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Abstract—With the widespread online social networks, hate
speeches are spreading faster and causing more damage than ever
before. Existing hate speech detection methods have limitations
in several aspects, such as handling data insufficiency, estimat-
ing model uncertainty, improving robustness against malicious
attacks, and handling unintended bias (i.e., fairness). There
is an urgent need for accurate, robust, and fair hate speech
classification in online social networks. To bridge the gap, we
design a data-augmented, fairness addressed, and uncertainty
estimated novel framework. As parts of the framework, we
propose Bidirectional Quaternion-Quasi-LSTM layers to balance
effectiveness and efficiency. To build a generalized model, we
combine five datasets collected from three platforms. Experiment
results show that our model outperforms eight state-of-the-art
methods under both no attack scenario and various attack
scenarios, indicating the effectiveness and robustness of our
model. We share our code along with combined dataset for better
future research1.

Index Terms—hate speech detection, fairness, robustness

I. INTRODUCTION

Hate speech has long been causing annoying disturbances
and damage to many people’s lives by misleading the topic
trends, shaping bias and discrimination, aggregating and aggra-
vating conflicts among different religious/gender/racial groups.
With the rapid growth of online social networks, hate speech
is spreading faster and affecting a larger population than ever
before in human history [1]. Therefore, quickly and accurately
identifying hate speech becomes crucial for mitigating the
possible conflicts, keeping a harmonic and healthy online
social environment, and protecting our society’s diversity.

Researchers have proposed various methods for detecting
hate speech [2]–[7]. However, existing approaches in hate
speech detection have the following limitations.

First, the prior work mostly used insufficient data, and the
quality of data was varied. For example, used/shared hate
speech datasets contain a limited amount of data [8]–[10].
The definition of “hate speech” varies across works, and
they inevitably affect the researchers’ different methodologies
and criteria for collecting, filtering, and labeling data [11]–
[14]. These may cause unintended bias and errors inside

1https://github.com/GMouYes/BiQQLSTM HS

the datasets. In addition, some researchers only focused on
data obtained from a single platform/website, which puts
constraints on the model’s generalizability to other platforms.
Second, the importance of balancing between effectiveness and
efficiency in model designs is often ignored. Prior works often
only focused on improving effectiveness. Third, prior works
in hate speech detection did not thoroughly test and adapt data
augmentation techniques (e.g., character-level perturbation,
word-level synonym replacement, natural language generation)
toward building robust models against various attacks and text
manipulation. Fourth, fairness in hate speech detection models
is less addressed, although fairness has become an important
issue in other domains such as sentiment classification [15].
Lastly, the existence of predictive uncertainty of the hate
speech detection models shall be taken better care of. We need
a mechanism to balance the bias and variance of predictions.

In this paper, we embrace the hate speech definition as
“abusive speech targeting specific group characteristics” [16]
to take both generality and specificity of hate speeches into
consideration. We further propose a novel framework for hate
speech detection to overcome the aforementioned limitation
and challenges. In particular, we combine five datasets col-
lected from three platforms to build a generalized model. The
framework consists of our proposed Bidirectional Quaternion-
Quasi-LSTM (BiQQLSTM) layers to balance effectiveness
and efficiency. To handle the fairness and predictive uncer-
tainty of the model, our loss function narrows the gap between
original texts and their counterfactual logit pairs and leverages
tunable parameters for estimating true uncertainty. To build
a robust model against various text manipulation/attacks, we
adapt and customize existing data augmentation techniques for
the hate speech domain.

The major contributions of our work are as follows:

• We propose a BiQQLSTM framework, which customizes
the original Bidirectional Quasi-RNN by replacing real-
valued matrix operations with quaternion operations. The
quaternion operations help improving effectiveness, and
the quasi-RNN helps reducing running time (i.e., improv-
ing efficiency).

• We incorporate fairness into our framework to mitigate
unintended bias and further estimate the model’s predictive
uncertainty to further improve performance.978-1-6654-3902-2/21/$31.00 ©2021 IEEE



• We propose an augmentation strategy with: (i) a gener-
ative method to resolve data insufficiency; (ii) an op-
timal perturbation based augmentation combinations
for better model robustness under malicious attacks; and
(iii) a filtering mechanism to improve the augmented data
quality and reduce data uncertainty and injected noise.

• Extensive experiments show that our proposed frame-
work outperforms 8 state-of-the-art baselines with 5.5%
improvement under no attack scenario; and up to 3.1%
improvement under various attack scenarios compared
with the best baseline, confirming the effectiveness and
robustness of our approach.

II. RELATED WORK

A. Hate Speech Detection

Both [16] and [17] conducted in-depth analysis of hate
speech. Arango et al. [18] analyzed a model validation prob-
lem of hate speech detection. For classification tasks, Nobata et
al. [2] tried various types of features and reported informative
results. Recent papers leveraged CNNs, LSTMs and attention
mechanisms for better detection results [4]–[7], [19], [20].
Djuric et al. [3] experimented on using paragraph-level em-
beddings for hate speech detection. Mou et al. [21] leveraged
both LSTMs on word/word-piece embeddings and CNNs on
character/phonetic embeddings. Intentional manipulation made
by hate speech posters can possibly evade the prior hate speech
detection methods [22]–[25].

Researchers [8], [9], [11]–[14] released their annotated
hate speech datasets in public. We made use of the latter
five datasets in our research and described them in detail in
Section V. Others [26], [27] provided counter speech datasets
for better analysis of hate speech. Aside from these public
datasets, Tran et al. [28] leveraged datasets from Yahoo News
and Yahoo Finance for building a hate speech detector. Most
researchers only used a single-platform dataset (mainly on
Twitter), so their models may not be generalized well for
detecting hate speech on other platforms. Unlike the prior
work, we trained our model with data from three platforms
to make it more generalizable.

B. Data Augmentation

Data augmentations mainly contribute to make a model gen-
eralizable and robust by providing data varieties. Unlike our
work, existing methods usually emphasized either side (i.e.,
generalizable vs. robust), but very few of them addressed both
perspectives in one framework. Generally speaking, improving
generalization will consequently improve model performance
in a standard/no attack scenario. Improving robustness can
sometimes even hurt performance. However, it will help mit-
igate the impact of malicious attacks (manipulations).

Augmentations can vary from perturbation methods to gen-
erative methods. Perturbation methods creates (usually) small
and controllable changes to the given original samples [23],
[29]–[41]. They usually have low costs and are easy to scale.
However, automatic perturbations will inevitably change the
original context, which sometimes hurts the contents’ quality.

Changes in some significant words can even cause label
flipping problems [42]. Generative methods enable a deep
learning network to capture the pattern of a given corpus of
the dataset and then generate similar data from a given starter
(or nothing) [43]–[47].

To resolve these problems, we incorporated five representa-
tive perturbation methods and explored their optimal combi-
nations for improving robustness [29], [31], [36], [39], [48].
We also trained a fine-tuned task-specific generative model for
improving general performance. Lastly, we designed a filtering
mechanism on these augmentation methods to improve data
quality, reducing injected noise, and minimize data uncertainty.

C. Fairness and Uncertainty Estimation

Fairness has been recently addressed and discussed in
various domains such as business activities [49], recommen-
dation systems [50], [51], and general language models [52].
Early literature treated fairness as “equality of opportunity”
in general classification problems [53], [54], and researchers
explored theoretical proofs and methodologies for improving
fairness [55]–[58]. Researchers in other domains proposed var-
ious uncertainty estimation approaches such as ensemble mod-
els [59], dropout methods [60] and probability estimation [61],
[62]. However, researchers in the hate speech domain did not
pay much attention to fairness and uncertainty estimation.

III. PRELIMINARY

In this section, we cover background on Quaternion algebra
and networks and Quasi-RNNs we used to design our model.

A. Quaternion Algebra and Networks

We value Quaternion with its capability of 1) capturing
internal dependencies among network features; and 2) reduc-
ing learnable free parameters, thus reducing possible network
overfitting on the data. We adapt them for the hate speech
detection task for better-facilitating network performance. Be-
low, we introduce 1) Quaternion networks; and 2) the notations
of quaternions and operations among the inputs, outputs, and
weights of our proposed BiQQLSTM.

Quaternion networks have been applied to computer vi-
sion [63] and human motion classification [64], [65], where
rotations to the 3D image or 3D space coordination were
common and essential operations. It gained popularity in
recommender systems [66], [67], and the natural language
processing domain [28], [68], [69]. Parcollet et al. [70] es-
pecially proposed quaternion recurrent neural networks for
speech recognition.

A quaternion Q is a complex number defined in four
dimensional space

Q = r1 + xi + yj + zk (1)

where r, x, y, z are real numbers, and 1, i, j, k are the quater-
nion unit basis. Specifically, for the imaginary parts, we have

i2 = j2 = k2 = ijk = −1 (2)



Fig. 1. The overview of our framework.

The conjugate Q∗ of Q is represented as

Q∗ = r1 − xi − yj − zk (3)

The norm of Q is represented as

|Q| =
√

r2 + x2 + y2 + z2 (4)

Thus the unit quaternion Q◁ can be written as

Q◁ =
Q√

r2 + x2 + y2 + z2
(5)

Given two quaternions Q1 = r11+x1i+ y1j+ z1k and Q2 =
r21 + x2i + y2j + z2k, the Hamilton product of Q1 and Q2

encodes latent dependencies between latent features

Q1 ⊗Q2 = (r1r2 − x1x2 − y1y2 − z1z2)1+
(r1r2 + x1x2 + y1y2 − z1z2)i+
(r1r2 − x1x2 + y1y2 + z1z2)j+
(r1r2 + x1x2 − y1y2 + z1z2)k

(6)

The Hamilton product captures the internal latent relations
within the features encoded in a quaternion, so it provides
better network performance [28], [70].
For an activation function α on real values, the corresponding
activation β on a quaternion Q can be defined as

β(Q) = α(r)1 + α(x)i + α(y)j + α(z)k (7)

To transform a real-valued vector V ∈ R4n into a Quaternion,
we simply divide it into 4 parts, r, x, y, z where each part is
in Rn. To transform a Quaternion representation into a real-
valued vector, we concatenate all 4 parts together.

B. Quasi-RNNs

Quasi-Recurrent Neural Networks [71] (QRNN) were pro-
posed to improve traditional RNN structures’ efficiency. How-
ever, this approach still keeps most of the merits of the
recurrent designs. The authors of QRNN tested their model
across multiple tasks such as sentiment classification and
neural machine translation and got comparable results to the
state-of-the-art LSTM design.

We value both effectiveness and efficiency in our network
design. While quaternions effectively capture the internal

dependencies and reduce learnable free parameters, they would
cause longer training time due to more computation operations.
Therefore, we adapt Quasi-RNNs into our framework to speed
up general recurrent designs. We are the first to test its effec-
tiveness in the hate speech detection domain and customize it
with quaternion operations to the best of our knowledge.

IV. OUR PROPOSED FRAMEWORK

Fig. 1 depicts our proposed framework. We describe each
part in the following subsections.

A. Data preprocessing

We replace sensitive personal information with specific
unique tokens to protect user privacy and avoid bias against a
person. In particular, each link/URL and each mention (e.g.,
@bob) are replaced with “URL” and “MENTION”, respec-
tively. Domain-specific tags such as “rt”, “fav” are removed
to make a model generalizable. After this preprocessing, we
expand necessary contractions related to custom conventions
and remove punctuation.

B. Generating CLP during training time

We believe similarly sensitive entities deserve the same level
of respect in hate speech detection. Specifically, assume we
have a sensitive entity pair A and B deemed equally important.
Then, in general, replacing B with a hateful speech targeting
A should also be treated as hate speech and vice versa. We
thus introduce an explicit fairness module into our network.

We follow [15] for generating counterfactual logit pairs
(CLP). The ultimate goal of CLP is to minimize the classifica-
tion difference between the original text and the CLP through
the network. For example2:

• Hate speech from a public dataset: “The lesbian student
will probably find ...”

• One possible CLP: “The homosexual student will probably
find ...”

2We minimized showing hate speech examples. They do not represent
the views of the authors.



In this example, the target transformed from lesbian to ho-
mosexual people. However, one can easily tell that both the
original speech and the generated CLP can be viewed as
apparent hate speech.

Such a CLP of the input text (i.e., a message) is created
in each training iteration by replacing certain sensitive named
entities with their equally essential counterfactuals. Both the
original input text and the CLP go through the same deep
learning architecture, and the architecture will output pre-
dictive probabilities for the two strings (i.e., ŷ, ŷCLP ). A
special loss described in Section IV-D will try to minimize
the difference between these two probabilities in detail.

C. Deep Learning Classifier

We design a novel deep learning classifier named BiQQL-
STM, utilizing both quasi-rnns and quaternion operations.
As mentioned in Section III-A and Section III-B, quaternion
operations effectively capture internal dependencies among the
features and reduce the number of learnable parameters, thus
preventing the model from overfitting. Meanwhile, quasi-rnns
accelerate training. By combining both components, we aim to
improve our model’s effectiveness and efficiency. To the best
of our knowledge, no prior works combine both quaternion
and quasi-rnns. We are also the first to introduce quasi-rnns
to the hate speech classification domain.

Fig. 1 shows the input, output, network components as well
as loss calculations. Given that an input text T is represented
as a string sequence, our framework will predict whether it
is a hate speech or a legitimate speech. The input text is
first tokenized and later goes through an embedding layer. We
leveraged word-piece tokenizer and BERT as our embedder.
After tokenization, T is segmented into a n word-pieces
sequence, represented as W . The matrix of the embedding
vectors is denoted by Xi ∈ Rn×d, where n is the sequence
length, and d is the dimension of the embedding vector.

W = (w1, w2, ..., wn) = tokenize(T )

[Xr
i , X

x
i , X

y
i , X

z
i ] = Xi = embed(W )

(8)

As mentioned in Section III-A, Xi is then transformed into
quaternions [Xr

i , X
x
i , X

y
i , X

z
i ] and fed to our proposed multi-

layer Bidirectional Quaternion-Quasi-LSTM (BiQQLSTM) for
capturing and extracting useful information out of the rich
embeddings for classification (in practice, we found two layers
performed the best). The BiQQLSTM is made up of the
backbone of Quasi-LSTM, but all of its inputs, weights,
outputs are replaced as quaternions. All matrix operations,
including dot products and activations, are also replaced with
quaternions operations in four-dimensional complex space.

More specifically, the Bi-Quaternion-Quasi-LSTM change
the gates in classic Bi-LSTMs, from recurrent designs on both
inputs and hidden states to convoluted designs on solely inputs,
such that the representations become:

F,O, I = σ([Wf ,Wo,Wi] ∗X) (9)

where ∗ means convolution operation, F,O, I represents forget
gate, output gate and input gate. Meanwhile, the cell state and
the hidden state still preserve their recurrent manner:

ct = ft ⊙ ct−1 + it ⊙ zt

ht = Ot ⊙ ct
(10)

In this way, computations are accelerated in gates as convolu-
tions can be computed in parallel, where local dependencies
(interpreted as n-grams) are captured, while the long-term
dependencies remain in cell states and hidden states. Note that
all the above notations are actual quaternion matrices rather
than real-value matrices.

We show the visualization of details of each recurrent cell’s
design in the upper part of Fig. 1. In the figure, σ and tanh are
activation functions, ⊗ represents element-wise multiplication,
and ⊕ represents element-wise addition. Another difference
for the Bi-QQLSTM against traditional LSTM is: the tanh
activation originally applied on ct in the calculation of ht is
omitted. We tested and compared the performance between
using VS. omitting it and found no significant difference. Thus
for model simplicity, we opt in favor of not applying the extra
tanh function.

In this way, we combine quaternion operations’ performance
boost and Quasi-LSTM’s faster running time. The BiQQLSTM
layers’ final output is denoted as [Xr

o , X
x
o , X

y
o , X

z
o ], it is

then transformed from quaternions back to real values Xo ∈
Rn×2∗4h, where 4h is the hidden dimension of BiQQLSTM
per direction for all four parts in a quaternion.

Xo = [Xr
o , X

x
o , X

y
o , X

z
o ] = BiQQLSTM([Xr

i , X
x
i , X

y
i , X

z
i ]) (11)

Xo is then fed to three different mechanisms for reducing noise
and extracting useful information: mean pooling, max pooling,
and self-attention. The self-attention automatically learns the
importance of each word and addresses it differently, while
the max pooling and the mean pooling keep the statistical
information across all words. The results of the three extraction
methods are concatenated to form a vector V ∈ R2∗3∗4h.
Similar approaches were effective in early language models
and applications [21], [72], [73].

Vavg = AV G Pool(Xo)

Vmax = MAX Pool(Xo)

Vattn = ATTN(Xo)

V = Vavg ⊕ Vmax ⊕ Vattn

(12)

Lastly, V is fed to linear layers with activations to make a
final prediction ŷ ∈ [0, 1], indicating a probability of the input
text being hate speech:

ŷ = p(y = 1|T ) = MLP (V ) (13)

Similarly, the CLP of the input will also go through the same
network and get a probability representation, denoted as ŷCLP .

D. Loss Function

Our loss function is designed to consider 1) modules for
lowering predictive uncertainty, and 2) fairness for mitigating
unintended bias in mixed data.



More specifically, Yao et al. [74] reported scoring rules
could overestimate uncertainty (i.e., negative log-likelihood
loss – called NLL loss) or underestimate uncertainty (i.e.,
mean square error loss – called MSE loss). They proved and
observed that a weighted combination of them could estimate
actual uncertainty more accurately in certain scenarios. In
general, NLL loss mainly focuses on a macro-level (class-
wise) optimization, while MSE loss mainly focuses on a
micro-level (instance-wise) optimization. Intuitively they can
co-operate with each other. It is worth noting that leveraging
MSE loss in classification tasks has recently shown its unique
advantage in both theory and experiments [75]. Fairness was
also discussed in detail in Section II-C. We systematically
introduce these valuable prior knowledge into the hate speech
detection domain by adding gap loss, which measures the
difference between an input text and a CLP.

The loss Function L is a weighted sum of three parts: (i) the
weighted mean square loss Lmse; (ii) the weighted negative
log-likelihood loss Lnll; and (iii) the gap loss Lgap.

Lmse =

K∑
k=1

wk(yk − ŷk)
2

Lnll =

K∑
k=1

−wk log ŷk

Lgap =

K∑
k=1

|ŷk − ŷ′
k|

L = γLmse + (1− γ)Lnll + λLgap + ω

L∑
l=1

||W (l)||22

(14)

where the last term in L is the L2 regularization, γ, λ ∈ [0, 1]
are tunable hyperparameters. yk is the label, ŷk is the prob-
ability for original input and ŷ′k is the probability for CLP.
As illustrated above, by combining Lmse and Lnll with a
tunable weight γ, we can approximate the true uncertainty
of the model to improve its effectiveness. λ being larger will
enforce the model to emphasize more on the fairness [15].

V. DATA

A. Dataset

To conduct experiments, we used datasets from 3 platforms:
Twitter: Waseem’16 [13] includes 17,325 tweets which were
manually labeled into sexism, racism, offensive, and neither.
The messages’ labels were automatically identified, and the
reliability and consistency of labels were manually investigated
and verified. Offensive speeches do not necessarily lead to hate
speech, we filtered out the offensive messages; however, we
kept the sexism and racism as hate speech. Davidson’17 [12]
includes 24,783 tweets, consisting of offensive speech, hate
speech, and neither. Similarly, we removed offensive speech.
Elsherief’18 [14] contains only hate speech messages crawled
via Twitter Streaming API with specific keywords and hash-
tags defined by Hatebase3. To recognize the anti-hate tweets,
which may also contain hate speech terms, the authors cleaned

3https://www.hatebase.org/

the dataset by using Perspective API4 and conducted manual
checking during the experiment.

Forum: Degibert’18 [8] contains hate and legitimate speeches

from forums under possible bias in white supremacy.

Wiki: Wulczyn’17 [9]: contains 115k instances where the

majority (88%) of them are legitimate speeches. We leveraged
all hate speeches and a sample of legitimate ones to prevent
the combined dataset from over imbalanced.

After retrieving these speeches, we preprocess them and
keep speeches longer than three tokens. Overall, our combined
dataset consists of 30,762 hate speech messages and 28,693
legitimate messages. Several notes about these datasets need
to be clarified and emphasized:

• All datasets are publicly available and have been used in
several prior works.

• Unlike previous works [12], [21], we intentionally chose
data across different datasets to enable the best general-
ity of our model. We carefully ensure no single dataset
overwhelm others in hate class.

• To further justify the data distribution on each platform.
We provide statistics in our github repo page.

B. Our Adaptation Method for Data Augmentation

We leverage a combination of augmentation methods to
push the model performance and robustness to its new limit,
namely: Charswap [21], [36], [79]; Wordnet [29]; Embed-
ding [48]; Checklist [31]; Easydata [39]; NLG. We make
crucial adaptations to the first 5 perturbation methods for
reducing data uncertainty. While for the NLG method, we
train our task-specific generative model and propose filtering
mechanisms for high-quality augmented data. We expect the
first 5 methods to provide variations for better robustness while
the NLG method for better general performance.

Perturbation methods might cause label flipping problems,
where the context of the sentence would be changed signifi-
cantly because of certain words’ change. We prevented/filtered
out changes on certain sensitive words dictionary provided in
[14]. Moreover, negations such as “no” and “not” were also
explicitly prohibited from word addition/deletion methods to
prevent augmentations from accidentally reversing the sen-
tence meanings. For Embedding methods, we applied stricter
rules by choosing a threshold 0.8 [79] (i.e., a word was only
replaced with another word, which has at least 80% embedding
similarity), and the POS tag matching was required [41].

For NLG methods, we finetuned the pre-trained GPT-2
medium separately on hate speeches and legitimate speeches
in the training set while keeping the validation set and test
set untouched, so resulting in a hate speech generator and a
legitimate generator. We further proposed three methods for
controlling NLG’s generated content quality:

1) We used nucleus sampling [80] in decoding to lower the
chance of repeated words generation.

4https://github.com/conversationai/perspectiveapi



TABLE I
RESULTS ON THE COMBINED DATASET. BEST BASELINE: UNDERLINED, AND BETTER RESULTS THAN BEST BASELINE: BOLD.

Models legit hate overall
pre rec pre rec acc macF1 MCC

Davidson’17 [12] .818.048 .841.133 .862.090 .817.083 .828.034 .826.037 .669.064
Kim’14 [76] .843.015 .852.033 .861.023 .851.022 .852.008 .851.008 .703.016
Badjatiya’17 [19] .867.016 .865.023 .875.017 .875.020 .870.005 .870.005 .741.010
Waseem’16 [13] .800.007 .918.006 .911.006 .785.009 .849.006 .849.007 .707.012
Zhang’18 [7] .866.014 .840.036 .856.025 .878.019 .860.009 .860.009 .720.017
Indurthi’19 [77] .872.026 .869.034 .879.024 .879.032 .874.005 .874.005 .750.010
BERT + LR [78] .853.005 .866.005 .874.004 .861.006 .864.004 .863.004 .727.008
BERT CLS [78] .863.007 .874.011 .881.008 .870.008 .872.003 .872.003 .744.006
BiQQLSTM .909.009 .931.011 .934.009 .913.010 .922.005 .922.005 .844.011
BiQQLSTM CLP .915.010 .937.012 .940.011 .919.010 .927.009 .927.009 .855.018

2) We finetuned another pre-trained BERT model on The
Corpus of Linguistic Acceptability (CoLA) [81] and
used it for removing generated contents which had low
linguistic acceptability.

3) We believe the readability is also important in generated
contents. We used the Flesch readability ease score
(FRES) [82] (a lower score means it is harder to read)
and kept those speeches with no less than a score of
30 (lower than 30 refers to “very difficult to read” or
“extremely difficult to read”) and no larger than 121.22
(the highest possible value in theory).

In addition, we manually checked a randomly sampled 100
hate speeches and 100 legitimate speeches from each augmen-
tation method. 1,199 out of 1,200 samples did not have any
mislabeling, confirming our adaptation method’s high quality.
The only mislabeled sample was created by EasyData method,
which deleted context-related words, making the message
incomplete. This result gave us a Wilson score confidence
interval of [0.9929, 0.9999] under confidence level 99%.

C. Data Preparation for the Attack Scenario

In essence, the main reason why data augmentation in-
creases model robustness is that injecting mutations in advance
(before testing) provides a foreseeable future during training.
The model will hopefully learn to capture attack patterns. To
simulate the attack scenario where malicious users employ text
manipulation/generation methods to generate hate speeches,
we used the same data augmentation methods described in
Section V-B to generate manipulated texts. Unlike the previous
data augmentation, in which a source of each method was the
training set, we used the hate speeches in the test set as a
source to generate manipulated texts. It means the outcome
of the data augmentation and the outcome of this attack
scenario would be different. For each attack method, we
generated 1,000 hate speeches. To ensure the quality of the
generated/manipulated texts, we randomly sampled 100 hate
speeches from the 1,000 hate speeches and manually checked
them. No mislabeling was found.

VI. EXPERIMENT

A. Experiment Setting

1) Baselines and our models: We chose 8 state-of-the-
art baselines to compare against our model: Davidson’17
[12], Kim’14 [76], Badjatiya’17 [19], Waseem’16 [13],

Waseem’16 [13], Zhang’18 [7], Indurthi’19 [77], BERT
+ LR [78], and BERT CLS [78]. We are providing a more
detailed description in out github repo due to the space limit.

To ensure a fair comparison, we used the same embedding
BERT base [78] for the five baselines: [7], [19], [76], BERT +
LR, and BERT CLS. Since the other three baselines originally
used either handcrafted features or their own embeddings,
which produced better results, so we kept their own design. It
is worth noting that all the above baselines are widely adopted
as state-of-the-art ones in recent works.

We run variants of our models: (i) BiQQLSTM (without
CLP in the framework and without Lgap loss) and (ii) BiQQL-
STM CLP (the default model).

2) Train/Validation/Test split: We conducted a 10-fold
cross-validation for our experiments. In each fold, aside from
the 10% hold-out test set, we randomly split the rest into
train/validation set with a ratio of 80%/10%. Hyper-parameters
are tuned on the validation set results. Final results on the 10-
fold test sets are reported in average and standard deviations.

3) Model Hyperparameters: To improve the model’s repro-
ducibility, we report the detailed hyper-parameter values along
with their explanations and search space in our github repo.

4) Measurements: We evaluated each model’s performance
by precision (pre), recall (rec), accuracy (acc), macro F1
score (macF1), and Matthews correlation coefficient (MCC –
a metric especially good for an imbalanced dataset [83]). The
mean and standard deviation (displayed as subscripts in tables
in the rest of this paper) are reported. In Tab. IV, the logistic
regression models with the limited-memory BFGS solver did
not have randomness inside their frameworks, so we denoted
the standard deviation as 0.

B. Experiment results

1) Effectiveness of Our Models: Tab. I shows the perfor-
mance of the eight baselines and our BiQQLSTM without CLP
(BiQQLSTM) and BiQQLSTM with CLP (BiQQLSTM CLP)
in the combined dataset. Both of our models outperformed
the baselines in all overall metrics. In particular, BiQQLSTM
CLP achieved 92.2% accuracy, 0.922 macro F1, and 0.844
MCC, improving up to 5.5% compared with the best baseline
(Indurthi’19). The improvement was statistically significant
under a one-tailed t-test (against Indurthi’19). The p-value
under accuracy was 7e−11 (the lower, the more significant).

Another interesting observation is that our BiQQLSTM with
CLP performed better than BiQQLSTM (92.7% vs. 92.2%).



TABLE II
RESULTS ON EACH PLATFORM’S TEST SET.

Models Twitter Forum Wiki
MCC MCC MCC

Davidson’17 [12] .495.046 .249.066 .607.077
Kim’14 [76] .510.040 .396.039 .664.022
Badjatiya’17 [19] .543.044 .455.036 .709.014
Waseem’16 [13] .500.045 .205.058 .685.014
Zhang’18 [7] .535.057 .420.030 .683.023
Indurthi’19 [77] .554.044 .439.062 .724.013
BERT + LR [78] .471.042 .404.031 .716.010
BERT CLS [78] .524.053 .441.054 .721.013
BiQQLSTM .681.055 .657.044 .833.012
BiQQLSTM CLP .687.053 .655.050 .834.013

TABLE III
PERFORMANCE AND RELATIVE TRAINING TIME OF OUR MODEL, AND

THREE VARIANTS OF OUR MODEL.

Models acc macF1 MCC Time
BiLSTM CLP .919.004 .919.004 .837.009 1.00×
Bi-Quasi-L. CLP .912.004 .912.004 .823.009 0.93×
Bi-Quaternion-L. CLP .927.008 .927.008 .853.016 1.27×
BiQQLSTM CLP .927.009 .927.009 .855.018 0.96×

The one-tailed t-test p-value under accuracy is 5e−2, showing
that the difference between the two models is consistent and
significant. This result means the fairness (i.e., CLP with
Lgap loss) prevented unintended social bias and provided data
variety into the model as a way of implicit data augmentation.

In addition, we further analyzed how our models and
baselines performed for the individual platform’s test data,
as shown in Tab. II. Because of the limited space, we only
report each model’s MCC result. As we described earlier,
MCC is a good metric, especially for imbalanced datasets.
Again, our models outperformed the baselines in all three
datasets, improving more than 15% on each separate dataset
on average.

For the rest of our experiments, in order to have a detailed
look into model variations and to have a fair comparison on
the same test set, we report results on one of our 10 folds
but with averages and standard deviations on 5 times model
rerun with different random seeds. In this way, we prevent the
chance of cherry-picking results.

2) Effectiveness vs. Efficiency: To understand whether our
proposed BiQQLSTM layers helped balance between effec-
tiveness and efficiency, we built 3 additional variants of our
model as shown in Tab. III. Given our framework, we replaced
BiQQLSTM CLP layers with each of BiLSTM CLP, Bi-Quasi-
LSTM CLP, and Bi-Quaternion-LSTM CLP layers. BiQQL-
STM CLP and Bi-Quaternion-LSTM CLP performed the best
among the 3 variations, but Bi-Quaternion-LSTM CLP took
the longest average training time (1.27× the BiLSTM CLP).
Bi-Quasi-LSTM CLP took the shortest training time with a
lower performance. Our original BiQQLSTM CLP actually
balanced between effectiveness and efficiency, keeping a high-
level performance while not downgrading the training time.

Overall, all of our models outperformed all the baselines
(refer to Tab. I), indicating the superiority of our framework
and confirming our hypothesis described in Section IV-C. We
also conducted an additional ablation study, and all the compo-
nents, including uncertainty estimation, positively contributed.
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Fig. 2. BiQQLSTM CLP VS. Top 5 baselines under avg. MCC of 5 seeds.

3) Varying Hate Speech Ratio: Considering real-world
cases where the actual amount of legitimate speech may over-
whelm the hate speeches, we tested the effectiveness of our
model under various imbalanced class ratios by downsampling
the amount of hate speech data in the training set. We show
the result of the top-5 baselines vs. our model (BiQQLSTM
CLP) in Fig. 2. As the classes are now imbalanced, we report
the average results under MCC for 5 different seeds. We
observe similar patterns as reported in Section VI-B1, where
our BiQQLSTM CLP(in red on top of the figure) consistently
reaches the best performance, confirming the effectiveness of
our model regardless of a hate speech ratio.

4) Effectiveness of Data Augmentation: We tested how
each data augmentation method with our adaptation would be
helpful by adding its generated data into the training set and
re-built our model. We used BiQQLSTM CLP as our default
framework and fed the generated data and the training set
(i.e., 80% of the combined dataset) into the framework. Fig. 3
shows how the effectiveness of our model changed as we
increased the amount of augmented data obtained from each
method. The x-axis represents the augmentation ratio com-
pared with the original training set. The y-axis represents the
model’s performance (Accuracy) on the test set. We draw one
horizontal line, which represents BiQQLSTM CLP without
any augmentation (NoAug), to compare whether augmentation
is helpful. Overall, NLG method kept steady performance
across different ratios. Checklist and Embedding were also
helpful if we only add 0.1 (10%) augmentation ratio. However,
Charswap and Easydata were not helpful because Charswap
might create more misspelling, and Easydata’s randomness
might add noise into the model by losing the context.

5) Effectiveness of Data Augmentation under Attack Sce-
nario: As we described in Section V-C regarding how we
prepared data for the attack scenario, we created manipulated
data for the attack scenario from the testing set to test whether
our model with data augmentation (learned from the training
set) is effective against the attacks. As the original training
data and testing data are separate, there is no information leak
between them and thus the attack scenario is non-trivial.

To understand whether the previously mentioned data aug-
mentation methods further improve our model’s robustness



TABLE IV
RESULTS UNDER VARIOUS ATTACKS. BEST BASELINE: UNDERLINED, AND BETTER RESULTS THAN BEST BASELINE: BOLD.

Models Precision of Hate Speech Detection
Wordnet Embedding Charswap EasyData Checklist NLG Rank

Davidson’17 [12] .853.007 .855.008 .851.007 .860.007 .853.007 .879.005 6.7
Kim’14 [76] .854.012 .852.017 .825.017 .829.022 .864.019 .899.016 7.3
Badjatiya’17 [19] .873.015 .874.022 .837.040 .850.032 .872.023 .913.022 5.2
Waseem’16 [13] .875.000 .875.000 .874.000 .888.000 .879.000 .908.000 3.5
Zhang’18 [7] .855.030 .853.031 .828.028 .828.033 .848.040 .882.036 7.5
Indurthi’19 [77] .821.053 .826.053 .813.050 .805.050 .823.053 .839.050 10.8
BERT + LR [78] .835.000 .837.000 .817.000 .833.000 .846.000 .880.000 8.5
BERT CLS [78] .835.008 .837.012 .811.012 .833.007 .846.012 .877.017 9.2
BiQQLSTM CLP .877.007 .883.008 .870.007 .885.005 .894.008 .933.006 3.2
BiQQLSTM CLP NLG+Checklist+Embedding .879.012 .884.013 .862.012 .888.011 .910.014 .943.010 2.0
BiQQLSTM CLP FullAug .881.009 .886.009 .876.009 .889.008 .906.009 .942.005 1.3
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Fig. 3. Our BiQQLSTM CLP’s performance with each augmentation method.

under the attack, we made two variants of our model called
BiQQLSTM CLP NLG+Checklist+Embedding and BiQQL-
STM CLP FullAug. In the two variants, the best augmentation
ratios were selected from the previous experiment in Fig. 3.

Tab. IV shows experiment results and average rank (lower is
better) on each column/attack of our models with or without
data augmentation and the baselines. Among the baselines,
surprisingly, [77] and BERT CLS were the most vulnerable
under the attack, although they were the among best baselines
in the previous experiment (refer to Tab. I). It means a model’s
effectiveness may not guarantee its robustness. It also means
our framework is well designed for both effectiveness and
robustness. Overall, all of our models were the most robust
compared with the baselines. We see three interesting observa-
tions: (1) Our model without data augmentation (BiQQLSTM
CLP) was still more robust than the baselines. It confirms
the superiority of our framework compared with the baselines
in terms of both effectiveness and robustness. (2) All of our
models performed very well in Embedding and NLG attacks,
which are more advanced on machine-generated attacks. (3)
Adding texts generated by corresponding data augmentation
methods into BiQQLSTM CLP would further improve its
robustness against the same attack method.

C. Effectiveness of our Filtering Methods for NLG Augment.

To confirm the effectiveness of our proposed filtering meth-
ods to improve NLG augmentation quality, we show the
readability distribution before and after applying filtering rules
in Fig. 4. We still observed a long tail on the left side before

filtering, although we already removed generated data that had
less than -800 score (very hard-to-read contents) in Fig. 4a.
Filtering out low-quality data essentially helped to keep only
high-quality augmented data, as shown in Fig. 4b.
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Fig. 4. NLG augmented data readability distribution before & after filtering.

VII. CONCLUSION

In this paper, we have proposed a novel data-augmented and
fairness-aware BiQQLSTM framework for improving model
performance, robustness, and fairness in hate speech detection.
Our model has outperformed all baselines, improving up to
5.5% under no attack scenario and up to 3.1% under the attack
scenario compared with the best baseline in each scenario. Our
model managed to achieve both effectiveness and robustness
according to our experiment results.
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