (f)-(h) baselines, do
not work well. In particular,MASS outperforms the (f)-(h) baselines,
improving 24.6% on average compared to the best model in (f)-(h).

MASR outperforms bothMDR andMASS, indicating the effective-
ness of fusing them into one model. Particularly, MASR improves
MDR by 5.0%, andMASS by 6.7% on average. Performances ofMDR,
MASS, MASR are boosted when adopting APR loss with a flexible
noise magnitude. AMDR improves MDR by 7.7%, AMASS improves
MASS by 9.4%, and AMASR improves MASR by 5.8%. We also com-
pare our flexible noise magnitude with a fixed noise magnitude
used in [13] by varying the fixed noise magnitude in {0.5, 1.0} and
setting λδ = 1. We observe thatAPRwith a flexible noise magnitude
performs better with an average improvement of 7.53%.

Next, we build variants of our MDR and MASS models by re-
moving either playlist or user embeddings, or using both of them.
Table 3 presents an ablation study of exploiting playlist embed-
dings. MDR_us is the MDR that uses only user-song interactions
(i.e., ignore playlist-song distance o(pj , sk) in Eq. (11)). MDR_ps is
theMDR that uses only playlist-song interactions (i.e., ignores user-
song distance o(ui , sk) in Eq. (11)). MDR_ups is our proposed MDR
model. Similarly, MASS_ups is the MASS model but considers both
user-song distances and playlist-song distances in its design. The
Embedding Layer and Attention Layer ofMASS_ups have additional
playlist embedding matrices P ∈ Rn×d and P(a) ∈ Rn×d , respec-
tively. MASS_ps is the MASS model that replaces user embeddings
with playlist embeddings. MASS_us is our proposed MASS model.

MDR (i.e.,MDR_ups) outperforms its derived forms (MDR_us and
MDR_ps), improving by 3.7∼10.8% on average. This result shows

N

(a) 30Music.

N

(b) AOTM.

Figure 4: Performance of ourmodels and the baselines when
varying N (or top-N recommendation list) from [1, 10].

Figure 5: Performance of all models when varying the em-
bedding size d from {8, 16, 32, 64} in 30Music dataset.

the effectiveness of modeling both users’ preferences and playlists’
themes in MDR design. MASS (i.e., MASS_us) outperforms its two
variants (MASS_ups and MASS_ps), improving MASS_ups by 3.7%,
and MASS_ps by 10.8% on average. It makes sense that using ad-
ditional playlist embeddings in MASS_ups is redundant since the
member songs have already conveyed the playlist’s theme, and
ignoring user embeddings in MASS_ps neglects user preferences.
6.4.2 Varying top-N recommendation list and embedding size. Fig-
ure 4 shows performances of all models when varying top-N recom-
mendation from 1 to 10. We see that all models gain higher results
when increasing top-N, and all our proposed models outperform all
baselines across all top-N values. On average,MASR improves 26.3%,
and AMASR improves 33.9% over the best baseline’s performance.

Figure 58 shows all models’ performances when varying the
embedding size d from {8, 16, 32, 64} for the 30Music dataset. Note
that the AOTM dataset also shows similar results but is omitted due
to the space limitations. We observe that most models tend to have
increased performance when increasing embedding size. AMDR
does not improve MDR when d = 8 but does so when increasing d .
This phenomenon was also reported in [13] because when d = 8,
MDR is too simple and has a small number of parameters, which is
far from overfitting the data and not very vulnerable to adversarial
noise. However, for more complicated models likeMASS andMASR,
even with a small embedding sized = 8,APR shows its effectiveness
in making the models more robust, and leads to an improvement
of AMASS by 12.0% over MASS, and an improvement of AMASR
by 7.5% over MASR. The improvements of AMDR, AMASS, AMASR
over their corresponding base models are higher for larger d due
to the increase of model complexity.

8Figure 5 shares the same legend with Figure 4 for saving space.

Table 4: Performance ofMASS using various attentionmech-
anisms.

Attention Types 30Music AOTM RI(%)
hit@10 ndcg@10 hit@10 ndcg@10

non-mem + dot 0.630 0.454 0.785 0.574 +8.51
non-mem + metric 0.660 0.490 0.803 0.601 +3.43
mem + dot 0.659 0.475 0.791 0.585 +5.40

mem + metric 0.670 0.500 0.834 0.639

(a) ρ=0.153 (b) ρ=0.215 (c) ρ=0.171 (d) ρ=0.254

Figure 6: Scatter plots of PMI attention scores vs. attention
weights learned by various attention mechanisms, showing
corresponding Pearson correlation score ρ). (a)non-mem +
dot, (b)non-mem + metric, (c)mem + dot, (d)mem + metric.

6.4.3 Is our memory metric-based attention helpful? To answer this
question, we evaluate how MASS’s performance changed when
varying its attention mechanism as follows:
• non-memory + dot product (non-mem + dot): It is the popular
dot attention introduced in [29].

• non-memory + metric (non-mem + metric): It is our proposed
attention with Mahalanobis distance but no external memory.

• memory + dot product (mem + dot): It is the dot attention but
exploiting external memory.

• memory + metric (mem + metric): It is our proposed attention
mechanism.
We do not compare with the no-attention case because literature

has already proved the effectiveness of the attention mechanism
[53]. Table 4 shows the performance of MASS under the variations
of our proposed attention mechanism. We have some key observa-
tions. First, non-mem + metric attention outperforms non-mem +
dot attention with an improvement of 4.9% on average. Similarly,
mem + metric attention improves the mem + dot attention design
by 5.4% on average. This enhancement comes from different nature
of metric space and dot product space. Moreover, these results con-
firm that metric-based attention designs fit better into our proposed
Mahalanobis distance based model. Second, memory based atten-
tion works better than non-mem attention. Particularly, on average,
mem + dot improves non-mem + dot by 2.98%, and mem + metric
improves non-mem + metric by 3.43%. Overall, the performance
order is mem + metric > non-mem + metric > mem + dot > non-mem
+ dot, which confirms that our proposed attention performs the
best and improves 3.43∼8.51% compared to its variations.
6.4.4 Deep analysis on attention. To further understand how at-
tention mechanisms work, we connect attentive scores generated
by attention mechanisms with Pointwise Mutual Information scores.
Given a target song k and a member song t , the PMI score between
them is defined as: PMI (k, t) = loд P (k,t)

P (k)×P (t) . Here, PMI (k,t) score
indicates how likely two songs k and t co-occur together, or how
likely a target song k will be added into song t ’s playlist.

Figure 7: Runtime of all models in 30Music and AOTM.

Given a playlist that has a set of l member songs, we measure
PMI scores between the target song k and each of l member songs.
Then, we apply so f tmax to those PMI scores to obtain PMI atten-
tive scores. Intuitively, the member song t that has a higher PMI
score with candidate song k (i.e., co-occurs more with song k) will
have a higher PMI attentive score. We draw scatter plots between
PMI attentive scores and attentive scores generated by our proposed
attention mechanism and its variations. Figure 6 shows the experi-
mental results. We observe that the Pearson correlation ρ between
the PMI attentive scores and the attentive scores generated by our
attention mechanism is the highest (0.254). This result shows that
our proposed attention tends to give higher scores to co-occurred
songs, which is what we desire. The Pearson correlation results are
also consistent with what was reported in Table 4.
6.4.5 Runtime comparison. To compare model runtimes, we used a
Nvidia GeForce GTX 1080 Ti with a batch size of 256 and embedding
size of 64. We do not report MASR and AMASR’s runtimes because
their components are pretrained and fixed (i.e., there is no learning
process/time). Figure 7 shows the runtimes (seconds per epoch) of
our models and the baselines for each dataset.MDR only took 39 and
173 seconds per epoch in 30Music and AOTM, respectively, while
MASS took 88 and 375 seconds. MDR, one of the fastest models,
was also competitive with CML and MF-BPR.

7 CONCLUSION
In this work, we proposed three novel recommendation approaches
based on Mahalanobis distance. Our MDR model used Mahalanobis
distance to account for both users’ preferences and playlists’ themes
over songs. Our MASS model measured attentive similarities be-
tween a candidate song and member songs in a target playlist
through our proposed memory metric-based attention mechanism.
Our MASR model combined the capabilities of MDR and MASR.
We also adopted and customized Adversarial Personalized Rank-
ing (APR) loss with proposed flexible noise magnitude to further
enhance the robustness of our three models. Through extensive ex-
periments against eight baselines in two real-world large-scale APC
datasets, we showed that our MASR improved 20.3%, and AMASR
using APR loss improved 27.3% on average over the best baseline.
Our runtime experiments also showed that our models were not
only competitive, but fast as well.

ACKNOWLEDGMENT
This workwas supported in part by NSF grant CNS-1755536, Google
Faculty Research Award, Microsoft Azure Research Award, AWS
Cloud Credits for Research, and Google Cloud. Any opinions, find-
ings and conclusions or recommendations expressed in this material
are the author(s) and do not necessarily reflect those of the sponsors.

REFERENCES
[1] Natalie Aizenberg, Yehuda Koren, and Oren Somekh. 2012. Build your own music

recommender by modeling internet radio streams. In WWW. 1–10.
[2] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,

C Lawrence Zitnick, and Devi Parikh. 2015. Vqa: Visual question answering. In
ICCV. 2425–2433.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[4] ShuoChen, Josh LMoore, Douglas Turnbull, and Thorsten Joachims. 2012. Playlist
prediction via metric embedding. In SIGKDD. 714–722.

[5] Robin Devooght, Nicolas Kourtellis, and Amin Mantrach. 2015. Dynamic matrix
factorization with priors on unknown values. In SIGKDD. 189–198.

[6] Tim Donkers, Benedikt Loepp, and Jürgen Ziegler. 2017. Sequential user-based
recurrent neural network recommendations. In RecSys. 152–160.

[7] Travis Ebesu, Bin Shen, and Yi Fang. 2018. Collaborative Memory Network for
Recommendation Systems. arXiv preprint arXiv:1804.10862 (2018).

[8] Shanshan Feng, Xutao Li, Yifeng Zeng, Gao Cong, Yeow Meng Chee, and Quan
Yuan. 2015. Personalized Ranking Metric Embedding for Next New POI Recom-
mendation.. In IJCAI. 2069–2075.

[9] Arthur Flexer, Dominik Schnitzer, Martin Gasser, and Gerhard Widmer. 2008.
Playlist Generation using Start and End Songs.. In ISMIR, Vol. 8. 173–178.

[10] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep sparse rectifier
neural networks. In AISTATS. 315–323.

[11] Ruining He, Wang-Cheng Kang, and Julian McAuley. 2017. Translation-based
recommendation. In RecSys. 161–169.

[12] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. In WWW. 507–
517.

[13] Xiangnan He, Zhankui He, Xiaoyu Du, and Tat-Seng Chua. 2018. Adversarial
personalized ranking for recommendation. In SIGIR. 355–364.

[14] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In WWW. 173–182.

[15] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast
matrix factorization for online recommendation with implicit feedback. In SIGIR.
549–558.

[16] Balázs Hidasi and Alexandros Karatzoglou. 2018. Recurrent neural networks
with top-k gains for session-based recommendations. In CIKM. 843–852.

[17] Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie, and
Deborah Estrin. 2017. Collaborative metric learning. In WWW. 193–201.

[18] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In ICDM. 263–272.

[19] Dietmar Jannach, Iman Kamehkhosh, and Lukas Lerche. 2017. Leveraging multi-
dimensional user models for personalized next-track music recommendation. In
SIGAPP. 1635–1642.

[20] How Jing and Alexander J Smola. 2017. Neural survival recommender. InWSDM.
515–524.

[21] Santosh Kabbur, Xia Ning, and George Karypis. 2013. Fism: factored item simi-
larity models for top-n recommender systems. In SIGKDD. 659–667.

[22] Iman Kamehkhosh and Dietmar Jannach. 2017. User perception of next-track
music recommendations. In UMAP. 113–121.

[23] Yehuda Koren. 2009. Collaborative filtering with temporal dynamics. In SIGKDD.
447–456.

[24] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 8 (2009), 30–37.

[25] Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan
Gulrajani, Victor Zhong, Romain Paulus, and Richard Socher. 2016. Ask me
anything: Dynamic memory networks for natural language processing. In ICML.
1378–1387.

[26] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2016. Adversarial examples
in the physical world. arXiv preprint arXiv:1607.02533 (2016).

[27] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara.
2018. Variational Autoencoders for Collaborative Filtering. arXiv preprint
arXiv:1802.05814 (2018).

[28] Dawen Liang, Minshu Zhan, and Daniel PW Ellis. 2015. Content-Aware Collab-
orative Music Recommendation Using Pre-trained Neural Networks.. In ISMIR.
295–301.

[29] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effec-
tive approaches to attention-based neural machine translation. arXiv preprint
arXiv:1508.04025 (2015).

[30] Chen Ma, Peng Kang, Bin Wu, Qinglong Wang, and Xue Liu. 2018. Gated
Attentive-Autoencoder for Content-Aware Recommendation. arXiv preprint
arXiv:1812.02869 (2018).

[31] Chen Ma, Yingxue Zhang, Qinglong Wang, and Xue Liu. 2018. Point-of-Interest
Recommendation: Exploiting Self-Attentive Autoencoders with Neighbor-Aware
Influence. In CIKM. 697–706.

[32] B. McFee and G. R. G. Lanckriet. 2012. Hypergraph models of playlist dialects. In
ISMIR.

[33] Brian McFee and Gert RG Lanckriet. 2012. Hypergraph Models of Playlist Di-
alects.. In ISMIR, Vol. 12. 343–348.

[34] Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bor-
des, and Jason Weston. 2016. Key-value memory networks for directly reading
documents. arXiv preprint arXiv:1606.03126 (2016).

[35] Xia Ning and George Karypis. 2011. Slim: Sparse linear methods for top-n
recommender systems. In ICDM. 497–506.

[36] Sergio Oramas, Oriol Nieto, Mohamed Sordo, and Xavier Serra. 2017. A deep
multimodal approach for cold-start music recommendation. arXiv preprint
arXiv:1706.09739 (2017).

[37] Martin Pichl, Eva Zangerle, and Günther Specht. 2017. Improving context-aware
music recommender systems: beyond the pre-filtering approach. In ICMR. 201–
208.

[38] Tim Pohle, Elias Pampalk, and Gerhard Widmer. 2005. Generating similarity-
based playlists using traveling salesman algorithms. In DAFx. 220–225.

[39] Parikshit Ram and Alexander G Gray. 2012. Maximum inner-product search
using cone trees. In SIGKDD. 931–939.

[40] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In UAI. 452–
461.

[41] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing personalized markov chains for next-basket recommendation. InWWW.
811–820.

[42] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
collaborative filtering recommendation algorithms. In WWW. 285–295.

[43] Nitish Srivastava and Ruslan R Salakhutdinov. 2012. Multimodal learning with
deep boltzmann machines. In NIPS. 2222–2230.

[44] Sainbayar Sukhbaatar, JasonWeston, Rob Fergus, et al. 2015. End-to-end memory
networks. In NIPS. 2440–2448.

[45] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommendation
via convolutional sequence embedding. In WSDM. 565–573.

[46] Irene Teinemaa, Niek Tax, and Carlos Bentes. 2018. Automatic Playlist Con-
tinuation through a Composition of Collaborative Filters. arXiv preprint
arXiv:1808.04288 (2018).

[47] Thanh Tran, Kyumin Lee, Yiming Liao, and Dongwon Lee. 2018. Regularizing
Matrix Factorization with User and Item Embeddings for Recommendation. In
CIKM. 687–696.

[48] Thanh Tran, Xinyue Liu, Kyumin Lee, and Xiangnan Kong. 2019. Signed Distance-
based Deep Memory Recommender. In WWW. 1841–1852.

[49] Roberto Turrin, Massimo Quadrana, Andrea Condorelli, Roberto Pagano, and
Paolo Cremonesi. 2015. 30Music Listening and Playlists Dataset.

[50] Andreu Vall, Matthias Dorfer, Markus Schedl, and Gerhard Widmer. 2018. A
Hybrid Approach to Music Playlist Continuation Based on Playlist-Song Mem-
bership. arXiv preprint arXiv:1805.09557 (2018).

[51] Andreu Vall, Hamid Eghbal-Zadeh, Matthias Dorfer, Markus Schedl, and Gerhard
Widmer. 2017. Music playlist continuation by learning from hand-curated exam-
ples and song features: Alleviating the cold-start problem for rare and out-of-set
songs. In DLRS. 46–54.

[52] Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen. 2013. Deep
content-based music recommendation. In NIPS. 2643–2651.

[53] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS. 5998–6008.

[54] Pengfei Wang, Jiafeng Guo, Yanyan Lan, Jun Xu, Shengxian Wan, and Xueqi
Cheng. 2015. Learning hierarchical representation model for nextbasket recom-
mendation. In SIGIR. 403–412.

[55] Xinxi Wang and Ye Wang. 2014. Improving content-based and hybrid music
recommendation using deep learning. In SIGMM. 627–636.

[56] Xinxi Wang, Yi Wang, David Hsu, and Ye Wang. 2014. Exploration in interactive
personalized music recommendation: a reinforcement learning approach. TOMM
11, 1 (2014), 7.

[57] Kilian Q Weinberger, John Blitzer, and Lawrence K Saul. 2006. Distance metric
learning for large margin nearest neighbor classification. In NIPS. 1473–1480.

[58] Yao Wu, Christopher DuBois, Alice X Zheng, and Martin Ester. 2016. Collab-
orative denoising auto-encoders for top-n recommender systems. In WSDM.
153–162.

[59] Eric P Xing, Michael I Jordan, Stuart J Russell, and Andrew Y Ng. 2003. Distance
metric learning with application to clustering with side-information. In NIPS.
521–528.

[60] Caiming Xiong, Stephen Merity, and Richard Socher. 2016. Dynamic memory
networks for visual and textual question answering. In ICML. 2397–2406.

[61] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy.
2016. Hierarchical attention networks for document classification. In NAACL
HLT. 1480–1489.

[62] Ziwei Zhu, Jianling Wang, and James Caverlee. 2019. Improving Top-K Recom-
mendation via Joint Collaborative Autoencoders. In WWW.

	Abstract
	1 Introduction
	2 Other Related Work
	3 Problem Definition
	4 Mahalanobis distance Preliminary
	5 Our proposed models
	5.1 Mahalanobis Distance based Recommender (MDR)
	5.2 Mahalanobis distance-based Attentive Song Similarity recommender (MASS)
	5.3 Mahalanobis distance based Attentive Song Recommender (MASR = MDR + MASS)
	5.4 Parameter Estimation
	5.5 Time Complexity

	6 Empirical study
	6.1 Datasets
	6.2 Baselines
	6.3 Experimental Settings
	6.4 Experimental Results

	7 Conclusion
	References

