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ABSTRACT

Hate speech detection on online social networks has become one of
the emerging hot topics in recent years. With the broad spread and
fast propagation speed across online social networks, hate speech
makes significant impacts on society by increasing prejudice and
hurting people. Therefore, there are aroused attention and con-
cern from both industry and academia. In this paper, we address
the hate speech problem and propose a novel hate speech detec-
tion framework called SWE2, which only relies on the content of
messages and automatically identifies hate speech. In particular,
our framework exploits both word-level semantic information and
sub-word knowledge. It is intuitively persuasive and also practi-
cally performs well under a situation with/without character-level
adversarial attack. Experimental results show that our proposed
model achieves 0.975 accuracy and 0.953 macro F1, outperforming
7 state-of-the-art baselines under no adversarial attack. Our model
robustly and significantly performed well under extreme adversar-
ial attack (manipulation of 50% messages), achieving 0.967 accuracy
and 0.934 macro F1.
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1 INTRODUCTION

Hate speech, “abusive speech targeting specific group character-
istics” [45], has long been causing annoying disturbance to many
people’s lives, in terms of misleading the trends, shaping bias and
discrimination, aggregating and aggravating conflicts among differ-
ent religious, gender, and racial groups, etc. With the rapid growth
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of online social networks, hate speech is spreading faster and af-
fecting a larger population than before in human history across the
world!. Therefore, quickly and accurately identifying hate speech
becomes crucial for keeping a harmonic and healthy online social
environment, mitigating the possible conflicts, and protecting the
diversity of our society. Hate speech detection is also helpful for
public sentiment analysis and is useful as one of the pre-processing
steps in content recommendation and chatterbot development [3].

Over the years, researchers have proposed various methods for
detecting hate speech [2, 9, 15, 29, 33, 50], many of which have
focused on feature engineering. New hand-crafted features were
raised and checked from different perspectives to improve their
overall performance. The content of hate speech was inevitably
leveraged to generate features. The produced features vary from
counting based features, sentiment, and semantic features to pre-
trained word-level embedding and sentence-level embedding re-
lated features. However, the procedures of generating these fea-
tures highly depend on two crucial presumptions: the sentences
can be successfully tokenized into completely genuine atomized
words, and these words can be recognized/categorized into bins.
Thus, these methods/features are intuitively vulnerable in resisting
character-level manipulation, which converts semantically signifi-
cant known words to meaningless unknown words [27].

While in practice, it has been reported that intentionally or de-
liberately misspelled words as a kind of adversarial attacks are
commonly adopted as a tool in manipulators’ arsenal to evade de-
tection. These manipulated words may vary in many ways but
may not occur in normal natural language processing (NLP) re-
lated dictionaries [33, 45]. In fact, it is not practical to generate a
vocabulary that includes everything, as the atmosphere of online
social networks is dynamic: new words/variations are emerging
almost every day. Even legitimate users can sometimes accidentally
make typos [42]. The prior hate speech detection methods may not
handle these cases properly.

To address the mentioned problem, we propose SWEZ2, the SubWord

Enriched and Significant Word Emphasized framework, which not
only embraces the word-level semantics but also leverages sub-
word information, to recognize typos/misspellings, resist character-
level adversarial attacks and improve robustness and accuracy
of hate speech detection. Our framework incorporates two types
of subword embeddings: the phonetic-level embedding and the
character-level embedding. In addition, we carefully designed an
LSTM+attention based word-level feature extraction method, which
extracts general content semantic information across the speech.
For subword representations, we trained our domain-specific em-
beddings. While for word representations, we tested two pre-trained
variations: the state-of-the-art generalized FastText embedding [24],
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and the latest and most advanced generalized BERT embedding
[14] to see which word representation complements our subword
representations for hate speech detection. With the combination
of word-level and subword-level representations, our framework
can achieve high performance and robustness with/without the
character-level adversarial attack (i.e., intentionally manipulating
some characters of a message to evade hate speech detection).

To sum up, the contributions of this paper are listed as follows:

e We proposed to incorporate two new vital proportions of sub-
word information in hate speech detection: character-level in-
formation and phonetic-level information. Both of them are
non-trivial and work as complementary to each other. To the
best of our knowledge, we are the first to incorporate pronunci-
ation information in hate speech detection domain and show it
makes a non-trivial contribution.

o We designed a novel hate speech detection framework, which
utilized CNNs for subword information extraction, LSTMs for
word-level information extraction, and attention mechanisms
with statistical MAXes and MEANSs for better feature generation.
In the word-level information extraction, we compared FastText
and BERT to see which one contributes more in the framework.

e We investigated the performance of our model without and with
a black-box adversarial attack. We showed our model outper-
formed 7 state-of-the-art baselines, achieving minor reduction
even under very extreme attack (i.e., manipulation of 100% mes-
sages in the test set), indicating robustness of our model.

e Our model only relies on the content of a hate speech message,
not requiring other side information such as a user profile or
message propagation status in the network. Therefore, it is more
efficient than some of the prior methods in terms of feature
utilization and prediction time.

2 RELATED WORKS

2.1 Hate Speech Detection

In the early literature [13], hate speech was defined as “the language
used to express hatred against a specific target group or to be
demeaning, insulting, or insult the team members”. Mai ElSherief
[16] specified hate speech into two classes: (1) directed hate — hate
language towards a specific individual or entity; and (2) generalized
hate - hate language towards a general group of individuals who
share a common protected characteristic.

Despite the existing work dedicated to detecting hate speech
[40], hate speech detection is still challenging in the NLP domain.
The main reason is due to linguistic diversity and words’ semantic
ambiguity. Even though there have been several public corpora and
automatic linguistic classifiers focusing on hate speech detection,
the limitation and weakness of the existing classifiers based on text
features are apparent. Intentional typos/character-level manipula-
tion made by hate speech posters can easily avoid the prior hate
speech detection methods based on texture features.

Ousidhoum et al. [34], Davidson et al. [13], Waseem and Hovy
[47], and Elsherief et al. [16] released their annotated hate speech
datasets in public. We made use of the latter three datasets in our
research. Mathew et al. [31] and Chung et al. [11] provided counter
speech datasets for better analysis of hate speech.

There are also papers focusing on in-depth analysis of hate
speech: Warner and Hirschberg [45] did an overall analysis of
hate speech detection. Waseem [46] wrote about the annotator’s
influence on hate speech detection, showing expert annotations
contributed to a better detection rate. Arango et al. [1] analyzed a
model validation problem of hate speech detection.

For classification tasks, Nobata et al. [33] tried various types of
features and reported informative results. Recent papers leveraged
CNNs, LSTMs and attention mechanisms for better detection re-
sults [2, 3, 9, 17, 29, 50]. Djuric et al. [15] experimented on using
paragraph-level embeddings for hate speech detection.

Our approach also incorporates LSTM, CNNs, and an attention
mechanism. However, our approach differs from the prior works in
the following ways:

e First, we use word-level, character-level, and phonetic-level
embeddings for hate speech detection, whereas the prior works
only focused on one-level representation.

e Second, we apply different techniques for different parts of our
framework to best utilize each method’s advantage (i.e., CNNs
for subword information extraction, and LSTMs for word-level
information extraction), whereas the prior works used LSTMs
and CNNs with simple concatenation or sequential addition.

e While other state-of-the-art methods relied on spelling correct-
ing tools such as [19] or spellchecker? for word recovery (i.e.,
to fix typos), our framework is focusing on direct prediction
without the word recovery (and without using spelling correct-
ing tools) so that it can avoid possible new bias/error caused by
the spelling correcting methods.

We discuss why and how our ideas of utilizing LSTMs are better
than the prior approaches in Section 4.

2.2 Adversarial Attack

In the black-box attack, attackers do not know details of a detec-
tion framework, thus only generates the best possible guess to
avoid exposure. In this paper, we focus on a black-box attack, es-
pecially, called a character-level adversarial attack. There is much
clear evidence in character-level manipulations in online social net-
works. For instance, when a word® ‘nigger’ has a misspelling and is
changed to ‘nlgger’ or ‘nigga’ which cannot be recognized by most
word embedding models. There are also systematic methods for
generating character-level manipulations such as [19, 27]. They re-
ported general methods for attacking different existing frameworks
and claimed success in almost all experiments.

Serra et al. [41] analyzed how out-of-vocabulary words can affect
classification errors in detecting hate speech. Later on, Grondahl et
al. [20] reported that character models are much more resistant to
simple text-transformation attack against hate speech classification.
Inspired by that, our framework incorporates the subword informa-
tion to detect hate speech containing character-level manipulation
and achieves better prediction accuracy than the prior methods.

Zhttps://norvig.com/spell-correct.html
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That f@ggot went ...

Unknown Word

Figure 1: Process of extracting word-level and subword-Level embeddings in our framework.

3 BACKGROUND: EMBEDDING METHODS

Sentence-Level Embedding. Many existing works search for a
higher level of text encodings, such as sentence-level or paragraph-
level. Researchers proposed innovative ways to produce them [7,
12, 21, 26, 30, 38, 43].

Word-Level Semantic Embedding. There are many state-of-the-
art semantic embedding methods such as context-independent
Word2Vec [32], and GloVe combining counting based vectors [36],
character-based embeddings such as FastText [24], shallow bidirec-
tional LSTM generated context-related ELMo [37], and the most
recent transformer generated BERT [14]. In our research, we uti-
lized each of FastText and BERT to see which one performs well in
our framework for hate speech detection.

Character-Level Embedding. The effectiveness of character-level
information in the NLP domain was described in [28]. Similarly, a
variety of works exploring the subword-based representations in
this domain emerged consistently from several perspectives, such
as part-of-speech tagging [39], parsing [4], and normalization[10].
[8] explored such linguistic patterns in Chinese and proposed a
character-enhanced word embedding model.

It is reported that many traditional word representations ignore

the morphology of words, by assigning a distinct vector to each
word. Bojanowski et al. [6] note: “This is a limitation, especially for
languages with large vocabularies and many rare words.”. Inspired
by their discovery and effort in emphasizing such information, we
explore the insight of words by incorporating the character-level
embedding in our research.
Phonetic-Level Embedding. Nowadays, phonetic recognition
gains its popularity with the evolutions of hardware and software.
CMU provided pronouncing dictionary* to translate characters of
each word into phonetic symbols. The phoneme distribution and
syllable structure of words in this dictionary have been explored
by [48] and compared with the results obtained from the Buckeye
Corpus [49]. Peng et al. [35] experimented with the strength of
the pronunciation features of the text over sentiment analysis in
Chinese by enriching the text representations. Based on the inspi-
ration, we propose to incorporate the phonetic embedding method
into our framework for hate speech detection, and further propose
and develop a way to extract symbolic/phonetic representation of
unknown words to learn their phonetic embeddings. The detailed
approach of extracting phonetic embedding of unknown words is
described in Section 5.3.1.

4 OUR FRAMEWORK

We introduce our novel hate speech detection framework, SWE2
(pronounced as ‘sweet’), which only relies on the text content of
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a message, identifies most essential words, and extracts their sur-
rounding information to predict whether it is hate speech or not.
Figure 1 shows the process of extracting word-level and subword-
level embeddings in our framework, and Figure 2 shows the overall
framework which uses these embeddings as a part of input, and
outputs the final prediction.

4.1 Task and Procedure

Task. Given a text message/speech, the framework ought to make
a prediction of whether such delivered speech is hate speech or not.

Cleaning. We clean the messages as follows: we intentionally re-
move all sentence punctuation and make the message to lower case
since what we care about in hate speech is the content itself.

Tokenization and redundant information handling. Then, we
tokenize the message, remove special characters for post tags and
only keep their content, replace mentions of usernames with “USER”
and links with “URL”, and feed the result to our network. Assuming
the message is a tweet obtained from Twitter. However, our frame-
work can handle any other text messages from other web sites with
minimum customization.

Most significant word recognition. Given the tokenized word
(string) sequence, we aim to identify the most significant word
(called target word). We first use VADER [22] for searching the
most sentimentally strong word. If all words are sentimentally
contributing similarly, we will compare each word with possible
hate speech words in the given dictionary [16] to see whether hate
speech words are having at most two-character difference compared
with the word in the tokenized word sequence. We can quickly
achieve such a goal by implementing a simple longest common
subsequence method. If we find no similar word from the sequence,
then the framework will randomly assign a word as the target word.
Section 6.2 describes why we care about identifying a target word
of each message and why our framework pays extra attention to
the target word.
Splitting and Embedding. Given the target word in a sentence/
message, we split the original sentence Sp,; into three parts, namely
part before target word Sg,, target word Stqy, and the part after
target word S ¢ ;.
Sori = [SBef,STar’SAft] 1)
We use the character-level and phonetic-level embeddings trained
by ourselves to represent the target word Stg4,, deriving represen-

tations of Vp 4, and Vpp, as shown in Figure 1.
Vehar = EmbC(Star) (2

Vpho = EmbP(STar) ®3)
We feed these two matrices to separate CNNs, trying to fetch
important information of the target word as shown in Figure 2.
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Usor

Figure 2: The overall framework.

Uchar = CNN1(Vepar) 4

Upho = CNN2(Vpp,) (5)
We use word-level embedding methods to represent each word
in Sger and S4f; separately, stacking word vectors together and

receive representations of two matrices Uger € R? and Uaf: € R2.
UBef = EmbW(SBef) (6)

Uafr = EmbW(Sary) 7)
Now two matrices representing the part of the message before
and after the target word are fed to two separate LSTM models,
to extract useful information as shown in Figure 2. Inspired by
the ELMo design [37], which had two layers of LSTM to learn
syntax and grammar of the sentence in the first layer and to address
semantic meanings of words and disambiguation in the second layer,
each of our two LSTM models has two layers. We call the first LSTM
model as forward LSTM and the second one as backward LSTM
because U, is fed to forward LSTM, and Ugay, is reversed (i.e.
reversing the order of word vectors of Uys,), and then is fed to
backward LSTM. In this way, the last outputs of the two LSTMs
can be treated as the prediction of the target word, while the other
outputs of the two LSTMs can be seen as global side information.
All of the outputs from the second layers of the two LSTMs are
collected and formed as two matrices Ur,, € R? and Ugg, € R?.
Uror = LSTMForward(UBef) (®)

UBac = LSTMBackward(Reverse(UAft)) )

Now we split each output matrix into two parts: the last outputs
of two LSTMs can easily be explained as the predicted vector rep-
resentation of the target word (i.e., UrorLasr and UpgeLast)s SO we
separate them from the other outputs (i.e., UrorRest and UpgcRest)-

UFror = UForLast ® UForRest (10)

UBac = UBacLast ® UBacRest (11)
where @ denotes concatenation.

Eventually we form the global information Ug;, € R?, and also
the focused local representation Ur,. € R'. Notice that global
information is everything except the target word, while the focused
local representation is only about the target word.

Uclo = UrorRest ® UBacRest (12)

ULoc = UrorLast ® UBacLast ® Uchar ® Uppo (13)

Now the global information is too large and may contain much
redundancy, so we only use self-attention, max and mean informa-
tion extracted from it and concatenate them, namely Ugj,, € R!

Ucloz = Attn(Ugjo) ® Max(Ugy,) ® Mean(Ug,)  (14)

Finally, we combine the global information and local information
altogether, feed them to multiple fully connected layers, and then
make the final prediction.

Pred(Sori) = argmax(MultiFC(Ugjo2 ® ULoc)) (15)

4.2 Character-Level Manipulation for the
Adversarial Attack

In this subsection, we describe how to simulate the character-level
adversarial attack. Due to the diversity of text combinations and
varieties of typos, it is labor-consuming to manually collect large-
scaled hate speech data, which contains deliberate typos as well
as recovering their original perfect spelling. To the best of our
knowledge, there is no existing publicly available large scale dataset,
which includes both real-world hate speech with deliberate typos
and the recovered ones.

So we turned to apply scalable simulation methods to generate
spelling errors. We used TEXTBUGGER framework [27], which can
create utility-preserving adversarial texts against the state-of-the-
art text classification systems effectively and efficiently, focusing
on the target word manipulation and mimicking evasion behavior
of hate speech posters as we described them in Section 6.2.

According to [27], we could consider five types of bug genera-
tions (i.e., manipulation) inside one word (i.e., the target word):

o Insertion: insert an extra space in the word

e Deletion: delete a character in the word

e Swapping: switch the position of two neighbor characters
o Sub-c: substitute a character with a similar character

e Sub-w: replace the word with its closest meaning neighbor

From the description of hate speech on Wikipedia®, the domain
of the hate speech is deeply nested in the offensive and hostile
speech. However, the boundary of hate speech is so strict, so even
the nearest word in semantics or word embedding representations
can unlikely be hate speech. For instance, the most similar word® of
“limey”, which is an insulting word for a British person, is “yeasty”,
which might be offensive in some scenarios but far from being hate
speech. Therefore, in our experiments, we choose not to do any
word-level manipulation to avoid any labeling bias introduced to
the manipulated data. Based on that, sub-w is not selected.

Insertion is also not chosen for two reasons. First, inserting a
space can be interpreted as a method of word-level manipulation,

Shttps://en.wikipedia.org/wiki/Hate_speech
®Here we used Word2Vec vector and measured with cosine similarity
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Table 1: Examples of character-level manipulation.

Char Phonetic
Method | Original Manipulated | Original Manipulated
Swap fucking fukcing limey liemy
Delete wigger wiger coonass coonas
Sub-C trash tr@sh nigger neegeer

where one word is split into two words if we add whitespace in-
side of the word. Secondly, splitting one word into two words may
severely impact the readability of the whole speech. Taking these
scenarios into consideration, we use character-level sub-c, deletion,
and swapping to keep the original meaning of a message for human
readers. We show examples of the character-level manipulations in
Table 1. Sometimes hate speech posters do character-level manipu-
lation with/without considering phonetic similarity. The examples
consider both cases.

To generate the character-level manipulation, our attack sys-
tem automatically searches for hate speech candidate words in the
aforementioned hate speech words dictionary. Then, it selects one
of them for the manipulation. If there was no hate speech candidate
words, the manipulation happens in a randomly selected word.

To decide which attacking method among sub-c, deletion, and
swapping is the most effective for a given message, we used Univer-
sal Sentence Encoder [7], a sentence-level embedding framework,
to encode the whole message into a fixed-length vector. Then we
used cosine similarity to compare the distance of the original mes-
sage (before the manipulation) and the manipulated message (after
the manipulation). We chose the attacking method that produces
the longest distance among them.

5 EXPERIMENTS
5.1 Data Collection

To conduct experiments, we used some portion of three existing
datasets (i.e., Waseem [47], Davidson [13] and HateLingo [16]
datasets) and collected legitimate tweets from Twitter as follows:

Waseem dataset [47] includes 17,325 tweets which were manually
labeled into sexism, racism, offensive, and neither. The labels of
the messages were automatically identified, and the reliability and
consistency of labels were manually investigated and verified. As we
are aware of the fact that offensive speeches do not necessarily lead
to hate speech, we filtered out the offensive messages; however, we
kept the sexism and racism as hate speech. Eventually, we fetched
out 2,778 hate speech and 7,133 legitimate speech from the dataset.

Davidson dataset [13] includes 24,783 tweets, consisting of offen-
sive speech, hate speech, and neither. Similar to what we did in the
previous dataset, we removed offensive speech, eventually using
1,294 hate speech and 3,925 legitimate messages.

HateLingo dataset [16] contains only hate speech messages crawled
via Twitter Streaming API with specific keywords and hashtags
defined by Hatebase’. To recognize the anti-hate tweets which may
also contain hate speech terms, the authors cleaned the dataset by
using Perspective API®, and conducted manual checking during
the experiment. As they only provided TweetID, we had to fetch
the actual messages through Twitter API. We were able to collect
12,631 hate speech messages.

"https://www.hatebase.org/
8https://github.com/conversationai/perspectiveapi/blob/master/api_reference.md

Table 2: Dataset.

source |hate speech| [legitimate|
Waseem [47] 2,778 7,133
Davidson [13] 1,294 3,925
HateLingo [16] 12,631 0
Legitimate 0 72,457
Total 16,703 83,515

Legitimate Messages: To balance the proportion of hate speech
and legitimate messages, we randomly collected 1% real-time tweets
by Twitter API, and then selected 800,000 tweets in English. To
guarantee these tweets are legitimate messages, we followed thor-
ough labeling process: filter out the messages which contain the
aforementioned hate speech keywords or have negative sentiment
scores by following the rule proposed in [16]. Finally, 72,457 mes-
sages were chosen, and we manually sampled 2,000 messages to
see whether there is any hate speech message or not. All of them
were legitimate. Therefore, we labeled them as legitimate messages.
Dataset can be found at https://web.cs.wpi.edu/~kmlee/data.html.

Our dataset was carefully selected from various datasets to avoid
possible bias in any single data collection and labeling method. We
incorporated hate speech messages which contain target words
and those which do not. All of these efforts were made to avoid
the possibilities that a model only learned to identify particular
words or particular hashtags. As the world is evolving, word mean-
ings can sometimes be ambiguous. A message containing certain
words may not necessarily be absolute hate speech [2]. Overall, our
dataset consists of 16,703 hate speech messages and 83,515 legiti-
mate messages as presented in Table 2. Note that all of our datasets
are related to Twitter. We chose these datasets as they are easy to
trace and verify. However, our framework is not designed for only
Twitter but designed for any online social system because it only
requires a text message without any other additional information
(e.g., user profile, social network, temporal/activity information)
for the hate speech detection.

5.2 Preprocessing

We preprocessed the collected dataset in the following ways to
provide cleaner data to our framework as well as to guarantee the
capability of generalizing our model in any online social media:

e As mentioned in Section 4.1, we removed all punctuations and
irrelevant characters. We converted all letters to lower case.

e Privacy information such as user mention (i.e., @username)
was substituted with “USER”. Domain-specific labels such as
hashtags had their starting character removed (e.g., for Twitter,
hashtags start with ‘#’) and content kept. Specific website links
are kept anonymous as “URL”. In this way, we guarantee the
generalized ability of models.

5.3 Embeddings

As we mentioned in the previous section, three types of embed-

dings were generated in our framework: phonetic-level embedding,

character-level embedding, and word-level embedding.

5.3.1 Phonetic-level embedding. We trained our domain-specific

phonetic-level embedding in the following way:

(1) Data Collection. We randomly collected 80,000 tweets from

Twitter API for training our embeddings and further guar-
anteed that these tweets do not have any overlap with the
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Table 3: Baseline Information.

Domain Deep Machine

Model Specific | Learning Learning Description

Davidson’17 v v Linear SVC trained on a combination of useful handcrafted features.
Text-CNN’14 v CNN-based model with dynamic window size for text classification.
Badjatiya’17 4 v LSTM-based network designed for hate speech detection.

Waseem’16 v v Logistic regression model trained on n-gram counting-based features.
Zhang’18 v v CNN followed by GRU, then fully connected layers for classification.
Fermi’'19 4 4 v USE for sentence embedding, then SVM for classification.

DirectBert’19 v Pooling BERT embeddings into sentence embeddings, concatenate with MLP.

experiment dataset. These tweets then went through the
same data preprocessing procedure described in Section 5.2.
Among these tweets, there were 40,000+ unique words.

(2) Known Word Pronunciation Conversion. We used the
CMU pronouncing dictionary to translate characters in each
word into phonetic symbols. Such a dictionary can only han-
dle known words in a given fixed size vocabulary.

(3) Unknown Word Pronunciation Prediction. To overcome
the limitation of the CMU pronunciation dictionary and ex-
tract symbolic (phonetic) representation of unknown words,
the known words’ sequences of symbols were fed to an at-
tentive LSTM model” for training. Eventually, the model can
predict any given unknown word’s symbolic representation.

(4) Embedding. Given any word’s symbolic representation, we
trained the embedding with the same design of Word2Vec
CBOW method [18]. Thus eventually each word is embedded
into a 2D matrix, with its height as the number of phonetic
symbols and the width as the vector dimension.

5.3.2 Character-level embedding. We also trained a domain-
specific character-level embedding in the following way:

(1) Data Collection. We used the same dataset collected and
used for the phonetic-level embedding.

(2) Embedding. We trained our own character-level embedding
model to directly predict embedding using the same design of
Word2Vec CBOW method, thus getting a 2D-Matrix similar
to phonetic-level embedding.

5.3.3 Word-level embedding. To understand which word-level
embedding under our framework performs the best, we applied
two popular word embedding models: FastText and BERT. FastText
is a character-based embedding model trained by large corpus of
data, which is capturing more subword information. BERT [14] is a
context related model that achieved outstanding performance in
many NLP tasks. BERT also used a word-piece tokenizer, which
enabled it to capture subword information effectively and is thus
intuitively less vulnerable to character-level adversarial attacks.

5.4 Baselines

To compare the performance of our model against baselines, we
chose the following 7 state-of-the-art baselines as shown in Table 3:
Davidson’17 [13]: This model used the linear support vector clas-
sifier trained by TPO features (i.e., TF-IDF and POS), and other
text features such as sentiment scores, readability scores and count
indicators for # of mentions and # of hashtags, etc.

Text-CNN’14 [25]: Inspired by Kim’s work, we implemented Text-
CNN for hate speech detection trained by using GloVe as default

“https://github.com/repp/big-phoney

word embedding. This is a general purpose classification framework
widely applied in many text classification tasks.

Badjatiya’17 [3]: It is a domain specific LSTM-based network for
detecting hate speeches.

Waseem’16 [47]: This baseline is a logistic regression model trained
on the bag of words features.

Zhang’18 [50]: The authors of this work proposed C-GRU model,
which combines CNN and GRU to not only fit in small-scale data
but also accelerate the whole progress. Such framework is domain
specific to hate speech detection.

Fermi’19 [23]: Fermi was proposed for Task 5 of SemEval-2019:
HatEval: Multilingual Detection of Hate Speech Against Immigrants
and Women on Twitter. The authors participated in the subtask A
for English and ranked the first in the evaluation on the test set.
Their model used pretrained Universal Encoder sentence embed-
dings for transforming the input, and SVM for classification.

Directly using BERT for sentence encoding (DirectBERT’19):
As an additional baseline, we applied BERT in directly generating
sentence encodings with two linear projection layers and dropout.
We used REDUCE_MEAN, which takes the average of the hidden
state of the encoding layer on the time axis for pooling strategy. It
maps word-piece embeddings to the whole sentence embedding.

5.5 Experiment Setting

We randomly split our dataset into 80% training, 10% validation, and
10% test sets. For subword information embeddings, we chose the
number of dimensions of phonetic-level embedding as 20, and the
number of dimensions of character-level embedding as 20. For word-
level embeddings, the pre-trained FastText and BERT_Base had 300
dimensions and 768 dimensions, respectively. To ensure consistency
of all deep learning models (including baselines), we manually fixed
the batch size as 128. Other than that, we applied grid search for
determining the best hyperparameters for all models (including
baselines). All weights/parameters of all models were fine-tuned to
achieve each one’s best result. We used ReLU as activation functions,
cross-entropy as loss measurement, and Adam as the optimizer.

In the character-level attack scenario, all manipulated misspelling
was created in only the test set, while we kept the training and
validation sets without any change, avoiding any model seeing or
remembering the adversarial attack. The proportion of manipulated
data varies from 0% to 100%, at a step size of 10%. We report the
result of them in Section 5.6.2.

5.6 Experimental Results

5.6.1 Performance under no adversarial attack. Table 4 shows
performance of our models (SWE2 w/ BERT and SWE2 w/ FastText)
and baselines under no-attack scenario. Our models outperformed
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Table 4: Performance of our SWE2 models and baselines
without the adversarial attack.

Overall Macro | Leg. HateS.

MODEL Acc. F1 F1 F1

Davidson’17 904 764 946 583
Text-CNN’14 935 .894 960 .829
Waseem’16 .950 913 970 .857
Zhang’18 957 927 974 .879
Badjatiya’17 933 892 | 959 826
Fermi’19 SVM .821 .740 .885 595
DirectBERT 19 942 .902 965 .839
SWE2 w/ BERT 975 .953 985 921
SWE2 w/ FastText5 974 950 984 915
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Figure 3: Accuracy of our SWE2 model and the best baseline
under the adversarial attack.

all baseline models. In particular, SWE2 w/ BERT achieved 0.975 ac-
curacy and 0.953 macro F1. The macro F1 balances the performance
of both classes as the dataset is not balanced.

In addition, one would observe that baseline models’ perfor-
mance in Hate Speech class is not as good as the Legitimate Class
(at least 10% gap between F1 in two classes). This is also reported
in [47], as they found detecting offensive language and legitimate
speech is easier than hate speech detection in their experiments.
Our model, however, did exceptionally well in the Hate Speech class
in terms of F1 score. Especially, our SWE2 w/ BERT achieved 0.921
F1, improving 4.8% compared with the best baseline (i.e, Zhang’18).
Although SWE2 w/ BERT is slightly better than SWE2 w/ FastText,
the performance of different embeddings does not differ much,
showing contribution of our overall framework design.

5.6.2 Performance under the adversarial attack. To measure
the robustness of our model under the character-level adversarial
attack, we change an attack ratio from 0 to 1 (i.e., manipulating
0% to 100% messages in the test set). For example, 0.1 attack ratio
means 10% of hate speeches and 10% of legitimate messages are
manipulated by the attack model as described in Section 4.2. We
intentionally manipulated both hate speeches and legitimate mes-
sages to avoid possible bias that models learned to judge hate speech
based on a higher ratio of unknown words rather than understand-
ing actual hate speech content (manipulation actually changed the
spellings of words, so they may lead to out of vocabulary (OOV)
cases for some embeddings). Another important reason is that as
we reported earlier, even legitimate users often make typos. We are
interested to push the case to an extreme, to see whether models
are still capable to tell the difference between legitimate speeches
against hate speeches. As Zhang’18 was the best baseline in the
previous experiment, we compare the performance of our model
(SWE2 w/ BERT) against it. In addition, we also applied auxiliary

Table 5: Performance of ablation study.

Attack 0% Attack 50%
MODEL Acc. MacroF1 | Acc. MacroF1
SWE2 w/ BERT | .975 953 966 934
—Char 959 928 956 923
-Pho 960 931 958 926
—Char&Pho 957 923 956 923
-LSTMs 940 863 915 821

spelling correction tools [5] as an preprocessing technique into
Zhang’18 to check the effectiveness of spelling correction under
the adversarial attack.

Figure 3 shows accuracy of our model and the best baseline un-
der the adversarial attack (macro F1 has almost same pattern). We
observe that our model consistently performed well under the ad-
versarial attack. In particular, in the 50% (0.5) attack ratio, our model
still achieved high performance, returning 0.967 accuracy and 0.934
macro F1 score while Zhang’18 produced 0.919 accuracy and 0.887
macro F1. Even under 100% attack ratio (very extreme scenario), our
model achieved 0.951 accuracy and 0.902 macro F1, while Zhang’18
reached 0.841 accuracy and 0.783 macro F1. The performance of the
baseline dropped rapidly as we increased an attack ratio. Another
observation is that spelling correction in general helped mitigating
character level attacks to Zhang’18 but its performance was not sta-
ble. The spelling correction helped partly with some misspellings
while not working in others. For example, given ‘this how you
brign the city out url’ text, it was then wrongly recovered as ‘this
how you brain the city out url’ (i.e., recovered ‘brign’ into ‘brain’
instead of ‘bring’). Overall, our model still outperformed Zhang’18
with and without spelling correction. We also tried manipulating
only hate speeches in the test set without manipulating legitimate
speeches. In the experiment, we saw the similar pattern in which
our model consistently and robustly performed well, but the best
baselines rapidly dropped its performance as increasing an attack
ratio. These experiments confirm robustness of our model under
the attack scenario.

5.6.3 Ablation Study. We show the results of the ablation study
in Table 5. We used the BERT_Base as the default word embedding
method and tested the model’s performance without certain parts
to see their contribution. We show results of removing target word’s
character embedding, phonetic embedding, both of them (i.e., no
explicit target word information is given), or our two two-layer
LSTMs (i.e., no explicit global information and no implicit prediction
for the target word. It also means we remove/not use all words
except the target word in a message). In running these experiments,
we not only show each part of embeddings’ contribution but also
examine the actual effect of the located target word. Note that we
only show the results of 0% attack (i.e., no attack) and 50% attack
due to the limited space, but results of all other ratios are similar.
Under no attack scenario, character-level target word embed-
ding contributed 1.6% accuracy and 2.5% macro F1 improvement.
Phonetic-level target word embedding contributed 1.5% accuracy
and 2.2% macro F1 improvement. Our LSTM architecture con-
tributed 3.5% accuracy and 9% macro F1 improvement. Under the
50% attack scenario, character-level target word embedding con-
tributed 1.0% accuracy and 1.1% macro F1 improvement. Phonetic-
level target word embedding contributed 0.8% accuracy and 0.8%



Table 6: SWE2 w/ BERT under various class ratios.

. Overall Macro | Leg. HateS.
Leg.:Hate S. Acc. F1 F1 F1
1:1 953 953 953 953
2:1 961 .956 970 941
3:1 965 .953 977 .930
4:1 972 .958 983 .930
5:1 975 .953 985 921

macro F1 improvement. our LSTM architecture contributed 5.1%
accuracy and 11.3% macro F1 improvement.

The results make sense. LSTMs function as the backbone of the
framework, as losing LSTMs deprives most semantics as well as all
synthetic information from the sentence. In other words, keeping
only one word from a sentence and eliminating the other words are
not sufficient to judge whether a speech is legitimate or not. On the
other hand, dropping the target word would deprive the advantage
of our framework, so it makes our model’s accuracy lower. Overall,
all of the components in our framework positively contributed in
terms of improving the performance and keeping the robustness
under the adversarial attack.

5.7 Varying a class ratio

To understand how a class ratio in the dataset affects performance
of our model (as an additional experiment to measure robustness of
our model), we varied a class ratio of the dataset, by downsampling
legitimate messages. In particular, we tested a ratio from 1:1 to 5:1.
5:1 ratio means the original dataset without downsampling.

Table 6 shows performance of our model under various class
ratios. As we increase the number of legitimate messages (from 1:1
to 5:1), accuracy has increased but macro F1 has been consistent.
The result makes sense since our models were trained with different
respective class weights, depending on a class ratio (i.e., if more
legitimate messages are in a dataset, the model will try not to mis-
classify the legitimate messages in the training process). The con-
sistent macro F1 indicates the robustness of our model/framework
regardless of a class ratio. In practice, since there would be more
legitimate messages, our model would achieve better accuracy and
similar macro F1.

6 DISCUSSION AND ANALYSIS

6.1 How many hate speech words do hate
speeches contain?

We further investigate the hate speeches distribution to answer the
following questions:

e Do all hate speeches contain some hate speech words?

e As our framework puts extra emphasis on one most significant
word (i.e., target word) in each speech/message, can it handle
speeches with no hate speech word or speeches with multiple
hate speech words?

We used the hate speech keyword dictionary provided by [16] to
identify hate speech words in hate speeches of our dataset. Out of
16,703 hate speeches in our dataset, 12,378 hate speeches contained
hate speech words. Among them, 11,835 hate speeches contained
only one hate speech word; 443 hate speeches contained multiple
hate speech words. The remaining 4,425 hate speeches did not
contain any hate speech word.

Our SWE2 w/ BERT detected 69.0%, 99.1%, 100% correctly for hate
speeches without hate speech word, hate speeches with single hate
speech word, and hate speeches with multiple hate speech words,
respectively. Although it is generally hard to detect hate speeches
without any specific hate speech word, our model still reasonably
identified them. On the other side, our model did exceptionally well
in detecting hate speeches with one or multiple hate speech words,
indicating that our model is effective in detecting hate speeches.

6.2 Why choose the most significant word?

We reason the choice of focusing the one most significant word
with the following facts from different perspectives:

e Only focusing on random words does not work. Previous
work in [27] showed that random attack on words is not suc-
cessful. A successful attack has to choose certain words rather
than randomly chosen words to attack. Consequently, focusing
on random words to defend attacks is also not useful.

e The most important word contributes most in both sen-
timent and semantic meaning of the message. Figure 4
shows how the most significant word almost dominated a senti-
ment score of each message. In addition, we observe that some
hate speech posters tend to manipulate the important word to
evade existing detection approaches.

e Focusing on one single most important word succeeded
with detecting hate speech with multiple hate speech words
or without hate speech word. As we analyzed before, there
are many hate speeches with multiple hate speech words in the
dataset, and also over four thousand hate speeches without any
specific hate speech word. However, the strategy of focusing on
the single most important word still succeeded to detect hate
speeches correctly overall.

e We show areal evidence in Case Study, indicating the ne-
cessity of the focusing strategy. Section 6.5 shows a real
hate speech that was correctly predicted by our model, but the
best baseline misclassified it to a legitimate message because
only the most important word in the message was strongly
negative while the other words were positive. The best baseline
failed to put extra emphasis on the most important word. Thus
other words’ meanings mitigated the impact of the target word,
eventually leading to misclassification.

6.3 How is sentiment of a message changed
under character-level manipulation?

We try to reason and give out evidence of why sentiment-based fea-
tures are vulnerable against character-level manipulation/adversarial
attack. As sentiment-based features’ atomized elements are words,
the manipulated words lost their sentiment significance. Thus, it
will affect the actual sentiment measure of each message.

To prove the correctness of the hypothesis, we used VADER [22]
as the sentiment analysis tool and showed a sentiment change be-
tween before and after the character-level manipulation in Figure 4.
For each given message, we generate the compound sentiment
score generated by the VADER. Such a score varies in a range of
[-1, 1]. The closer the score gets to 1 indicates the message is more
sentimentally positive, while the closer the score gets to -1 means
the message is more sentimentally negative. In the left subfigure,



we show sentiment score distribution of hate speech and legitimate
messages before applying the character-level manipulation in our
dataset. The curve reflects the kernel density estimation of the
given population distribution observations. In the right subfigure,
we show the sentiment score distribution of hate speech and legiti-
mate messages after applying the character-level manipulation.
We observe that sentiment based features contribute to separat-

ing hate speech against legitimate speech under no attack/manipulation

in the left subfigure. However, they lost power when manipulations
occur in the right subfigure. This result explains why the baselines
using sentiment features (e.g., Davidson’17) experienced a perfor-
mance drop when they face the character-level adversarial attack.
This figure also points out two interesting facts: 1) The sentiment
does not change much for legitimate speech with the manipulated
misspellings; and 2) The most significant word contributes the most
in each speech’s overall sentiment score.

6.4 Humans vs. machine learning models
under the character-level adversarial attack

Why can humans still correctly perceive the meaning of a message
with typos, but machine learning models consider it as a hard
problem!?? The way humans memorize words is different from
machine learning models in three ways:

e Humans’ reading is sequential, and they can tolerate some er-
rors/typos!!, while usually machine learning models compare
strings of characters, so the result is strictly boolean, which
excludes any tolerance.

e When reading, humans encode the information they receive
mainly from eyes, graphically recognizing words. Thus they
can recognize similar characters!? such as ‘s’ and ‘$’, or ‘I’ and
‘1’. While inside the machine learning models, every character
is encoded differently and independently, thus there is no such
correlation between different characters.

e Humans incorporate more side information than machine learn-
ing models during the reading and memorizing. They not only
read words quietly but also explicitly or unintentionally as-
sociate pronunciations with the words [44]. Thus, the words
‘jews’ and ‘jooz’ can be recognized as if they are the same thing
even when we never actually learned ‘jooz’ before. However, if
machine learning models do not have the term ‘jooz’ in their
vocabulary, they would treat the word as an unknown word,
failing to extract useful information from it.

Even though some hate speech messages are manipulated, the
ultimate goal of these hate speech messages will never be changed.
In other words, they have to be understood by humans, to make
an actual impact on society. Based on the reasoning and analysis,
in our models, we incorporated both word-level and subword level
information not only to enrich the content of a message but also help
them better recognize/recover the original meaning of the message.
Our experimental results in the previous section confirmed the
effectiveness of our framework and models, achieving high hate
speech detection accuracy and F1.

Ohttps://en.wikipedia.org/wiki/Typoglycemia
Uhttps://bit.ly/33zupxw and https://bit.ly/3idUXIR
2https://bit.ly/33wCHX9
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Figure 4: Sentiment score before and after the character-
level manipulation.

6.5 Case Study

In this subsection, we conduct a micro-scale case study, where we
show examples'® that our models correctly predicted and that our
models misclassified. By doing this analysis, we can shed some light
on designing better hate speech detection approaches. For conve-
nience, we compare our SWE2 w/ BERT against the best performing
baseline — Zhang’18.

6.5.1 Advantage Analysis. We first show two examples ran-
domly sampled from instances that were correctly predicted by
our model, while the best baseline misclassified it.

e An example without the adversarial attack: “.. win the faggot
award congrats ...”

When we read this message, we can find that all the words
except ‘faggot’ are positive words. Thus, the baseline does not
emphasize the most important word, ‘faggot’, which does not have
enough influence on the overall sentiment score. Thus, its negative
impact is mitigated by its surrounding positive words, leading to
misclassification. However, in our model, ‘faggot’, is recognized as
an important keyword. It puts extra attention and emphasis on the
important word. The character-level information is captured by our
model and further guarantees correct prediction.

o A real-world example before applying the adversarial attack: “..
look like a redneck ... confederate flag tattoo on ... ass.”

e The same example after applying the adversarial attack: “.. look
like a rednecj ... confederate flag tattoo on ... ass.”

By comparing the above examples, we noticed that ‘rednecj’
was manipulated from ‘redneck’ by the sub-c manipulation. In the
baseline, this misspelled word is roughly identified as an unknown
word. However, our model still learns features from it by using
character embedding and phonetic embedding, mimicking how
humans read it as described in Section 6.4.

6.5.2 Error Analysis. Next, we show an example message that
even our model did not correctly identify.

e “. fucking hate you ... but thank you ... dick van dyke.”

The example was manually labeled as a legitimate tweet [46]
but was misclassified by both of our model and the best baseline.
The message itself contains several aggressive and sentimentally
negative words such as ‘fucking” and ‘dick’. Besides, it has ‘dyke’,
which is listed as a hate speech keyword. However, the real mean-
ing is to express thanks in a joking way. It is still challenging for our

13All examples in the case study belong to the public datasets released by other
researchers described in Section 5.
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model to further deeply understand and detect the text with com-
plicated sentiment and mood swings. Using better domain-specific
embedding may help a model to predict its label correctly.

7 CONCLUSION

In this paper, we proposed a novel hate speech detection framework
that incorporates subword information and word-level semantic
information. By addressing the importance of successfully identify-
ing manipulated words and focusing on the most significant word
in the message, and by using attention mechanisms to extract side
information, our models outperformed all 7 state-of-the-art base-
lines. Under no attack, our SWE2 /w BERT achieved 0.975 accuracy
and 0.953 macro F1, and under 50% attack, our SWE2 /w BERT still
achieved 0.967 accuracy and 0.934 macro F1, showing effectiveness
and robustness of our model.
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