
Regularizing Matrix Factorization with User and Item
Embeddings for Recommendation

Thanh Tran, Kyumin Lee
Worcester Polytechnic Institute, USA

{tdtran,kmlee}@wpi.edu

Yiming Liao, Dongwon Lee
Penn State University, USA
{yiming,dongwon}@psu.edu

ABSTRACT
Following recent successes in exploiting both latent factor and word
embedding models in recommendation, we propose a novel Regu-
larized Multi-Embedding (RME) based recommendation model that
simultaneously encapsulates the following ideas via decomposition:
(1) which items a user likes, (2) which two users co-like the same
items, (3) which two items users often co-liked, and (4) which two
items users often co-disliked. In experimental validation, the RME
outperforms competing state-of-the-art models in both explicit and
implicit feedback datasets, significantly improving Recall@5 by
5.9∼7.0%, NDCG@20 by 4.3∼5.6%, and MAP@10 by 7.9∼8.9%. In
addition, under the cold-start scenario for users with the lowest
number of interactions, against the competing models, the RME
outperforms NDCG@5 by 20.2% and 29.4% in MovieLens-10M and
MovieLens-20M datasets, respectively. Our datasets and source
code are available at: https://github.com/thanhdtran/RME.git.

KEYWORDS
Recommendation; item embeddings; user embeddings; negative
sampling; collaborative filtering.
ACM Reference Format:
Thanh Tran, Kyumin Lee and Yiming Liao, Dongwon Lee. 2018. Regularizing
Matrix Factorization with User and Item Embeddings for Recommendation.
In The 27th ACM International Conference on Information and Knowledge
Management (CIKM ’18), October 22–26, 2018, Torino, Italy. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3269206.3271730

1 INTRODUCTION
Among popular Collaborative Filtering (CF) methods in recommen-
dation [14, 17, 29, 33], in recent years, latent factor models (LFM)
usingmatrix factorization have beenwidely used. LFM are known to
yield relatively high prediction accuracy, are language independent,
and allow additional side information to be easily incorporated and
decomposed together [1, 35]. However, most of conventional LFM
only exploited positive feedback while neglected negative feedback
and treated them as missing data [8, 14, 27, 34].

In movie recommender systems, it was observed that many users
who enjoyed watching Thor: The Dark World, also enjoyed Thor:
Ragnarok. In this case, Thor: The Dark World and Thor: Ragnarok

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’18, October 22–26, 2018, Torino, Italy
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6014-2/18/10. . . $15.00
https://doi.org/10.1145/3269206.3271730

2

2

1

1

Us
er
s

Us
er
s

Liked	items

ite
m
s

Co-liked	items

Co-liked	 item	co-occurrence	 matrix

2

2
User	co-occurrence	 matrix

1

1

2

2

ite
m
s

Co-disliked	 items

Co-disliked	 item	co-occurrence	 matrix

p1 p2 p3 p4

p1

p2

p3

p4

p1 p2 p3 p4

p1

p2

p3

p4

p1 p2 p3 p4

p1 p2 p3 p4

Figure 1: An overview of our RME Model, which jointly
decomposes user-item interaction matrix, co-liked item co-
occurrence matrix, co-disliked item co-occurrence matrix,
and user co-occurrence matrix. (V : liked, X : disliked, and ?:
unknown)

can be seen as a pair of co-liked movies. So, if a user preferred Thor:
The Dark World but never watch Thor: Ragnarok, the system can
precisely recommend Thor: Ragnarok to her (first observation).
Similarly, if two users A and B liked the same movies, we can
assume A and B have the same movie interests. If user A likes a
movie that B has never watched, the system can recommend the
movie to B (second observation). In the samemanner, we ask if co-
occurred disliked movies can provide any meaningful information.
We observed that most users, who rated Pledge This! poorly (0.8/5.0
on average), also gave a low rating to Run for Your Wife (1.3/5.0 on
average). If the disliked co-occurrence pattern was exploited, Run
for YourWifewould not be recommended to other users who did not
enjoy Pledge This! (third observation). This will help reduce the
false positive rate for recommender systems. The same phenomena
would have also occurred in other recommendation domains.

The first two observations are similar to the basic assumptions of
item CF and user CF where similar scores between items/users are
used to infer the next recommended items for users. Unfortunately,
only the first two observations have been exploited in conventional
CF. While treating the negative-feedback items differently from
missing data led to better results [13], to the best of our knowledge,
no previous works exploited the third observation to enhance
the recommender systems’ performance.

Therefore, in this paper, we attempt to exploit all three observa-
tions in one model to achieve better recommendation results. With
the recent success of word embedding techniques in natural lan-
guage processing, if we consider pairs of co-occurred liked/disliked
items or pairs of co-occurred users as pairs of co-occurred words,
we can apply word embedding to learn latent representations of
items (e.g., item embeddings) and users (e.g. user embeddings).
Based on this, we propose a Regularized Multi-Embedding based

https://doi.org/10.1145/3269206.3271730
https://doi.org/10.1145/3269206.3271730

recommendation model (RME), which jointly decomposes (1) a
user-item interaction matrix, (2) a user co-occurrence matrix, (3)
a co-liked item co-occurrence matrix, and (4) a co-disliked item
co-occurrence matrix. The RME model concurrently exploits the
co-liked co-occurrence patterns and co-disliked co-occurrence pat-
terns of items to enrich the items’ latent factors. It also augments
users’ latent factors by incorporating user co-occurrence patterns
on their preferred items. Figure 1 illustrates an overview of our
RME model.

Both liked and disliked items can be explicitly measured by rating
scores (e.g., a liked item is ≥ 4 star-rating and a disliked item is
≤ 2 star-rating) in explicit feedback datasets such as 5-star rating
datasets (e.g., a Movie dataset and an Amazon dataset). However,
in implicit feedback datasets (e.g., a music listening dataset and
a browsing history dataset), users do not explicitly express their
preferences. In implicit feedback datasets, the song plays and URL
clicks could indicate how much users like the items (i.e., positive
samples), but inferring the disliked items (i.e., negative samples) is
a big challenge due to the nature of implicit feedback. In order to
deal with this challenge, we propose an algorithm which infers a
user’s disliked items in implicit feedback datasets, so that we can
build an RME model and recommend items for both explicit and
implicit feedback datasets. In this paper, we made the following
contributions:

• We proposed a joint RME model, which combined weighted
matrix factorization, co-liked item embedding, co-disliked
item embedding, and user embedding, for both explicit and
implicit feedback datasets.
• We designed a user-oriented EM-like algorithm to draw neg-
ative samples (i.e., disliked items) from implicit feedback
datasets.
• We conducted comprehensive experiments and showed that
the RME model substantially outperformed several baseline
models in both explicit and implicit feedback datasets.

2 PRELIMINARIES

Item. Items are objects that users interact with or consume. They
can be interpreted in various ways, depending on the context of a
dataset. For example, an item is a movie in a movie dataset such as
MovieLens, whereas it is a song in TasteProfile.
Liked items and disliked items. In explicit feedback datasets
such as MovieLens (a 5-star rating dataset), an item ≥ 4 stars is
classified to a liked item of the user, and an item ≤ 2 stars is classified
to a disliked item of the user [5]. In implicit feedback datasets such
as TasteProfile, the more a user consumes an item, the more he/she
likes it (e.g., larger play count in TasteProfile indicates stronger
preference). But, disliked items are not explicitly observable.
Top-N recommendation. In this paper, we focus on top-N recom-
mendation scenario, in which a recommendation model suggests
a list of top-N most appealing items to users. We represent the
interactions between users and items by a matrixMm∗n where m
is the number of users and n is the number of items. If a user u likes
an item p,Mup will be set to 1. FromM, we are interested in extract-
ing co-occurrence patterns including liked item co-occurrences,
disliked item co-occurrences, and user co-occurrences. Our goal

Table 1: Notations.

Notation Description

M am × n user-item interaction matrix.
U am × k latent factor matrix of users.
P a n × k latent factor matrix of items.
X a n × n SPPMI matrix of liked items-item co-occurrences.
Y a n × n SPPMI matrix of disliked item-item co-occurrences.
Z am ×m SPPMI matrix of user-user co-occurrences.
αu a k × 1 latent factor vector of user u .
βp a k × 1 latent factor vector of item p .
γi a k × 1 latent factor vector of co-liked item context i .
δi′ a k × 1 latent factor vector of co-disliked item context i ′.
θ j a k × 1 latent factor vector of user context j .
λ a hyperparameter of regularization terms.

b, d co-liked and co-disliked item bias.
c, e co-liked and co-disliked item context bias.
f , д user bias and user context bias.
wup a weight for an interaction between user u and her liked item p .
w (u)
uj a weight for two users u and j who co-liked same items.

w (+p)
pi a weight for two items p and i that are co-liked by users.

w (−p)
pi a weight for two items p and i that are co-disliked by users.

is to exploit those co-occurrence information to learn the latent
representations of users and items, then recommend top-N items
to the users.
Notations. Table 1 shows key notations used in this paper. Note
that all vectors in the paper are column vectors.

3 OUR RME MODEL
First, we review the Weighted Matrix Factorization (WMF), and
co-liked item embedding. Then, we propose co-disliked item em-
bedding and user embedding. Finally, we describe our RME model
and present how to compute it.

3.1 WMF, Embedding and RME model
Weighted matrix factorization (WMF).WMF is a widely-used
collaborative filtering method in recommender systems [14]. Given
a sparse user-item matrix Mm×n , the basic idea of WMF is to de-
compose M into a product of 2 low rank matricesUm×k and Pn×k
(i.e., M = U × PT), where k is the number of dimensions and
k < min(m,n). Here, U is interpreted as a latent factor matrix of
users, and P is interpreted as a latent factor matrix of items.

We denote UT = (α1,α2, ...,αm) where αu ∈ Rk (u ∈ 1,m) and
αu represents the latent factor vector of useru. Similarly, we denote
PT = (β1, β2, ..., βn) where βp ∈ Rk (p ∈ 1,n) and βp represents
the latent factor vector of item p. The objective of WMF is defined
by:
LWMF =

1
2

∑
u,p

wup (Mup − α
T
u βp)

2 +
1
2

(
λα

∑
u
| |αu | |

2 + λβ
∑
p
| |βp | |

2
)

(1)

wherewup is a hyperparameter to compensate the interaction be-
tween useru and item p, and is used to balance between the number
of non-zero and zero values in a sparse user-itemmatrix. Theweight
w of the interaction between user u and item p (denoted as wup)
can be set aswup = l (1 + ϕMup) [14, 20] where l is a relative scale
and ϕ is a constant. λα and λβ are used to adjust the importance of
two quadratic regularization terms

∑
u | |αu | |

2 and
∑
p | |βp | |

2.

Word embeddingmodels.Word embeddingmodels have recently
received a lot of attention from the research community. Given a

sequence of training words, the embedding models learn a latent
representation for each word. For example, word2vec [24] is one of
popular word embedding methods. Especially, the skip-gram model
in word2vec tries to predict surrounding words (i.e., word context)
of a given word in the training set.

According to Levy et al. [19], skip-gram model with negative
sampling (SGNS) is equivalent to implicitly factorize a word-context
matrix, whose cells are the Pointwise Mutual Information (PMI) of
the respective word and context pairs, shifted by a global constant.
Let D as a collection of observed word and context pairs, the PMI
between a word i and its word context j is calculated as:

PMI (i, j) = loд
P (i, j)

P (i) ∗ P (j)
where P (i, j) is the joint probability that word i and word j appears
together within a window size (e.g. P (i, j) = #(i, j)

|D | , where |D | refers
to the total number of word and word context pairs in D). Similarly,
P (i) is the probability the word i appears in D, and P (j) is the
probability word j appears in D (e.g. P (i) = #(i)

|D | and P (j) =
#(j)
|D |).

Obviously, PMI (i, j) can be calculated as:

PMI (i, j) = loд
#(i, j) ∗ |D |
#(i) ∗ #(j)

(2)

By calculating PMI of all word-context pairs in D, we can form a
squared n × n matrixMPMI where n is the total number of distinct
words in D. Next, a Shifted Positive Pointwise Mutual Information
(SPPMI) of two words i and j is calculated as:

SPPMI (i, j) =max (PMI (i, j) − loд(s), 0) (3)
where s is a hyperparameter to control the density of PMI matrix
MPMI and s can be interpreted equivalently as a hyperparameter
that indicates the number of negative samples in SGNS. When s is
large, more values in the matrixMPMI are cleared, leadingMPMI

to become sparser. When s is small, matrixMPMI becomes denser.
Finally, factorizing matrixMSPPMI , where each cell inMSPPMI is
transformed by Formula (3), is equivalent to performing SGSN.
Co-liked item embedding (LIE). As mentioned in the previous
studies [3, 10, 20], when users liked/consumed items in a sequence,
the items sorted by the ascending interaction time order can be in-
ferred as a sequence. Thus, performing co-liked item embeddings to
learn latent representations of items is equivalent to perform word
embeddings to learn latent representations of words. Therefore, we
can apply word embedding methods to learn latent representations
of items, and perform a joint learning between embedding models
and traditional factorization methods (e.g. WMF).

Given each user’s liked item list, we generate co-liked item-item
co-occurrence pairs without considering liked time. Particularly,
given a certain item in the item sequence, we consider all other
items as its contexts. We call this method as a greedy context gen-
eration method which can be applied to other non-timestamped
datasets. After generating item and item context pairs, we con-
struct an item co-occurrence SPPMI matrix and perform SPPMI
matrix factorization. In particular, given generated item-item co-
occurrence pairs, we construct a SPPMI matrix of items by applying
Equation (2) to calculate the pointwise mutual information of each
pair, and then by measuring the shifted positive pointwise mutual
information of the pair based on Equation (3). Once the SPPMI
matrix of co-liked items is constructed, we incorporate it to the

traditional matrix factorization method to improve the item latent
representations.
Co-disliked item embedding (DIE). As mentioned in the Intro-
duction section, when many users disliked two items p1 and p2 to-
gether, the two items can form a pair of co-occurred disliked items.
If the recommender systems learned this disliked co-occurrence
pattern, it would not recommend item p2 to a user, who disliked p1.
This will help reduce the false positive rate for the recommender
systems. Therefore, similar to liked item embeddings, we applied
the word embedding technique to exploit the disliked co-occurrence
information to enhance the item’s latent factors.
User embedding (UE).When two users A and B preferred same
items, we can assume the two users share similar interests. There-
fore, if user A enjoyed an item p that has not been observed in
user B’s transactions, we can recommend the item to user B. Sim-
ilar to liked and disliked item embeddings, we applied the word
embedding technique to learn user embeddings that explain the
co-occurrence patterns among users.

From the user-item interaction matrixMm×n , where each row
represents consumed items of a user (e.g. a list of items that the user
rated or backed), we only keep liked items per user in the matrix
M ′. Then, we construct a n ×m reverse matrixM ′T ofM ′, where
each row represents users that liked a certain item. Then, users,
who liked the same item, form a sequence, and the sequence of
users is interpreted as a sequence of words. From this point, word
embedding techniques are applied to the user sequence to enhance
latent representations of users.
Our RME model. It is a joint learning model combining WMF,
co-liked item embedding, co-disliked item embedding, and user
embedding. It minimizes the following objective function:

L =

L1︷ ︸︸ ︷
1
2

∑
u,p

wup (Mup − α
T
u βp)

2 (WMF)

+

L2︷ ︸︸ ︷
1
2

∑
Xpi,0

w
(+p)
pi (Xpi − β

T
p γi − bp − ci)

2 (LIE)

+

L3︷ ︸︸ ︷
1
2

∑
Ypi′,0

w
(−p)
pi ′ (Ypi ′ − β

T
p δi ′ − dp − ei ′)

2 (DIE)

+

L4︷ ︸︸ ︷
1
2

∑
Zuj,0

w
(u)
uj (Zuj − α

T
u θ j − fu − дj)

2 (UE)

+
1
2
λ

(∑
u
| |αu | |

2 +
∑
p
| |βp | |

2 +
∑
i
| |γi | |

2 +
∑
i ′
| |δi ′ | |

2 +
∑
j
| |θ j | |

2
)

(4)

where the item’s latent representation βp is shared amongWMF, co-
liked item embedding and co-disliked item embedding. The user’s
latent representation αu is shared between WMF and user embed-
ding. X and Y are SPPMI matrices, constructed by co-liked item-
item co-occurrence patterns and disliked item-item co-occurrence
patterns, respectively.γ and δ are k×1 latent representation vectors
of co-liked item context and co-disliked item context, respectively.Z
is a SPPMI matrix constructed by user-user co-occurrence patterns.
θ is a k × 1 latent representation vector of a user context. w (+p) ,
w (−p) andw (u) are hyperparameters to compensate for item/user
co-occurrences in X , Y and Z when performing decomposition. b is

liked item bias, and c is co-liked item context bias. d is disliked item
bias, and e is co-disliked item-context bias. f and д are user bias
and user context bias, respectively. Incorporating bias terms were
originally introduced in [16]. A liked item bias bp and a co-liked
item context bias ci mean that when the two items pi and pj are
co-liked by users, each item may have a little bit higher/lower pref-
erence compared to the average preference. The similar explanation
is applied to the other biases. The last line shows regularization
terms along with a hyperparameter λ to control their effects.

3.2 Optimization
We can use the stochastic gradient descent to optimize the Equation
(4). However, it is not stable and sensitive to parameters [37]. There-
fore, we adopt vector-wise ALS algorithm [37, 39] that alternatively
optimize each model’s parameter in parallel while fixing the other
parameters until the model gets converged. Specifically, we calcu-
late the partial derivatives of the model’s objective function with
regard to the model parameters (i.e., {α1:m , β1:n , γ1:n , δ1:n , b1:n , c1:n ,
d1:n , e1:n , θ1:m , f1:m , д1:m }). Then we set them to zero and obtain
updating rules. Details are given as follows:

From the objective function in Equation (4), while taking partial
derivatives of L with regard to each user’s latent representation
vector αu , we observe that only L1, L4 and the L2 user regulariza-
tion 1

2λ
∑
u | |αu | |

2 contain αu . Therefore, we obtain:
∂L

∂αu
=
∂L1
∂αu

+
∂L4
∂αu

+
∂λ

∑
u | |αu | |

2

2∂αu

= −
∑
u,p

wup (Mup − α
T
u βp)β

T
p −

∑
u, j

w
(u)
uj (Zuj − α

T
u θ j − fu − дj)θ

T
j + λα

T
u

Fixing item latent vectors β , user context latent vectors θ , user
bias d and user context bias e , and solving ∂L

∂αu
= 0, we obtain the

updating rule of αu as follows:

αu =

[∑
p

wupβpβ
T
p +

∑
j |Zuj,0

w
(u)
uj θ jθ

T
j + λIK

]−1

[∑
p

wupMupβp +
∑

j |Zuj,0
w
(u)
uj (Zuj − fu − дj)θ j

]

,∀1 ≤ u ≤ m, 1 ≤ p ≤ n, 1 ≤ j ≤ m

(5)

Similarly, taking partial derivatives of L with respect to each
item latent vector βp needs to consider only L1, L2, L3 and item
regularization 1

2λ
∑
p | |βp | |

2. By fixing other parameters and solving
∂L
∂βp
= 0, we obtain:

βp =

[∑
u

wupαuα
T
u +

∑
i |Xpi,0

w
(+p)
pi γiγ

T
i +

∑
i ′|Ypi′,0

w
(−p)
pi ′ δi ′δ

T
i ′ + λIK

]−1

[∑
u

wupMupαu +
∑

i |Xpi,0
w
(+p)
pi (Xpi − bp − ci)γi+

∑
i ′|Ypi′,0

w
(−p)
pi ′ (Ypi ′ − dp − ei ′)δi ′

]

,∀1 ≤ u ≤ m, 1 ≤ p ≤ n, 1 ≤ i, i ′ ≤ n

(6)

In the same manner, we obtain the update rules of item contexts
γ , δ , and user context θ alternatively as follows:

γi =

[∑
p |Xip,0

w
(+p)
ip βpβ

T
p + λIK

]−1 [∑
p |Xip,0

w
(+p)
ip (Xip − bp − ci)βp

]

δi ′ =

[∑
p |Yi′p,0

w
(−p)
i ′p βpβ

T
p + λIK

]−1 [∑
p |Yi′p,0

w
(−p)
i ′p (Yi ′p − dp − ei ′)βp

] (7)

θ j =

[∑
u |Z ju,0

w
(u)
ju αuα

T
u + λIK

]−1 [∑
u |Z ju,0

w
(u)
ju (Z ju − du − ej)αu

]

,∀1 ≤ u ≤ m, 1 ≤ p ≤ n, 1 ≤ i, i ′ ≤ n

The item biases and item context biases b, c , d , e , as well as the
user and user context biases f , д are updated alternatively using
the following update rules:

bp =
1

|i : Xpi , 0|

∑
i :Xpi,0

(Xpi − β
T
p γi − ci)

ci =
1

|p : Xip , 0|

∑
p :Xip,0

(Xip − β
T
p γi − bp)

dp =
1

|i′ : Ypi ′ , 0|

∑
i ′:Ypi′,0

(Ypi ′ − β
T
p δi ′ − ei ′)

ei ′ =
1

|p : Yi ′p , 0|

∑
p :Yi′p,0

(Yi ′p − β
T
p δi ′ − dp)

fu =
1

|j : Zuj , 0|

∑
j :Zuj,0

(Zuj − α
T
u θ j − дj)

дj =
1

|u : Z ju , 0|

∑
u :Z ju,0

(Z ju − α
T
u θ j − fu)

(8)

In short, the pseudocode of our proposed RMEmodel is presented
in Algorithm 1.

Algorithm 1 RME algorithm
Require: M, λ
1: Build SPPMI matrices of liked item X , disliked item Y and user co-

occurrences Z using Eq. (2) and Eq. (3)
2: Initialize U (or α1:m), P (or β1:n), γ1:n, δ1:n, θ1:m .
3: Initialize b1:n, c1:n, d1:n, e1:n, f1:m, д1:m .
4: repeat
5: For each user u, update αu by Eq. (5) (1 ≤ u ≤ m).
6: For each item p, update βp by Eq. (6) (1 ≤ p ≤ n).
7: Alternatively update each item context γi , δi′ and user context θ j

by Eq. (7) (1 ≤ i, i′ ≤ n; 1 ≤ j ≤ m).
8: Alternatively update each bias bp, ci , dp, ei′, fu, дj by Eq. (8) (1 ≤

p, i, i′ ≤ n; 1 ≤ u, j ≤ m).
9: until convergence
10: return U , P

3.3 Complexity Analysis
In this section, we briefly provide time complexity analysis of our
model. Let ΩM = {(u, p) |Mup , 0} , ΩX = {(p, i) |Xpi , 0 }, ΩY = {(p,
i ′) |Ypi′ , 0}, ΩZ = {(u, j) |Zuj , 0}. Constructing SPPMImatrices X,
Y and Z takeO (|ΩX |

2),O (|ΩY |
2) andO (|ΩZ |

2), respectively. How-
ever, the SPPMI matrices are calculated once and are constructed in
parallel using batch processing, so they are not costly. For learning
RME model, computing α takesO ((|ΩM | + |ΩZ |)k

2 +k3) time, and
computing β takes O ((|ΩM | + |ΩX | + |ΩY |)k

2 + k3) time. Also, it
takesO (|ΩX |k

2+k3) for computing co-liked item context γ , and so
do other latent contexts δ , θ . It takesO (|ΩZ |k) time to compute all
user bias f and so do the other biases. Thus, the time complexity for
RME isO (η(2(|ΩM |+ |ΩX |+ |ΩY |+ |ΩZ |)k

2+ (2m+3n)k3)), where
η is the number of iterations. Since k << min(m,n) and M, X, Y, Z
are often sparse, which mean (|ΩM | + |ΩX | + |ΩY | + |ΩZ |) is small,

the time complexity of RME is shortened asO (η(m+ 3
2n)k

3), which
scales linearly to the conventional ALS algorithm for collaborative
filtering [37].

4 INFERRING DISLIKED ITEMS IN IMPLICIT
FEEDBACK DATASETS

Unlike explicit feedback datasets, there is a lack of substantial
evidence, on which items the users disliked in implicit feedback
datasets. Since our model exploits co-disliked item co-occurrences
patterns among items, the implicit feedback datasets challenge our
model. To deal with it, we can simply assume that missing values are
equally likely to be negative feedback, then sample some negative
instances from missing values with uniform weights [12, 27, 32, 34].
However, assigning uniform weight is suboptimal because the miss-
ing values are a mixture of negative and unknown feedbacks. A
recent work suggests to sample negative instances by assigning
non-uniform weights based on item popularity [13]. The idea is
that popular items are highly aware by users, so if they are not
observed in a user’s transactions, it assumes that the user dislikes
them. However, this sampling method is also not optimal because
same unobserved popular items can be sampled across multiple
users. This approach does not reflect user’s personalized interests.

Instead, we follow the previous works [22, 25, 38], and propose
a user-oriented EM-like algorithm to draw negative samples (i.e.,
inferred disliked items) for users in implicit feedback datasets. Our
approach is described as follows:

First, we assume that an item with a low ranking score of being
liked will have a higher probability to be drawn as a negative sample
of a user. Given ru is the ranked list of all items of the user u, the
prior probabilities of items to be drawn as negative samples are
calculated by using a softmax function as follows:

Pr
(u)
i =

exp (−ru [i])∑n
j=1 exp (−ru [j])

(9)

After negative samples are drawn for each user, we built the
RME model by using Algorithm 1. The pseudocode of the RME
model for implicit feedback datasets is presented in Algorithm 2.

In Algorithm 2, since each user may prefer a different number of
items, we define a hyper-parameter τ as a negative sample drawing
ratio to control howmany negative samples we will sample for each
user. In line 6, count (u) returns the number of observed items of a
useru. Then, the number of drawn negative samples for the useru is
calculated and assigned to ns . If a user prefers 10 items and τ = 0.8,
the algorithm will sample 8 disliked items. We note that sampling
with replacement is used such that different items are drawn inde-
pendently. The value of τ is selected using the validation data. In
line 8, we set the ranking of observed items to +∞ to avoid drawing
the observed items as negative samples. In line 12, we build the RME
model based on the negative samples drawn in the Expectation step,
and temporally store newly learned user latent matrix, item latent
matrix and corresponding NDCG to U _tmp, P_tmp,ndcд variables,
respectively (NDCG is a measure to evaluate recommender systems,
which will be mentioned in Experiment section). If we obtain a bet-
ter ndcд comparing with the previous NDCG prev_ndcд (line 13),
we will update U , P ,prev_ndcд with new values (line 14). Overall,
at the end of the Expectation step, we obtain the disliked items

Algorithm 2 RME model for implicit feedback datasets using user-
oriented EM-like algorithm to draw negative samples
Require: M, negative sample drawing ratio τ
1: max_iter = 10, prev_ndcд = 0, iter = 0
2: Initialize Step:U , P =WMF (M)
3: repeat
4: iter += 1
5: ▷ Expectation Step
6: for u ∈ [1,m] do:
7: ns = τ * count (u)
8: Compute ranked item list: ru = P .αu
9: Assign observed items with ranking of +∞.
10: Measure prior probabilities of items to be drawn as

negative samples by Eq. (9) then randomly draw ns negative
samples with those prior probabilities.

11: end for
12: ▷ Maximization Step with early stopping
13: U _tmp, P_tmp,ndcд = RME(train_data, vad_data)
14: if ndcд > prev_ndcд then
15: U , P ,prev_ndcд = U _tmp, P_tmp,ndcд
16: else
17: break ▷ Early stopping
18: end if
19: until iter <max_iter
20: returnU , P

for each user. Then, in the Maximization step, we build our RME
model to re-learn user and item latent representationsU and P . The
process is repeated until getting converged or the early stopping
condition (line 13 to 17) is satisfied.
Time Complexity: In order to construct RME model for implicit
feedback datasets, we need to re-learn RME model, which includes
re-building 3 SPPMI matrices in the maximization step in η′ it-
erations to get converged. Thus, it takes O (η′((|ΩX |

2 + |ΩY |
2 +

|ΩZ |
2) + η(m + 3

2n)k
3)) time where η′ is small.

5 EXPERIMENTS
5.1 Experimental Settings
Datasets: To measure the performance of our RME model, we
evaluate the model on 3 real-world datasets:
• MovieLens-10M [29]: is an explicit feedback dataset. It con-
sists of 69,878 users and 10,677 movies with 10m ratings.
Following the k-cores preprocessing [11, 12], we only kept
users, who rated at least 5 movies, and movies, which were
rated by at least 5 users. This led to 58,057 users and 7,223
items (density= 0.978%).
• MovieLens-20M: is an explicit feedback dataset. It consists
of 138,000 users, 27,000 movies, and 20 millions of ratings.
We filtered with the same condition as for MovieLens-10M.
This led to 111,146 users and 9,888 items (density= 0.745%).
• TasteProfile: is an implicit feedback dataset containing a
song’s play count by a user 1. The play counts are user’s
implicit preference and are binarized. Similar to [20], we first

1http://the.echonest.com/

Table 2: Performance of the baselines, our RMEmodel, and its two variants. The improvement of our model over the baselines
and its variants were significant with p-value < 0.05 in the three datasets under the non-directional two-sample t-test.

Method MovieLens-10M MovieLens-20M TasteProfile
Recall@5 NDCG@20 MAP@10 Recall@5 NDCG@20 MAP@10 Recall@5 NDCG@20 MAP@10

Item-KNN 0.0137 0.0338 0.0397 0.0131 0.0345 0.0402 0.0793 0.0685 0.0904
Item2vec 0.1020 0.1001 0.0502 0.1066 0.1019 0.0539 0.1455 0.1593 0.0727
WMF 0.1280 0.1245 0.0655 0.1348 0.1290 0.0720 0.1745 0.1853 0.0931

Cofactor 0.1460 0.1381 0.0772 0.1480 0.1387 0.0804 0.1771 0.1873 0.0950

U_RME 0.1516 0.1412 0.0818 0.1524 0.1425 0.0847 0.1825 0.1899 0.0997
I_RME 0.1511 0.1422 0.0817 0.1530 0.1412 0.0838 0.1826 0.1915 0.0996
RME 0.1562 0.1458 0.0841 0.1570 0.1461 0.0869 0.1876 0.1954 0.1025

subsampled the dataset to 250k users and 25k items. Then we
kept only users, who listened to at least 20 songs, and songs,
which were listened by at least 50 users. As a result, 221,011
users and 22,713 songs were remained (density= 0.291%).

Baselines: To illustrate the effectiveness of our RME model, we
compare it with the following baselines:

• WMF [14]: It is a weighted matrix factorization with l2-norm
regularization.
• Item-KNN [7]: This is an item neighborhood-based collabo-
rative filtering method.
• Item2Vec [3]: This method used Skip-gram with negative
sampling [24] to learn item embeddings, then adopted a
similarity score between item embeddings to generate user’s
recommendation lists.
• Cofactor [20]: This is a method that combines WMF and
co-liked item embedding.

We note that we do not compare our models with user collaborative
filtering method (i.e. User-KNN) because it is not applicable to
run the method on the large datasets. However, [31] reported that
User-KNN had worse performance than Item-KNN, especially when
there are many items but few ratings in a dataset.
Our models: We not only compare the baselines with our RME,
but also two variants of our model such as U_RME and I_RME to
show the effectiveness of incorporating all of the user embeddings,
liked-item embeddings and disliked-item embeddings:

• U_RME (i.e., RME - DIE): This is a variant of our model,
considering only WMF, user embeddings, and liked-item
embeddings.
• I_RME (i.e., RME - UE): This is another variant of our model,
considering only WMF, liked-item embeddings, and disliked-
item embeddings.
• RME: This is our proposed RME model.

Evaluation metrics. We used three well-known ranking-based
metrics – Recall@N, normalized discounted cumulative gain (NDCG@N),
and mean average precision (MAP@N). Recall@N considers all
items in top N items equally, whereas NDCG@N and MAP@N
apply an increasing discount of loд2 to items at lower ranks.
Training, validation and test sets. We follow 70/10/20 propor-
tions for splitting the original dataset into training/validation/test
sets [21]. MovieLens-10M and MovieLens-20M datasets contain
timestamp values of user-movie interactions. To create training,

validation and testing sets for these datasets, we sorted all user-
item interaction pairs in the ascending interaction time order in
each of MovieLens-10M and MovieLens-20M datasets. The first
80% was used for training and validation, and the rest 20% data
was used as a test set. Out of 80% data extracted for training and
validation, we randomly took 10% for the validation set. To measure
the statistical significance of RME over the baselines, we repeated
the splitting process five times (i.e., generating five pairs of train-
ing and validation sets). Since TasteProfile dataset did not contain
timestamp information of user-song interactions, we randomly split
the TasteProfile dataset into training/validation/test sets five times
with 70/10/20 proportions. Averaged results are reported in the
following subsection.
Stopping criteria and Hyperparameters. To decide when to
stop training a model, we measured the model’s NDCG@100 by
using the validation set. We stopped training the model when there
was no further improvement. Then, we applied the best model to
the test set to evaluate its performance. This method was applied
to the baselines and RME.

All hyper-parameters were tuned on the validation set by a grid
search.We used the same hyper-parameter setting in all models. The
grid search of the regularization weight λ was performed in {0.001,
0.005, 0.01, 0.05, ..., 10}. The size of latent dimensions was in a range
of {30, 40, 50, ..., 100}. We set weights w (+p) = w (−p) = w (u) = w
for all user-user and item-item co-occurrence pairs. When building
our RME model for TasteProfile dataset, we do a grid search for the
negative sample drawing ratio τ in {0.2, 0.4, 0.6, 0.8, 1.0}.

5.2 Experimental Results
RQ1: Performance of the baselines and RME. Table 2 presents
recommendation results of RME and compared models at Recall@5,
NDCG@20, and MAP@10. First, we compared RME with the base-
lines. We observed that RME outperformed all baselines in the three
datasets, improving the Recall by 6.3%, NDCG by 5.1%, and MAP by
8.3% on average over the best baseline (p-value < 0.001). Second, we
compared two variants of RME model with the baselines. We see
that both U_RME and I_RME performed better than the baselines.
Adding user embeddings improved the Recall by 3.0∼3.5%, NDCG
by 1.4∼2.2%, and MAP by 4.2∼5.8% (p-value < 0.001), while adding
disliked item embeddings improved the Recall by 3.1∼3.8%, NDCG
by 2.2∼3.0%, andMAP by 4.9∼6.0%. Third, we compare RMEwith its
two variants. RME also achieved the best result, improving Recall
by 2.6∼3.0%, NDCG by 2.0∼2.5%, and MAP by 2.6∼2.8% (p-value <
0.05). We further evaluated NDCG@N of our model when varying

5 10 20 50 100
Varying N

0.10

0.12

0.14

0.16

0.18

N
D

C
G

@
N

Item2Vec

WMF

Cofactor

U RME

I RME

RME

(a) NDCG@N on MovieLens-10M.

5 10 20 50 100
Varying N

0.13

0.14

0.15

0.16

0.17

N
D

C
G

@
N

Item2Vec

WMF

Cofactor

U RME

I RME

RME

(b) NDCG@N on MovieLens-20M.

5 10 20 50 100
Varying N

0.150

0.175

0.200

0.225

0.250

0.275

N
D

C
G

@
N

Item2Vec

WMF

Cofactor

U RME

I RME

RME

(c) NDCG@N on TasteProfile.

Figure 2: Performance of all models when varying top N .

30 40 50 60 70 80 90 100
Varying k

0.11

0.12

0.13

0.14

0.15

0.16

R
e
ca

ll
@

5 Item2Vec

WMF

Cofactor

U RME

I RME

RME

30 40 50 60 70 80 90 100
Varying k

0.12

0.13

0.14

0.15

0.16

N
D

C
G

@
5 Item2Vec

WMF

Cofactor

U RME

I RME

RME

30 40 50 60 70 80 90 100
Varying k

0.07

0.08

0.09

0.10

0.11
M

A
P

@
5 Item2Vec

WMF

Cofactor

U RME

I RME

RME

(a) Recall@5, NDCG@5, MAP@5 on MovieLens-10M. Fix λ = 1, and vary k .

30 40 50 60 70 80 90 100
Varying k

0.12

0.13

0.14

0.15

0.16

R
e
ca

ll
@

5 Item2Vec

WMF

Cofactor

U RME

I RME

RME

30 40 50 60 70 80 90 100
Varying k

0.12

0.13

0.14

0.15

0.16

N
D

C
G

@
5 Item2Vec

WMF

Cofactor

U RME

I RME

RME

30 40 50 60 70 80 90 100
Varying k

0.08

0.09

0.10

0.11

M
A

P
@

5 Item2Vec

WMF

Cofactor

U RME

I RME

RME

(b) Recall@5, NDCG@5, MAP@5 on MovieLens-20M. Fix λ = 0.5, and vary k .

30 40 50 60 70 80 90 100
Varying k

0.12

0.14

0.16

0.18

R
e
ca

ll
@

5 Item2Vec

WMF

Cofactor

U RME

I RME

RME

30 40 50 60 70 80 90 100
Varying k

0.12

0.14

0.16

0.18

0.20

N
D

C
G

@
5 Item2Vec

WMF

Cofactor

U RME

I RME

RME

30 40 50 60 70 80 90 100
Varying k

0.08

0.10

0.12

M
A

P
@

5 Item2Vec

WMF

Cofactor

U RME

I RME

RME

(c) Recall@5, NDCG@5, MAP@5 on TasteProfile. Fix λ = 10, τ = 0.2, and vary k .

Figure 3: Performance of models when varying the latent
dimension size k with fixing the value of λ.

top N in range {5, 10, 20, 50, 100}. Figure 2 shows our result (we
excluded Item-KNN in the figure and following figures since it per-
formed extremely worst). Our model still performed the best. On
average, it improved NDCG@N by 6.2% comparing to the baselines,
and by 3.3% comparing to its variants. These experimental results
show that both co-disliked item embedding and user embedding
positively contributed to RME, and also confirm our observations
addressed in Section 1 are correct.

The experimental results in TasteProfile in Table 2 showed that
inferring disliked items in Algorithm 2 worked well since RME
model incorporating co-disliked item embedding outperformed the
baselines. To further confirm the effectiveness of the algorithm,
we also applied it to MovieLens-10M and MovieLens-20M datasets
after removing the explicit disliking information, pretending them
as implicit feedback datasets. In the datasets without disliking in-
formation, RME under Algorithm 2 still outperformed the best
baseline with 4.2%, 4.6% and 7.2% improvements on average in
Recall, NDCG and MAP, respectively (p-value < 0.001). Its perfor-
mance was slightly lower than the original RME (based on explicit

0.001 0.01 0.1 1 10
Varying λ

0.12

0.13

0.14

0.15

0.16

R
e
ca

ll
@

5

WMF

Cofactor

U RME

I RME

RME

0.001 0.01 0.1 1 10
Varying λ

0.13

0.14

0.15

0.16

N
D

C
G

@
5

WMF

Cofactor

U RME

I RME

RME

0.001 0.01 0.1 1 10
Varying λ

0.080

0.085

0.090

0.095

0.100

0.105

0.110

M
A

P
@

5

WMF

Cofactor

U RME

I RME

RME

(a) Recall@5, NDCG@5, MAP@5 on MovieLens-10M. Fix k = 40, and vary λ.

0.001 0.01 0.1 1 10
Varying λ

0.130

0.135

0.140

0.145

0.150

0.155

0.160

R
e
ca

ll
@

5
WMF

Cofactor

U RME

I RME

RME

0.001 0.01 0.1 1 10
Varying λ

0.135

0.140

0.145

0.150

0.155

0.160

0.165

N
D

C
G

@
5

WMF

Cofactor

U RME

I RME

RME

0.001 0.01 0.1 1 10
Varying λ

0.090

0.095

0.100

0.105

0.110

M
A

P
@

5

WMF

Cofactor

U RME

I RME

RME

(b) Recall@5, NDCG@5, MAP@5 on MovieLens-20M. Fix k = 40, and vary λ.

0.001 0.01 0.1 1 10
Varying λ

0.170

0.175

0.180

0.185

0.190

R
e
ca

ll
@

5

WMF

Cofactor

U RME

I RME

RME

0.001 0.01 0.1 1 10
Varying λ

0.180

0.185

0.190

0.195

0.200

N
D

C
G

@
5

WMF

Cofactor

U RME

I RME

RME

0.001 0.01 0.1 1 10
Varying λ

0.115

0.120

0.125

0.130

0.135

M
A

P
@

5

WMF

Cofactor

U RME

I RME

RME

(c) Recall@5, NDCG@5, MAP@5 on TasteProfile. Fix k = 100, τ = 0.2, and vary λ.

Figure 4: Performance ofmodels when varying λwith fixing
the latent dimension size k . Item2Vec did not contain regu-
larization, so we excluded it.

disliking information) at 0.3%, 0.7% and 1.3% on average in Recall,
NDCG, and MAP, respectively. The experimental results confirmed
the effectiveness of Algorithm 2. We note that Algorithm 2 got
converged in up to 4 iterations for all three datasets by the early
stopping condition. Due to the space limitation, we do not include
figures which show the loss over iterations.
RQ2:Parameter sensitivity analysis: We analyze the effects of
the parameters in RME model in order to answer the following re-
search questions: (RQ2-1:) How does RMEworkwhen varying the la-
tent dimension size k?; (RQ2-2:) How does RME model change with
varying λ?; (RQ2-3:) How sensitive is the RME model on an implicit
feedback dataset (e.g. TasteProfile) when varying negative sample
drawing ratio τ ?; and (RQ2-4:) Can RME achieve better performance
with a dynamic setting of regularization hyper-parameters?

Regarding RQ2-1, Figure 3 shows the sensitivity of all compared
models when fixing λ and varying the latent dimension size k
in {30, 40, 50, 60, 70, 80, 90, 100}. It is clearly observed that our

0.2 0.4 0.6 0.8 1.0

τ

0.186

0.187

0.188

R
e
ca

ll
@

5

0.2 0.4 0.6 0.8 1.0

τ

0.1990

0.1995

0.2000

N
D

C
G

@
5

0.2 0.4 0.6 0.8 1.0

τ

0.1315

0.1320

0.1325

M
A

P
@

5

Figure 5: Performance of RME in TasteProfile when varying
negative sample drawing ratio τ with fixing k = 100, λ = 10.

model outperforms the baselines in all datasets. In MovieLens-
10M and MovieLens-20M datasets, all six models downgrade the
performance when the latent dimension size k is over 60. In the
TasteProfile dataset, when increasing k , although all models gain
a higher performance, our model tends to achieve much higher
performance.

In a RQ2-2 experiment, we exclude Item2Vec because this model
does not contain the regularization term.We fixk = 40 inMovieLens-
10M and MovieLens-20M. In TasteProfile dataset, we fix k=100,
τ=0.2. We vary lambda in range {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1,
5, 10}. Then, we report the average results of Recall@5, NDCG@5,
and MAP@5. As shown in Figure 4, the performance of our model
is better than the baselines. In MovieLens-10M and MovieLens-20M
dataset, RME increases its performance when increasing λ up to
1, then its performance goes down when λ is increasing more. In
TasteProfile, RME tends to gain a higher performance and more
outperformed the baselines when λ is increasing.

To understand the sensitivity of our model when varying neg-
ative sample drawing ratio τ in the implicit feedback dataset –
TasteProfile (RQ2-3), we vary τ in {0.2, 0.4, 0.6, 0.8, 1.0}, and fix
k = 100 and λ = 10. Figure 5 shows that when τ increases, our
model degrades with a small amount (e.g. around -0.3% in Recall@5
and NDCG@5, and -0.4% in MAP@5). In NDCG@5, our model
gains the best result when τ = 0.4. We note that our worst case
(when τ = 1.0) is still better than the best baseline presented in
Table 2. This shows that the sensitivity of our model with regard to
the negative sample drawing ratio τ is small/limited.

In our previous experiments, we used a static setting of regular-
ization hyper-parameters by setting λα = λβ = λγ = λδ = λθ =
λ. To explore if a dynamic setting of those regularization hyper-
parameters could lead to better results for RME model (RQ2-4), we
set λα = λβ = λ1, λγ = λδ = λθ = λ2. Then we both vary λ1
and λ2 in {100, 50, 10, 5, 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001} while
fixing the latent dimension size k . Next, we report the NDCG@5
for all 3 datasets. As shown in Figure 6, our model even get a
higher performance with the dynamic setting. For example, it gains
NDCG@5 = 0.1613 when λ1 = 100 and λ2 = 0.005 in MovieLens-
10M dataset. Similarly, NDCG@5 = 0.1639 when λ1 = 0.5, λ2 = 1
in MovieLens-20M dataset. NDCG@5 = 0.2014 when λ1 = 100,
λ2 = 10 in TasteProfile dataset. The dynamic setting produced
0.3∼2% higher results than the static setting presented in Table 2.

So far, we compared the performance of our model and the base-
lines while varying values of hyper-parameters. We showed that
our model outperformed the baselines in all cases, indicating that
our model was less sensitive with regard to the hyper-parameters.
We also showed that our model produced better results under the
dynamic setting.

100
10

1

61

0.1
0.01

0.0010.001
0.01

0.1

62

1
10

0.15

0.16

0.155

100

N
D

C
G

@
5

0.148

0.15

0.152

0.154

0.156

0.158

0.16

(a) MovieLens-10M

100
10

1

61

0.1
0.01

0.0010.001
0.01

0.1

62

1
10

0.15

0.16

0.155

100

N
D

C
G

@
5

0.15

0.152

0.154

0.156

0.158

0.16

0.162

(b) MovieLens-20M

100
10

1

61

0.1
0.01

0.0010.001
0.01

0.1

62

1
10

0.2

0.195

0.19

0.185

100

N
D

C
G

@
5

0.184

0.186

0.188

0.19

0.192

0.194

0.196

0.198

0.2

(c) TasteProfile

Figure 6: Performance of RME under a dynamic setting of
regularization hyper-parameters. Set λα = λβ = λ1, and λγ (+)

= λγ (−) = λθ = λ2.

RQ3: Performance of models for different types of users.We
sorted users by the ascending order of their activity level in terms
of the number of liked items. Then we categorized them into three
groups: (1) cold-start users who were in the first 20% of the sorted
user list (i.e., their activity level is the lowest); (2) warm-start users
who were in between 20% and 80% of the sorted user list; (3) highly
active users who were in the last 20% of the sorted user list (i.e., the
most active users). Then, we measured the performance of all the
compared models for each of the user groups.

Figure 7 shows the performance of all the compared models
in MovieLens-10M, MovieLens-20M and TasteProfile datasets. In
MovieLens-10M (Figure 7(a)), our model significantly outperformed
the baselines and the two variants in all three user groups, improv-
ing Recall@5 by 4.7∼6.7%, NDCG@5 by 6.8∼8.8%, and MAP@5
by 9.2∼11.0% over the best compared method. In MovieLens-20M
dataset (Figure 7(b)), our model significantly outperformed the base-
lines and its variants in 2 groups: cold-start users and warm-start
users. It improved Recall@5 by 16.1%, 4.0%, 0.8%, NDCG@5 by 15.3%,
4.4%, 0.9%, MAP@5 by 17.3%, 5.1%, 1.1% in cold-start users, warm-
start users and highly-active users, respectively. Specially, in both
MovieLens-10M and MovieLens-20M datasets, our model on aver-
age much improved the baselines in cold-start users with Recall@5,
NDCG@5 and MAP@5 by 27.9%, 24.8% and 23.3%, respectively. It
shows the benefit of incorporating disliked item embeddings and
user embeddings. In TasteProfile dataset (Figure 7(c)), our model
significantly improved baselines in highly-active users group, im-
proving Recall@5 by 6.8%, NDCG@5 by 7.4%, and MAP@5 by 10.0%
comparing to the best state-of-the-art method, while improving
Recall@5 by 5.0%, NDCG@5 by 4.9%, and MAP@5 by 5.7% compar-
ing to its best variant. However, in cold-start users and warm-start
users group, RME got an equal performance comparing with the
baselines (i.e., the difference between our model and other methods
are not significant).
RQ4: Joint learning vs separate learning. What if we conduct
learning separately for each part of our model? Will the separate
learning model perform better than our joint learning model? To
answer the questions, we built a separate learning model as fol-
lows: first, we learned latent representations of items by jointly

Cold start(*) Warm start(*) Highly active(*)

user’s activeness types

0.0

0.1

0.2

0.3

R
e
ca

ll
@

5

Item2Vec

WMF

Cofactor

U RME

I RME

RME

Cold start(*) Warm start(*) Highly active(*)

user’s activeness types

0.0

0.1

0.2

0.3

N
D

C
G

@
5

Item2Vec

WMF

Cofactor

U RME

I RME

RME

Cold start(*) Warm start(*) Highly active(*)

user’s activeness types

0.0

0.1

0.2

M
A

P
@

5

Item2Vec

WMF

Cofactor

U RME

I RME

RME

(a) Dataset: MovieLens-10M. RME outperformed baselines in all three groups (p-value < 0.05).

Cold start(*) Warm start(*)Highly active(ns)

user’s activeness types

0.0

0.1

0.2

0.3

R
e
ca

ll
@

5

Item2Vec

WMF

Cofactor

U RME

I RME

RME

Cold start(*) Warm start(*)Highly active(ns)

user’s activeness types

0.0

0.1

0.2

0.3

N
D

C
G

@
5

Item2Vec

WMF

Cofactor

U RME

I RME

RME

Cold start(*) Warm start(*)Highly active(ns)

user’s activeness types

0.00

0.05

0.10

0.15

0.20

M
A

P
@

5

Item2Vec

WMF

Cofactor

U RME

I RME

RME

(b) Dataset: MovieLens-20M. RME outperformed baselines in cold-start and highly-active user groups (p-value < 0.05).

Cold start(ns) Warm start(ns)Highly active(*)

user’s activeness types

0.0

0.1

0.2

R
e
ca

ll
@

5

Item2Vec

WMF

Cofactor

U RME

I RME

RME

Cold start(ns) Warm start(ns)Highly active(*)

user’s activeness types

0.0

0.1

0.2

N
D

C
G

@
5

Item2Vec

WMF

Cofactor

U RME

I RME

RME

Cold start(ns) Warm start(ns)Highly active(*)

user’s activeness types

0.00

0.05

0.10

0.15

M
A

P
@

5

Item2Vec

WMF

Cofactor

U RME

I RME

RME

(c) Dataset: TasteProfile. RME outperformed baselines in highly-active user group (p-value < 0.05).

Figure 7: Performance of models for three user groups. Non-directional two-sample t-test was performed. * indicates signifi-
cant (p-value < 0.05), and ns indicates not significant. The error bars are the average of standard errors in the 5 folds.

decomposing two SPPMI matrices X (+) and X (−) of liked item-item
co-occurrences and disliked item-item co-occurrences, respectively.
Then, we learned user’s latent representations by minimizing the
objective function in Equation (4), where the latent representations
of items and item contexts were already learned and fixed. Next,
we compared our joint learning model (i.e., RME) with the separate
learning model in MovieLens-10M, MovieLens-20M, and TastePro-
file datasets. Our experimental results show that our joint learning
model outperformed the separate learning model by significantly
improving Recall@5, NDCG@5 and MAP@5 at least 12.1%, 13.5%
and 17.1%, respectively (p-value < 0.001).

6 RELATEDWORK
Latent factor models (LFM): Some of the first works in recom-
mendation focused on explicit feedback datasets (name some: [15,
30, 31]). Our proposed method worked well for both explicit and
implicit feedback settings with almost equal performances.

In implicit feedback datasets, which have been trending recently
due to the difficulty of collecting users’ explicit feedback, properly
treating/modeling missing data is a difficult problem [4, 21, 27].
Even though missing values are a mixture of negative feedback and
unknown feedback, many works treated all missing data as nega-
tive instances [8, 14, 27, 34], or sampled missing data as negative
instances with uniform weights [28]. This is suboptimal because
treating negative instances and missing data differently can fur-
ther improve recommenders’ performance [13]. [25] proposed a

bagging of ALS learners [14] to sample negative instances. He et al.
[13] assumed that unobserved popular items have a higher chance
of being negative instances. In our work, we attempted to non-
uniformly sample negative instances in implicit feedback datasets
and treated them as additional information to enhance our model
performance. Specifically, we (i) designed an EM-like algorithm
with a softmax function to draw personalized negative instances
for each user; (ii) employed a word embedding technique to exploit
the co-occurrence patterns among disliked items, further enriching
their latent representations.
LFM with auxiliary information: In latent factor models, addi-
tional sources of information were incorporated to improve col-
laborative filter-based recommender systems (e.g., user reviews,
item categories, and article information [2, 10, 23, 35]). However,
we only used an user-item-preference matrix without requiring
additional side information. Adding the side information into our
model would potentially further improve its performance. But, it is
not a scope of our work in this paper.
LFM with item embeddings: [36] incorporated message embed-
ding for retweet prediction. Cao et al. [6] co-factorized the user-
item interaction matrix, user-list interaction matrix, and item-list
co-occurrences to recommend songs and lists of songs for users.
[20] learned liked item embeddings with an equivalent matrix fac-
torization method of skip-gram negative sampling (SGNS), and
performed joint learning with matrix factorization. [3] exploited
item embeddings using the SGNS method for item collaborative

filtering. So far, the closest techniques to ours [3, 20] only con-
sidered liked item embeddings, but we proposed a joint learning
model that not only considered LFM using matrix factorization
with liked item embeddings, but also user embeddings and disliked
item embeddings. Since integrating co-disliked item embedding
is non-trivial for implicit feedback datasets, we also proposed an
EM-like algorithm for extracting personalized negative instances
for each user.
Word embeddings: Word embedding models [24, 26] represent
each word as a vector of real numbers called word embeddings.
In [19], the authors proposed an implicit matrix factorization that
was equivalent to word2vec [24]. To extend word2vec, researchers
proposed models that mapped paragraphs or documents to vectors
[9, 18]. In our work, we applied word embedding techniques to
learn latent representations of users and items.

7 CONCLUSION
In this paper, we proposed to exploit different co-occurrence in-
formation: co-disliked item-item co-occurrences and user-user co-
occurrences, which were extracted from the user-item interaction
matrix. We proposed a joint model combining WMF, co-liked em-
bedding, co-disliked embedding and user embedding, following the
recent success of word embedding techniques. Through compre-
hensive experiments, we successfully demonstrated that our model
outperformed all baselines, significantly improving NDCG@20 by
5.6% in MovieLens-10M dataset, by 5.3% in MovieLens-20M dataset,
and by 4.3% in TasteProfile dataset.We also analyzed how ourmodel
worked on different types of users in terms of their interaction ac-
tivity levels. We observed that our model significantly improved
NDCG@5 by 20.2% in MovieLens-10M, by 29.4% in MovieLens-20M
for the cold-start users group. In the future extension of our model,
we are interested in selecting contexts for users/items by setting a
timestamp-based window size for timestamped datasets. In addi-
tion, we are also interested in incorporating co-disliked patterns
among users (i.e., co-disliked user embeddings) into our model.

8 ACKNOWLEDGMENT
This work was supported in part by NSF grants CNS-1755536, CNS-
1422215, DGE-1663343, CNS-1742702, DGE-1820609, Google Faculty
Research Award, Microsoft Azure Research Award, and Nvidia GPU
grant. Any opinions, findings and conclusions or recommendations
expressed in this material are the author(s) and do not necessarily
reflect those of the sponsors.

REFERENCES
[1] Deepak Agarwal and Bee-Chung Chen. 2009. Regression-based latent factor

models. In SIGKDD. 19–28.
[2] Amjad Almahairi, Kyle Kastner, Kyunghyun Cho, and Aaron Courville. 2015.

Learning distributed representations from reviews for collaborative filtering. In
RecSys. 147–154.

[3] Oren Barkan and Noam Koenigstein. 2016. Item2vec: neural item embedding for
collaborative filtering. In MLSP Workshop. 1–6.

[4] Immanuel Bayer, Xiangnan He, Bhargav Kanagal, and Steffen Rendle. 2017. A
generic coordinate descent framework for learning from implicit feedback. In
WWW. 1341–1350.

[5] Marcel Blattner, Yi-Cheng Zhang, and Sergei Maslov. 2007. Exploring an opinion
network for taste prediction: An empirical study. Physica A: Statistical Mechanics
and its Applications (2007), 753–758.

[6] Da Cao, Liqiang Nie, Xiangnan He, Xiaochi Wei, Shunzhi Zhu, and Tat-Seng
Chua. 2017. Embedding Factorization Models for Jointly Recommending Items
and User Generated Lists. In SIGIR. 585–594.

[7] Mukund Deshpande and George Karypis. 2004. Item-based top-n recommenda-
tion algorithms. TOIS (2004), 143–177.

[8] Robin Devooght, Nicolas Kourtellis, and Amin Mantrach. 2015. Dynamic matrix
factorization with priors on unknown values. In SIGKDD. 189–198.

[9] Nemanja Djuric, Hao Wu, Vladan Radosavljevic, Mihajlo Grbovic, and Narayan
Bhamidipati. 2015. Hierarchical neural language models for joint representation
of streaming documents and their content. In WWW. 248–255.

[10] Elie Guàrdia-Sebaoun, Vincent Guigue, and Patrick Gallinari. 2015. Latent tra-
jectory modeling: A light and efficient way to introduce time in recommender
systems. In RecSys. 281–284.

[11] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. In WWW. 507–
517.

[12] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In WWW. 173–182.

[13] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast
matrix factorization for online recommendation with implicit feedback. In SIGIR.
549–558.

[14] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In ICDM. 263–272.

[15] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted
collaborative filtering model. In SIGKDD. 426–434.

[16] Yehuda Koren. 2009. Collaborative filtering with temporal dynamics. In SIGKDD.
447–456.

[17] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer (2009).

[18] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and
documents. In ICML. 1188–1196.

[19] Omer Levy and Yoav Goldberg. 2014. Neural word embedding as implicit matrix
factorization. In NIPS. 2177–2185.

[20] Dawen Liang, Jaan Altosaar, Laurent Charlin, and David M Blei. 2016. Factor-
ization meets the item embedding: Regularizing matrix factorization with item
co-occurrence. In RecSys. 59–66.

[21] Dawen Liang, Laurent Charlin, James McInerney, and David M Blei. 2016. Mod-
eling user exposure in recommendation. In WWW. 951–961.

[22] Bing Liu, Wee Sun Lee, Philip S Yu, and Xiaoli Li. 2002. Partially supervised
classification of text documents. In ICML. 387–394.

[23] Julian McAuley and Jure Leskovec. 2013. Hidden factors and hidden topics:
understanding rating dimensions with review text. In RecSys. 165–172.

[24] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
NIPS. 3111–3119.

[25] Rong Pan, Yunhong Zhou, Bin Cao, Nathan N Liu, Rajan Lukose, Martin Scholz,
and Qiang Yang. 2008. One-class collaborative filtering. In ICDM. 502–511.

[26] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In EMNLP. 1532–1543.

[27] István Pilászy, Dávid Zibriczky, and Domonkos Tikk. 2010. Fast als-based matrix
factorization for explicit and implicit feedback datasets. In RecSys. 71–78.

[28] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In UAI. 452–
461.

[29] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John
Riedl. 1994. GroupLens: an open architecture for collaborative filtering of netnews.
In CSCW. 175–186.

[30] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. 2007. Restricted
Boltzmann machines for collaborative filtering. In ICML. 791–798.

[31] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
collaborative filtering recommendation algorithms. In WWW. 285–295.

[32] Harald Steck. 2010. Training and testing of recommender systems on data missing
not at random. In SIGKDD. 713–722.

[33] Xiaoyuan Su and TaghiM. Khoshgoftaar. 2009. A Survey of Collaborative Filtering
Techniques. Adv. Artificial Intellegence (2009).

[34] Maksims Volkovs and Guang Wei Yu. 2015. Effective latent models for binary
feedback in recommender systems. In SIGIR. 313–322.

[35] Chong Wang and David M Blei. 2011. Collaborative topic modeling for recom-
mending scientific articles. In SIGKDD. 448–456.

[36] Can Wang, Qiudan Li, Lei Wang, and Daniel Dajun Zeng. 2017. Incorporating
message embedding into co-factor matrix factorization for retweeting prediction.
In IJCNN. 1265–1272.

[37] Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, and Inderjit S Dhillon. 2014. Parallel matrix
factorization for recommender systems. Knowledge and Information Systems
(2014), 793–819.

[38] Weinan Zhang, Tianqi Chen, Jun Wang, and Yong Yu. 2013. Optimizing top-n
collaborative filtering via dynamic negative item sampling. In SIGIR. 785–788.

[39] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. 2008. Large-
scale parallel collaborative filtering for the netflix prize. In International Confer-
ence on Algorithmic Applications in Management. 337–348.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Our RME Model
	3.1 WMF, Embedding and RME model
	3.2 Optimization
	3.3 Complexity Analysis

	4 Inferring Disliked Items in Implicit Feedback datasets
	5 Experiments
	5.1 Experimental Settings
	5.2 Experimental Results

	6 Related Work
	7 Conclusion
	8 ACKNOWLEDGMENT
	References

