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Abstract. Online social networks (OSNs) have long been suffering from
various types of malicious bots (e.g., spammers, fake followers, social
bots, and content polluters). Recent studies show that they have also
been actively involved in delivering hate speeches and disseminating mis-
information. Over several years, researchers have proposed multiple ap-
proaches to identify some types of them to lower their impact on the
OSNs. However, their strategies mostly focused on handcrafted features
to capture characteristics of malicious users, or their deep learning ap-
proaches may only work under certain situations (e.g., under the dense
retweets/sharing behavior). To overcome the limitation of the prior work,
in this paper, we propose a novel framework that incorporates hand-
crafted features and automatically learned features by deep learning
methods from various perspectives. It automatically makes the balance
between them to make the final prediction toward detecting malicious
bots. In particular, we (i) combine publicly available 15 Twitter user
datasets and categorize these accounts into two groups (i.e., legitimate
accounts and malicious bot accounts); and (ii) propose a deep learn-
ing framework that jointly learns various features and detects malicious
accounts. Our experimental results show that our proposed model out-
performs 7 state-of-the-art methods, achieving 0.901 accuracy. Our ab-
lation study shows that all types of our features positively contribute to
enhancing the model performance.

Keywords: Malicious bot detection · Deep learning.

1 Introduction

Malicious bots have misused the power of Online social networks (OSNs) such
as Twitter, Facebook, and Weibo, continuously caused significant disturbance
to the overall online social environment, and shaped unhealthy trends, bias,
and misbelief in societies (e.g., COVID-19 related misinformation [27]). Their
accounts1 have made severe impact and damage to the OSNs by causing incon-
veniences, intensifying contradictions, and aggravating prejudices [1].

1 We use terms user and account, interchangeably.
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Despite the long history of causing ongoing negative impact, malicious bots
did not quit on being the Grand Villain on the OSNs. They have been emerging,
evolving, and participating in new types of destructive activities. Reports2 and
analysis of malicious bots involved in hate speech dissemination [2,44] and fake
news propagation [36, 37] show their seemingly ever-lasting significant impact.
Efficiently and accurately detecting them is still a crucial problem.

In recent years, OSN service providers established policies for warning, block-
ing, and suspending malicious accounts3. According to our study described in
Appendix A.1, some of these malicious accounts are still alive for years without
any suspension or proper treatment.

Researchers have proposed approaches to detect specific types of malicious
bots [6, 10, 14, 18, 30]. Even though these approaches identified some malicious
bots, we are still facing new challenges with new malicious bots such as hash-
tag promoters and social spambots, especially, political bots and even extremists
such as ISIS recruiters [3,4]. Most of the existing frameworks identify new groups
of useful handcrafted features and then apply them to traditional machine learn-
ing classifiers for satisfying results. They are thus placing the performance and
robustness on an intuitively vulnerable position, as manipulators can play with
those handcrafted features and deploying direct adversarial attacks against them.

Deep learning techniques, however, were less addressed in this domain. To
the best of our knowledge, existing deep learning frameworks for malicious bot
detection are, to some extent, limited in analyzing and using some particular
perspectives of OSN accounts, usually only focusing on capturing temporal pat-
terns [11,33] or simple single tweet patterns [28].

To fill this gap, we propose a unified deep learning framework, which analyzes
both temporal patterns and posting contents, and also incorporates handcrafted
features. There are a few challenges. First, how to collect information for various
types of malicious bots? Second, how can we extract features which distinguish
between malicious users and legitimate users? Third, how can we create a unified
framework that is capable of effectively detect malicious bots?

By keeping these challenges in mind, in this paper, we combine publicly
available Twitter datasets, which contain accounts of content polluters, fake
followers, traditional spambots, social spambots, and legitimate users. Then,
we extract handcrafted features, and automatically learned features by deep
learning methods. Finally, we combine both features and make a balance between
them toward building a malicious bot detection model.

In this paper, we make the following contributions:

• We propose a novel joint learning framework that is capable of detecting
various malicious bots altogether and distinguishing them against legitimate
accounts. It combines both handcrafted features (i.e., profile and activity
features and LIWC-based personality features) and automatically learned
features (i.e., temporal behavior related features and text related features).

2 https://bit.ly/39mGlnm and https://bit.ly/3hlpt38
3 https://help.twitter.com/en/rules-and-policies/twitter-rules
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• Our model outperforms 7 state-of-the-art methods, and we analyze intuitively
and logically for the good performance.

• We conduct an ablation study, which shows that all components/feature
types positively contribute to our proposed model’s performance.

2 Related Work

Specific types of malicious bots were studied in the past. Some researchers
focused on analyzing and detecting content polluters and spammers in OSNs
[7,21,30,34]. Their classification methods focused on different perspectives such
as temporal patterns of behaviors [10], social networks [6] and others [21,29,35].
DARPA held a twitter bot challenge [38] for better understanding and detecting
bots. Davis et al. [18] proposed a framework BotOrNot (later on evolved and re-
named as Botometer) which was trained on a dataset of malicious users. Adewole
et al. [1] made a thorough review of 65 bot detection papers. Alfifi et al. [3, 4]
studied the behavior of long-lived and eventually suspended Arabic Twitter ac-
counts in social media (especially ISIS accounts), and also discussed the level of
automatic/botness of these accounts. Their results showed that the percentage
of automated posting behaviors was relatively high. There were also researches
revealing that malicious bots were involved in trending topics by disseminating
misinformation and hate speech [2, 36,37,44].

In malicious bot detection architectures, researchers have developed many
traditional machine learning models [12, 31]. Cresci et al. [14, 17] proposed a
DNA inspired model that produced a relatively good result without much de-
tailed information from users. Yang et al. [43] proposed methods from another
perspective, where they enhanced the performance with data selection.

To the best of our knowledge, although models relying on handcrafted fea-
tures provide somehow compelling and convincing results in their previous ex-
periments, they may face two vital challenges: 1) Handcrafted features are not
entirely scalable: as the number of proposed features is increasing; it is getting
harder to discover novel and helpful features. Thus the performance improv-
ment/gain is reduced as researchers add additional handcrafted features into
their models. For example, the Botometer [18] used more than one thousand
handcrafted features. It is intuitively way too challenging for human intelligence
to come up with new ways/ideas of inventing additionally useful features. Many
researchers thus turn to focus on more complicated features such as the fea-
tures extracted from network information based on trust propagation theories.
The trend here also went down deeper and thus more computation consuming:
for example, to achieve better performance, Beskow et al. [6] categorized infor-
mation into four tiers, and eventually used all of them. The last tier involved
using friends’ timeline information. This network information is large in size and
collection time, so not being feasible in many practical cases. 2) Handcrafted fea-
tures provided a clear target for adversarial attacks: Manipulators of malicious
bots can play with their profiles, posting contents and patterns to reduce distin-
guishing power of the handcrafted features and avoid the detection. Thus, the
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arms race might get harder for classifiers and their robustness gets decreased as
malicious bots change their behavior [41].

Some deep learning frameworks are applied in learning from temporal behav-
ior information [11, 33] based on the assumption that malicious bots’ behaviors
are hard to hide as automated mechanisms follow the designed patterns that
are relatively regular and not as random as human. Other deep learning frame-
works are applied in learning from text information [28]. But, the deep learning
frameworks do not focus on enough scope of the whole picture of each user.
Some frameworks require the datasets to satisfy specific properties, to enable
them to come up with effect: for example, RTBust [33] focuses on the retweet-
tweet patterns of user timelines, so if the user’s retweet counts are way too
sparse, the framework will intuitively not work well. We show the performance
of this model as a baseline in the experiment section. As certain special-purpose
bots, such as fake followers, may not have enough posting timestamps to reveal
non-human-like patterns, deep learning models (e.g., Chavoshi et al. [11]) only
encoding temporal patterns would not work well. Overall, the performance of
existing frameworks, which rely on learned features, often cannot reach as high
accuracy as handcrafted features. We conjecture one of the main reasons is that
those frameworks did not include wide scope of user information.

Our framework differs from the prior researches in the following ways: (1) We
combine the advantages of both handcrafted features and automatically learned
features via deep learning, thus being scalable and performance promising; (2)
Under the limited information in the publicly available datasets, we use only
limited user profile information, posting content information, and posting times-
tamps, while not expanding to the expensive network information; and (3) We
design our framework in learning both temporal posting features and language
model features, and the mechanism in handling the balance of these features to
achieve desirable performance.

Table 1. Dataset Status.

Source Lee Cresci Cresci Gilani Varol Cresci Midterm Botometer Botwiki Celebrity Cresci Political Pronbots Vendor Verified Sum
Year ’11 ’15 ’17 ’17 ’17 ’18 ’18 ’19 ’19 ’19 ’19 ’19 ’19 ’19 ’19

Legit 18537 - 1077 1140 1343 5269 7027 61 - 1293 296 - - - 1898 37941
Bot 17241 4685 5465 970 665 5875 25 18 98 - 269 13 1568 605 - 37497

Sum 35778 4685 6542 2110 2008 11144 7052 79 98 1293 565 13 1568 605 1898 75438

3 Dataset and Account Types

We chose Twitter as the primary social networking site in this study because
Twitter has a generous data sharing policy to the third party researchers, and
some public datasets with rich information are available. But, our proposed
framework is generally applicable to other social networking sites with minor
modification. To avoid potential bias and subjective labeling caused by collect-
ing and labeling data by ourselves and include various types of malicious bots,
we used 15 Twitter benchmark datasets from Botometer’s repository4. They
come from various sources [13–16, 23, 30, 33, 39, 42, 43] and contain many types
of users (content polluters, fake accounts, traditional & social spambots, stock

4 https://botometer.iuni.iu.edu/bot-repository/datasets.html
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Fig. 1. Our overall framework. FC stands for fully connected layer.

related bots, political bots, fake followers, verified accounts, celebrity accounts,
legitimate users, etc.). Each dataset’s name as well as their original user types
are described in Appendix A.2.

In the datasets, Lee’11, Cresci’15, and Cresci’17 included the original pro-
file information, posted tweets, and timestamps, while the other datasets only
included the user IDs on Twitter. Thus we kept the above mentioned three
datasets’ original data and collected the other datasets’ user information via
Twitter API in April 2020. We grouped legitimate users, verified accounts and
celebrity accounts as legitimate, while other types of accounts as malicious bots.

We then filtered out accounts with inconsistent labels, no posting informa-
tion, or non-English posting. Table 1 shows the final detailed number of accounts
that we used for the experiment. Some datasets originally only contain one type
of user accounts (e.g., Vendor’19 and Botwiki’19). Overall, our final dataset con-
sists of 37,941 legitimate accounts and 37,497 malicious bots. The dataset is
thus almost naturally and perfectly balanced. The alive malicious bots that we
successfully fetched from Twitter API are intuitively harder to detect as they
managed to evade the platform’s detection mechanisms. In other words, detect-
ing these long-surviving malicious bots is a hard and important problem.

4 Our Framework

In this section, we introduce our framework, which combines handcrafted fea-
tures and learned features through deep neural networks. We show a general view
of our framework in Figure 1. The framework is composed of three parts:

• Feature Extraction : handles with handcrafted features.



6 G. Mou and K. Lee

Table 2. Features and their notations.

Feature Type Notation Description

Traditional
Features

(handcrafted)

t |Number of tweets posted by user|
t/d |Average tweets(posts) posted per day|
dd |Days since account creation|
ut/t Unique tweet(post) ratio

h/t |Hashtags posted per tweet(post)|
uh/t |Unique hashtags posted per tweet(post)|
m/t |Mentions posted per tweet(post)|
um/t |Unique mentions posted per tweet(post)|
l/t |Links (URLs) posted per tweet(post)|
ul/t |Unique links (URLs) posted per tweet(post)|
rt/t |Retweet posted per tweet(post)|

len(sn) Length of screen name

len(des) Length of description

fer # Followers

fing # Followings

fav # Favorites

fing/d |New followings per day|
fer/d |New followers per day|
ff Following follower ratio

cr Content compression ratio

LIWC Features
- 64 LIWC features

(handcrafted)

Text
Features

- Sentence level embedding

- Word level embedding + Bi-LSTM
Temporal
Behavior

- Inter-posting-time difference pair features

- GASF, GADF, MTF features

• Feature Learning : learns useful embeddings from multiple perspectives.

• Decision Making : combines all the features and embeddings together and
makes the final prediction.

We show some of the hyper-parameters in the figure. The detailed settings are
described in Section 5. Table 2 presents a list of our extracted/learned features.

4.1 Feature Extraction

We extract handcrafted features in two ways:

We first extracted 20 widely used handcrafted features (called traditional
features) from each account. They have been proven to be useful, and posi-
tively contributed to the performance of models in the literature [30,39]. Those
features mainly come from user profile information, and some counting based fre-
quency/ratio from user posting contents. As user profile information is naturally
categorized, it is intuitively straightforward to use handcrafted features for bet-
ter measurement. For unique posts, we first translate all links to the same word
“URL”, anonymize mentions, hashtags, and special tags, and then count the
number of unique posts based on these transformed data. For the compression
ratio of user tweets, we used Python’s zip package with its default zip setting.
For extreme cases where a user has no follower, we adopt the #Followings as
the ff ratio. We transform the existing/living seconds of accounts into the unit
of days in floating number, and as described above, we guarantee every account
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in our dataset has at least one posting record. Thus the ratios of the features
will not face NaN or Inf problems.

We also extracted Linguistic Inquiry and Word Count (LIWC)5, a dictio-
nary for text analysis and personality analysis. It categorizes words into each
meaningful types/groups. For each account in our dataset, we concatenate their
tweets, count the number of meaningful words, and then calculate the occurrence
of words belonging to each category. We naturally treat the proportion of these
occurrences as features. Thus, the number of features we extract from LIWC
equals to the number of categories of LIWC. We extracted 64 features by using
the LIWC 2007 dictionary. From a high level of view, LIWC features capture
the general statistics of each user’s profile, activities, and their preferences in
terms of word usage. Malicious bots serve for different purposes against legit-
imate accounts. Since malicious bots disseminate specially designed messages,
these features may reveal the difference.
The aforementioned ones sum up to 84 handcrafted features.

4.2 Feature Learning

We automatically learned useful embeddings/features from posting contents and
temporal behaviors by using neural networks. Thus, the learning part is divided
into two components: Text Embeddings and Temporal Behavior Embeddings.

Text Embeddings Given strings S = [s1, s2, . . . , sm], we encode them into 2D
matrices TextEmb(S) = [Encoder(si)], where i=1, 2, . . . , m. Each string in
this context is a tweet’s content. The Encoder differs in the following two ways:

1. Sentence level embeddings (SentEmb): For all the tweets posted
by the same user, each tweet is encoded by a fixed-length vector, which rep-
resents its general information. A sentence embedding of each tweet would be
SentEmb(si) = vi, which is a 1D vector. By stacking all tweet vectors together,
we derive a 2D matrix that contains all high-level information of user postings.
These postings do not necessarily have any sequential relatedness, as each one
is a unique sentence embedding.

2. Word-level embeddings (WordEmb): For all tokens in all tweets, each
word can be encoded by another fixed-length vector, which represents its seman-
tic meaning. Word embeddings of each tweet would be WordEmb(si) = Wi,
which is a 2D matrix. By concatenating all 2D matrices together, we also de-
rive a 2D matrix. This matrix does contain sequential information as words’
semantics are connected. Together they form unique synthetics.

SentEmb contains high-level information and thus can be used for possible
sentence-level similarity comparison or repeated pattern learning. In contrast,
WordEmb contains more detailed, more abundant information, which may help
learn the difference between malicious or legitimate accounts in terms of frequent
word usage difference, synthetic structure difference, sentiment difference, etc.
By combining both embeddings, we derive better text representation. We used
Universal Sentence Encoder (USE) [9] for SentEmb and BERT-Base [19] + Bi-
LSTM for WordEmb representation.
5 http://liwc.wpengine.com/
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Temporal Behavior Embeddings Given the sequences of each user’s post-
ing timestamp T = [t0, t1, . . . , tn], we applied two methods for mapping these
sequences into 3D images: GAFMTF [40] and II Map [11] for informative pat-
tern recognition. Then, we design two convolutional neural networks for learning
features out of them.

1. GAFMTF: Gramian Angular Field (GAF) methods were proposed for
a better encoding of timeseries in polar coordinate system than Cartesian co-
ordinate representations. The authors [40] claimed their mapping method is in-
vertible and also preserves absolute temporal relations. We first encode time
difference sequences TD = [t′1, t

′
2, . . . , t

′
n] into polar coordinates, where t′i = ti -

ti−1. Then, we map it into a 2D plane. The GAF method provides summation-
graph (GASF) and difference-graph (GADF),

GAF (TD) =


< t̃′1, t̃

′
1 > < t̃′1, t̃

′
2 > · · · < t̃′1, t̃

′
n >

< t̃′2, t̃
′
1 > < t̃′2, t̃

′
2 > · · · < t̃′2, t̃

′
n >

...
...

. . .
...

< t̃′n, t̃
′
1 > < t̃′n, t̃

′
2 > · · · < t̃′n, t̃

′
n >


< t̃′i, t̃

′
j >= t̃′i · t̃′j −

√
1− t̃′i

2
·
√

1− t̃′j
2
, for GASF

< t̃′i, t̃
′
j >=

√
1− t̃′i

2
· t̃′j − t̃′i ·

√
1− t̃′j

2
, for GADF

and t̃′i is t′i in polar coordinates.
Markov Transition Field (MTF) method analyzes the timeseries change from
another perspective: the transition probability of value changes across the time
series. The authors also reported its effectiveness, especially stacked with GAF
outcome matrices.
We first split TD into Q quantile bins (here we set Q = 2), and then assign
t′i into corresponding quantile bins qi, i ∈ Q. Next, we measure the transition
probability of sequence value change in terms of different bins.

MTF (TD) =


wij|t′1∈qi,t′1∈qj · · · wij|t′1∈qi,t′n∈qj
wij|t′2∈qi,t′1∈qj · · · wij|t′2∈qi,t′n∈qj

...
. . .

...
wij|t′n∈qi,t′1∈qj · · · wij|t′n∈qi,t′n∈qj


where wij is a transition probability of t′k+1 in quantile bin qj , given t′k in

quantile bin qi, for all k ∈ N .
We stacked 3 2D matrices(i.e., GASF, GADF & MTF) to produce a 3D matrix.

2. II Map: Unlike GAFMTF as a general sequence encoding method, this
method was explicitly proposed for bot detection. This method tends to focus
more on the pairwise sequence neighborhood pattern.

IPT (T, lag) = [(t0, t0+lag), (t1, t1+lag), · · · , (tn−lag, tn)],
where pairs of tweet posting timestamp differences are mapped into 2D

planes. Upon the control of different “lag” values, we also come up with a 3D
matrix. In this paper, we set lag = 1, 2, 3. We can interpret this method as
inter-posting-time (IPT) mapping or IPT embedding.

Given the generated two 3D matrices (by GAFMTF and II Map) as in-
puts, we design two similar, but independent convolutional neural networks for
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learning useful features. Each convolutional neural network consists of four con-
volutional layers and three max-pooling layers as shown in Figure 1. In all con-
volutional layers, the filter size is 3*3 with stride = (1, 1) and padding = (1, 1).
In all max-pooling layers, the window size is 2*2 and stride = (2, 2). We used
batch normalization after each convolution layer, and LeakyReLU [32] as the de-
fault activation function. To the best of our knowledge, we are the first applying
GAFMTF in bot detection domain.

4.3 Decision Making

Given extracted features and learned embeddings/features from the different
components, we have to unify them and make full use of them for the final
prediction. The design of decision making is non-trivial in three reasons:

• Learned embeddings are so far matrices, while handcrafted features are 1D
vectors. A good mechanism for flattening those matrices is needed. A simple
direct flattening may create too much redundant information. How to balance
the relative size (number of features) among different parts of features? Auto
learned features are scalable but maybe way larger than handcrafted features
in terms of the number of features. To avoid handcrafted features being
overwhelmed, we have to design mechanisms to balance their contribution
and significance well.

• How to handle the possible redundant information/noise inside each part of
learned features? Especially, learned embeddings/features are large in size, so
there may be possible correlations among them. A good design should have
mechanisms to reduce the size of each part as well as to reduce correlations
of each feature toward improving the decision making performance.

• Handcrafted features may have greatly varying value scale, which might not
fit well with the other features. We had to handle such a problem to enable
our framework to have a smoother learning curve.

To overcome these difficulties, we design decision making part as follows:

• To rescale a value scope of the handcrafted features, we normalize
them in the training set and apply the normalizer in the validation set and
testing set, to ensure not having information leak across experiment sets. The
details of data split are described in Section 5.

• For flattening 2D matrices into 1D vectors, those representation matri-
ces were then fed into two independent additive attention [5] + max-pooling
+ mean-pooling mechanisms. This was partly inspired by ULMFit [24], where
the authors of this language model reported such design helped increasing
performance. The two vectors of each part were then concatenated together
as the final text embedding representation.

• For balancing the size of different components, after doing matrix
flattening and concatenation, text embeddings and temporal behavior em-
beddings go through two different fully connected layers for resizing the fea-
ture dimensions, where the output size of those two layers are tunable as
hyper-parameters.
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Table 3. A general view of 7 baselines and our model (JntL).

Models Using Info. Feature Algo. Domain Specific
Notation Profile Text Timeseries Handcraft Auto NN. Trad. ML Classify Twitter Bot Detect

Lee’11 3 3 3 3 3 3 3

Kim’14 3 3 3 3

Tweet2Vec’16 3 3 3 3 3

Chavoshi’18 3 3 3 3 3 3

Kudugunta’18 3 3 3 3 3 3 3

RTBust’19 3 3 3 3 3 3 3

Yang’19 3 3 3 3 3 3 3 3

JntL 3 3 3 3 3 3 3 3 3 3

• Eventually, we concatenate all three parts of features together and feed them
into multiple fully connected layers (MLP) for the final prediction. To reduce
feature co-adapting and model overfitting, we applied dropout at all layers
except the last fully connected layer as implicit Bayesian approximation [22].

5 Experiment

5.1 Experimental Setting

Dataset. Given 37,497 malicious bots and 37,941 legitimate accounts. We ran-
domly split the dataset with 60% for training, 20% for validation, and 20% for
testing. Through the dataset splitting procedure, we manually guarantee that
all source datasets have at least one account shown up in each split, so to ensure
that the experiment results are fair to all sources.
Data coverage and goal. As we mentioned in Sections 2 and 3, baselines and
our approach only access limited user profile information, posting content infor-
mation, and posting timestamps without other expensive information such as
social network information because of the limited information commonly avail-
able across the 15 public datasets. Our goal is to maximize the malicious bot
detection performance under the available information. Additional information
like the social network could potentially further improve model performance.

Baselines and our model. We implemented the 7 state-of-the-art baselines
based on various perspectives of user account information. The baselines consist
of Lee’11 [30], Kim’14 [25], Tweet2Vec’16 [20], Chavoshi’18 [11], Kudugunta’19
[28], RTBust’19 [33], Yang’19 [43]. Our proposed framework called JntL, which
is a joint learning model shown in Figure 1. Table 3 shows a general view of
the baselines and our model in terms of used user information, feature types
and algorithm types. The detailed description of the baselines is presented in
Appendix A.3. Our source code is available at https://github.com/GMouYes/
MaliciousBotDetection.

Parameter tuning and evaluation metrics. We used the reported best
hyper-parameters of the baselines. If the authors of them did not report the best
hyper-parameters, we conducted grid search to obtain the optimal baselines.

To help the reproducibility of our model, we report our settings and hyper-
parameters other than those already shown in Figure 1. Cross Entropy was cho-
sen as the default loss function, and we used Adam as our optimizer. LeakyReLU
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Table 4. Experimental results.

Class Overall Legitimate Users Malicious Bots
Measure ACC. F1 Pre. Rec. F1 Pre. Rec. F1

Lee’11 .874 .874 .875 .875 .875 .874 .874 .874
Kim’14 .829 .829 .838 .818 .828 .821 .841 .830
Tweet2Vec’16 .660 .660 .652 .696 .673 .670 .624 .646
Chavoshi’18 815 .815 .809 .828 .818 .822 .803 .812
Kudugunta’18 .837 .837 .854 .816 .834 .822 .859 .840
RTBust’19 .497 .342 .500 .979 .662 .322 .010 .019
Yang’19 .872 .872 .834 .922 .878 .912 .822 .865

JntL .901 .901 .886 .922 .903 .918 .880 .898

with default parameters was chosen as the activation function for decision mak-
ing layers. The Batch size is 128. The two-layer Bi-LSTM has hidden dimension
of 256, to produce WordEmb based features, so the output of two directions is
512. The dropout between them is 0.2. The resizing fully connected layer for the
text embedding layer is 256, while the resizing fully connected layer for the tem-
poral behavior embedding layer is 1024. The decision making component (i.e.,
MLP) has two hidden layers, which have 512 nodes and 128 nodes. Its output
layer produces a probability of being a malicious bot. The dropout rate of each
layer in the decision making component is both 0.05. We evaluate all models
based on Precision(Pre), Recall(Rec), F1, and Accuracy(Acc).

5.2 Experimental Results

Our model vs. baselines. We compared our model against 7 baselines. Table
4 presents the experimental results. The best result of each column is marked in
bold. Our model outperformed the baselines achieving 0.901 accuracy, improving
3% compared with the best baselines (Lee’11 and Yang’19 ). This result indicates
that our proposed framework is better than the baselines in terms of identifying
both types of accounts.

From the results, we conclude that jointly and thoroughly learned features
provide better results than partially observed user’s information. While analyz-
ing user’s postings provide rich information of malicious intent, text features like
Kim’14 take only the order of postings but does not pay attention to the ex-
act posting time. Thus, incorporating temporal behavior would be complemen-
tary and helpful. However, given less active malicious users, posted messages
and posting behavior may not be sufficient, so incorporating profile informa-
tion would be helpful and necessary. Statistical information provides another
general view of user behavior without caring about specific activities. Scalable
auto learned features help boost the detection performance. RTBust’19 does
not perform well enough, as it actually requires the retweet behavior to reach
a certain threshold. However this requirement is not generally met across all
source datasets. In other words, the approach may require collecting each user’s
data with a longer time span. Baselines such as Lee’11 and Yang’19 using hand-
crafted features were relatively performed well, confirming usefulness of hand-
crafted features despite two drawbacks (i.e., not entirely scalable and a clear
target for adversarial attacks) mentioned in Section 2. The other deep learn-
ing based baselines reached comparable results but not sufficient to beat the
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Table 5. Ablation study result. “-” represents removing a corresponding feature type.

Class Overall Legitimate Users Malicious Bots
Model Acc. F1 Pre. Rec. F1 Pre. Rec. F1

JntL .901 .901 .886 .922 .903 .918 .880 .898
-SentEmb .889 .889 .901 .876 .888 .878 .902 .890
-WordEmb .892 .892 .878 .912 .895 .907 .872 .890
-IPTEmb .899 .899 .899 .899 .899 .898 .898 .898
-GAFMTF .886 .886 .905 .864 .884 .868 .908 .888
-TraditionalFeatures .887 .887 .882 .895 .888 .892 .880 .886

handcrafted features based baselines. We conjecture that this is mainly due to
the fact that their work only focused on a part of user behaviors like retweets.
On the contrary, our model’s higher performance is because we considered a
wider scope of user information, incorporated both handcrafted features and
auto learned features, and made balance between them by using our decision
making component.

5.3 Ablation Study

We conducted an ablation study to understand the contribution of each type of
the features. Table 5 presents the experimental results when we remove one of
the five feature types from our proposed model (JntL). For example, -SentEmb
means excluding sentence level embeddings from JntL. We notice that (1) all
types of features/embeddings positively contributed to the final prediction per-
formance. (2) Even if we exclude traditional features (handcrafted features),
ablation results still outperform all the baselines. The results reflect the success
and effectiveness of our joint learning approach, where multi-perspective infor-
mation based auto-learning provides a unique scalable advantage. GAFMTF
features contribute the most, while WordEmb features contribute the least. This
result is mainly because Sentence level embedding already captures part of the
content information, while GAFMTF and IPTEmb encode temporal behaviors
a lot differently. Automatically learned features easily scale better and thus pro-
vide helpful support to handcrafted features. Future work can be to explore other
ways to learn scalable features through deep learning frameworks automatically.

6 Conclusion

In this paper, we aimed to detect various types of malicious bots altogether
and distinguish them against legitimate users. In particular, we combined 15
publicly available Twitter datasets. We grouped accounts into two classes: (1)
malicious bots; and (2) legitimate accounts. Then, we proposed a novel joint
learning framework based on handcrafted features and auto learned features to-
ward detecting malicious bots. Experimental results showed that our framework
outperformed all baselines, achieving 0.901 accuracy, improving 3% against the
best baseline. The ablation study provided supporting information indicating all
parts of our framework non-trivially contributed to performance improvement.
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A Appendix

A.1 Account Status

As we keep the original information of Lee’11, Cresci’15 and Cresci’17, we
checked the current status of those malicious bots as shown in Table 6. Overall
68.3% malicious bots are still alive on Twitter, some of which lived more than
ten years. This fact indicates that there is a great room to improve the current
Twitter’s bot detection system.

A.2 Source Dataset Details

We list the original user types that each dataset contains as follows:

Lee’11 [30]: content polluters, and legitimate users
Cresci’15 [13]: various kinds of fake accounts
Cresci’17 [14]: traditional & social spambots, and legitimate users
Cresci’18 [15, 16]: stock related bots, and legitimate users
RTBust’19 [33]: retweet bots, and legitimate users
Gilani’17 [23]: bots, and legitimate users
Varol’17 [39]: bots, and legitimate users
Midterm’18 [43]: political bots, and legitimate users
Botwiki’19 [43]: social and bots
Political’19 [42]: political bots
Pronbots’19 [42]: bots advertising scam sites
Vendor’19 [42]: fake followers
Verified’19 [42]: verified legitimate users
Celebrity’19 [42]: celebrity accounts (legitimate)
Botometer’19 [42]: bots and legitimate users

We grouped legitimate users, verified accounts and celebrity accounts as le-
gitimate, while other types of accounts as malicious bots.

Table 6. Recent status of malicious accounts.

Source Deleted Suspended Alive Sum

Lee’11 1,417 (8.2%) 3,868 (22.4%) 11,956 (69.3%) 17,241

Cresci’15 282 (6.0%) 2,336 (49.9%) 2,067 (44.1%) 4,685

Cresci’17 344 (6.3%) 443 (8.1%) 4,678 (85.6%) 5465

Overall 2,043 (7.5%) 6,647 (24.3%) 18,701 (68.3%) 27,391

A.3 Detailed Baseline Descriptions

Lee’11 [30] . Authors proposed handcrafted features extracted from user pro-
files, posting contents and the change of following/follower list over time. We
built their best Random Forest model without the network features.
Kim’14 [25] . This is a convolutional text classification architecture that achieved
comparable performance against state-of-the-art models. Its hyper-parameters
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are stable across different domains. We applied his work in using the tweets
posted by each user for classifying the accounts.
Tweet2Vec’16 [20] . Tweet2Vec was proposed as a general-purpose tweet em-
bedding framework, trained with neural networks for the hashtag prediction sub-
task. This work generates domain-specific feature representations of tweets. We
constructed a bot detection model, following the proposed architecture, where
the embedding layer is followed with fully connected layers.
Chavoshi’18 [11] . Authors proposed a method for mapping the posting times-
tamp pairs into 2D images to make better use of the temporal posting behavior
information of each account. Convolutional neural networks can be applied for
the downstream bot detection task.
Kudugunta’19 [28] . This is a framework using LSTM for learning content
features and then combine them with several handcrafted features.
RTBust’19 [33] . RTBust is a framework using temporal retweet/tweet pat-
terns for bot detection. Such a framework captures the information in tweet/retweet
sequences and extracted features using the variational autoencoder (VAE) [26].
Then the feature embedding generated by the encoders is fed into HDBSCAN [8],
an unsupervised clustering method. Outliers are treated as malicious bots.
Yang’19 [43] . Random Forest built on various authors’ proposed features.


