
Published as a conference paper at ICLR 2024

MEND: Meta dEmonstratioN Distillation for
Efficient and Effective In-Context Learning

Yichuan Li1∗, Xiyao Ma2, Sixing Lu2, Kyumin Lee1, Xiaohu Liu2, Chenlei Guo2

1Worcester Polytechnic Institute, 2Amazon Alexa AI
{yli29,kmlee}@wpi.edu
{maxiya,cynthilu,derecliu,guochenl}@amazon.com

Abstract

Large Language models (LLMs) have demonstrated impressive in-context learning
(ICL) capabilities, where a LLM makes predictions for a given test input together
with a few input-output pairs (demonstrations). Nevertheless, the inclusion of
demonstrations leads to a quadratic increase in the computational overhead of the self-
attention mechanism. Existing solutions attempt to distill lengthy demonstrations
into compact vectors. However, they often require task-specific retraining or
compromise LLM’s in-context learning performance. To mitigate these challenges,
we present Meta dEmonstratioN Distillation (MEND), where a language model
learns to distill any lengthy demonstrations into vectors without retraining for a
new downstream task. We exploit the knowledge distillation to enhance alignment
between MEND and LLM, achieving both efficiency and effectiveness simultaneously.
MEND is endowed with the meta-knowledge of distilling demonstrations through
a two-stage training process, which includes meta-distillation pretraining and
fine-tuning. Comprehensive evaluations across seven diverse ICL task partitions
using decoder-only (GPT-2) and encoder-decoder (T5) attest to MEND’s prowess.
It not only matches but often outperforms the Vanilla ICL as well as other
state-of-the-art distillation models, while significantly reducing the computational
demands. This innovation promises enhanced scalability and efficiency for the
practical deployment of large language models 1.

1 Introduction

Large language models (LLMs) have demonstrated exceptional power in in-context learning (Kaplan
et al., 2020; Brown et al., 2020; Dong et al., 2023; Min et al., 2022a). They can rely on a limited
number of input-output pairs, often termed demonstrations, to generate outputs for a given test input,
without parameter updates. However, a significant bottleneck arises: incorporating demonstrations
exacerbates input length for LLMs. This is concerning, especially considering the self-attention
mechanism inherent in these models, which imposes time and memory complexities that scale
quadratically with input length.
Attempts to mitigate this challenge typically focus on trimming the context length by distilling
extensive demonstrations into concise vectors as shown in Fig. 1. These vectors are then used to
prompt the LLM to generate outputs (Phang et al., 2023; Ivison et al., 2022; Mu et al., 2023; Lester
et al., 2021). Distillation approaches, however, differ across methodologies. For instance, methods
such as prompt tuning (Lester et al., 2021; Wang et al., 2023) produce vectors through gradient
descent. Nonetheless, these approaches necessitate specific retraining for different demonstrations.
In contrast, the introduction of hypernetworks (Ha et al., 2016) offers a solution that reduces the
reliance on gradient descent for any given demonstrations. Methods like Hypertuning (Phang
et al., 2023) and HINT(Ivison et al., 2022) employ conditional language modeling (CLM) objectives
to finetune a language model based distillation model, distilling demonstrations into vectors. Yet,
when benchmarked against the Vanilla ICL method—where LLMs are prompted directly with the
unaltered demonstration text—the performance exhibits discernible degradations using these distilled

∗This work was mainly done during Yichuan’s internship at Amazon.
1The code is avaliable at https://github.com/bigheiniu/MEND.

1

Published as a conference paper at ICLR 2024

vectors. This trend remains consistent, even when distillation models are co-trained with the LLM in
ICL data (Ivison et al., 2022). Given that these language model based distillation models inherently
possess in-context learning capabilities and can generate meaningful representations, the remaining
question is how to optimize them to generate demonstration distillation that rival or even surpass the
efficacy of Vanilla ICL. Achieving this would pave the way for enhancing ICL efficiency without
compromising its efficacy.

Large Language Model

Demo. Input

Output

Vanilla-ICL PromptTuning

Large Language Model

Distil. Input

Output

Large Language ModelDemo. Distillation
Model

Demo.

Distil.

Input

Output

Hypernetwork

Distil.

Figure 1: Vanilla ICL method uti-
lizes the concatenation of demonstra-
tions and test input to generate the out-
put. In contrast, PromptTuning and
HyperNetworks employ distilled vec-
tors in place of the full demonstrations.
The length of these distilled vectors
is significantly shorter than that of the
demonstrations , contributing to a more

compact and efficient in-context learning
for LLM.

During pretraining, LLMs usually learn using detailed word
data. But at demonstration distillation scenario, they have
to work with a simplified version of this data – distilled
vectors. It’s like studying with a full textbook but taking
the test with only a summary. We think it’s really important
to make sure that the LLM can understand and use these
summaries just as well as the full textbook. This helps the
LLM perform better when it’s actually being used for ICL.
To address this, we introduce the Meta dEmonstration N
Distillation (MEND). Our approach realigns the distillation
model, MEND and LLM through knowledge distillation (Hin-
ton et al., 2015; Snell et al., 2022). Here, the LLM, when
prompted solely with the distilled vectors (acting as the
student), is conditioned to emulate the behavior it would
exhibit when exposed to the full demonstrations (assuming
the role of the teacher). To achieve this, we minimize
the Kullback–Leibler (KL) divergence between teacher and
student models’ word distributions. Importantly, during
this optimization process, we backpropagate the gradients
from the LLM to MEND, while ensuring that the LLM remains
frozen throughout. The training paradigm for MEND is
twofold: meta-distillation pretraining on standard text pre-
training data (e.g. C4 (Raffel et al., 2019)), followed by
finetuning on ICL tasks. This two-stage training equips
MEND with the meta-knowledge for distilling demonstra-
tions, allowing it to generalize effectively across unseen
demonstrations without sacrificing performance.

To demonstrate the feasibility of MEND, we apply it to a variety of LLM architectures, including both
decoder-only (e.g., GPT-2(Brown et al., 2020)) and encoder-decoder configurations (e.g., T5 (Raffel
et al., 2019)). In our experiments on the MetaICL dataset (Min et al., 2022a), encompassing 142
unique NLP tasks divided across seven partitions, MEND consistently meets or exceeds the performance
of Vanilla ICL, notably outperforming where traditional hypernetwork approaches falter. Across
the range of language models we investigated, our distillation strategy results in a substantial reduction
of up to 75% in FLOPs and accelerates inference by up to 33%. Beyond standard evaluations, we
embarked on an in-depth diagnostic analysis where we tweaked the distillation ratio and added
intentional disturbances to the demonstrations. In these scenarios, MEND proved resilient to the
disruptions and consistently outpaced standard Vanilla ICL methods.

Summarizing our work, our contributions are threefold: (1) The introduction of MEND, an innovative
technique aimed at enhancing the LLM’s in-context learning efficiency without compromising the
performance; (2) An exploration into the benefits of knowledge distillation for aligning the demonstra-
tion distillation model with LLM; (3) Comprehensive quantitative and qualitative examinations that
highlight the robustness and effectiveness of MEND.

2 Problem Definition

Let D = {(xi, yi)}Ki=1 be a demonstration set, where xi and yi denote the input and output tokens
respectively, and K is the number of input-output pairs or demonstrations. Let D denote the
concatenation of demonstration set that is D = concat(x1, y1, · · ·xK , yK)2. In in-context learning
(ICL), given D, and test input x, the large language model (LLM) will compute the conditional

2In the following sections we will use concatenated demonstrations and context interchangeably.

2

Published as a conference paper at ICLR 2024

ℒ!"#$%&#$ =.											+	𝜆

Step2: Meta-Distillation Finetuning

Data: {																												}"'()*+

Demo.: concat({																							. 			}"'())

Input:

Ground Truth:

𝑥)*+

𝑥" 𝑦"

𝑥" 𝑦"

𝑦)*+

Step1: Meta-Distillation Pretraining

Data:

Demo.:

Input:

First 1024	×𝛽

Text Sequences (1024)

1024×	(1 − 	𝛽)
ℒ,-$%-."# =

ℒ/"0%"11

ℒ/"0%"11

ℒ,-$/

Word Embedding

…

…

InputDemo.

Word Embedding

Ground Truth

Transformer Layer

Transformer Layer
…

Transformer Layer

Transformer Layer

Transformer Layer

Transformer Layer
……

LLM Head LLM Head

…

…

ℒ!"#$

ℒ$%&'%((

Position Embedding Position Embedding

Input

Word Embedding

Positional Embedding

Distil.
Placeholder

Student
Distribution

Teacher
Distribution

Frozen
Trainable

Student: LLM with
Demonstration Distillation

MEND Teacher: LLM with
Original Demonstration

Weight
Sharing

Demo.

Distil.

Figure 2: Overview of MEND. MEND takes as input demonstrations and distillation placeholder, outputs
distillation vectors. To capture the meta-knowledge of demonstration distillation, MEND is trained in
two stages: meta-distillation pretraining and fientuning.

probability for each label c ∈ C and return the maximum conditional probability as:
argmaxc∈CPLLM(c|concat(ED,Ex)), (1)

where C is the unique set of {yi}Ki=1 in classification tasks or answer options in question answering
tasks, and E(·) is LLM’s word embedding.

To improve the efficiency of ICL, many related works (Lester et al., 2021; Phang et al., 2023; Ivison
et al., 2022; Wang et al., 2023; Mu et al., 2023) aim to reduce the demonstrations length for LLM from
|D| into l such that l << |D|. They synthesize a high-fidelity demonstration summary SD ∈ Rl×d,
where d is the hidden size of word embedding, to replace D:

argmaxc∈CPLLM(c|concat(SD,Ex)). (2)
Prompt tuning approaches (Lester et al., 2021; Wang et al., 2023) consider SD as learnable parameters.
However, for other tasks’ demonstrations like D′, it requires additional training time to get SD′ .
Hypernetwork approaches (Phang et al., 2023; Ivison et al., 2022; Mu et al., 2023) including our
MEND address the challenge of retraining for novel, unseen tasks. They achieve this by employing a
demonstration distillation model, denoted as M , which produce distillation vectors: SD = M(ÊD)

and SD′ = M(ÊD′). These vectors correspond to any arbitrary demonstrations D and D′. Here Ê(·)
represent the word embedding derived from the demonstration distillation model. Notably, previous
Hypernetwork methods has the compatibility issues with LLM, resulting in distillation vectors of
suboptimal quality.

3 Methods
The whole framework of MEND is illustrated in Fig. 2. We insert l special tokens to the vocabulary
set of distillation language model MEND, which act as placeholders for the demonstration distillation.
For any demonstrations D, these placeholders embedding Êϕ are appended to the demonstrations
embedding ÊD, fostering a versatile distillation strategy suitable for diverse tasks. After multiple
transformer layers inside MEND, we can distill the information from lengthy D to compact distillation
vectors SD = MEND

(
concat(ÊD, Êϕ)

)
[−l:]

abbreivated as SD = MEND(ÊD).

3.1 Knowledge Distillation
The goal to knowledge distillation is to use a concise demonstration summary, SD, such that the
downstream LLM behaves similar (e.g. output close word distributions) to its version conditioned on
the full demonstrations D. To realize this, we treat the LLM with full demonstration D as the “teacher”
and the version with only the demonstration summary SD as the “student”. Subsequently, we employ
KL divergence to assess the difference between the word probability distributions of these two models.

Ldistill = KL
(
PLLM(x|ED) || PLLM(x|MEND(ÊD))

)
, (3)

We opted for KL divergence as our distillation objective to ensure the student model does not produce
outputs that are too different from the teacher model.

3

Published as a conference paper at ICLR 2024

3.2 Optimization

Throughout our two-stage optimization process, LLM remains frozen, assisting in backpropagating the
gradient from the loss to MEND.

Meta-distillation Pretraining. To help MEND capture the general knowledge of distillation, we
pretrain it on a text pretraining data-C4 (Raffel et al., 2019). As illustrated in the right segment of
Fig. 2, we extract sequences of 1024 tokens from the pretraining dataset. This sequence is divided
into two parts: the first 1024× β tokens as demonstrations D and the remainder, 1024× (1− β), as
input x, where β is the hyperparameter to control the length of demonstrations. We then apply the
knowledge distillation approach to pretrain MEND. In contrast with the conditional language modeling
objective, where LLM predicts subsequent content based on compressed tokens (Phang et al., 2023;
Ivison et al., 2022), our demonstration distillation is trained by minimizing Ldistill and aims to ensure
the distillation model more accurately captures the intrinsic attributes of MEND. Consequently, it can
offer a more faithful demonstration distillation. As evidenced in Tab. 2 and Tab. 4, our demonstration
distillation consistently outperforms the traditional conditional language modeling CLM approach.

Meta-distillation Finetuning. During this stage, we finetune MEND using ICL relevant tasks,
equipping it with the ability to interpret a task’s semantics from its demonstrations. This ensures
that MEND can effectively generalize to unseen demonstrations in the future. In each iteration, we
choose a meta-training task and extract K + 1 demonstrations from it. The first K demonstrations
are concatenated into D, while the remaining pair, (xK+1, yK+1) is reserved for test input and output
purpose. Similar to the pretraining phase, the demonstrations D are fed into the distillation model
MEND, yielding the demonstration distillation SD. The primary purpose of SD is to instruct the LLM in
producing y and guarantee that LLM operates as though it was condition on the original demonstrations.
The formulation of finetuning is as follows:

Lpred = logPLLM (y|concat(SD,Ex)) ,

Lfinetune = Lpred + λLdistill.
(4)

where λ is the hyper-parameter to control the importance of distillation in finetuning.

4 Experiments

4.1 Experiment Setting

Benchmarks. In the section, to validate our methodology, we employ the MetaICL dataset
introduced by Min et al. (2022a), designed for in-context learning scenarios. MetaICL builds upon
existing few-shot datasets, such as CrossFit (Ye et al., 2021) and UnifiedQA (Khashabi et al., 2020).
Notably, the MetaICL dataset is divided into two distinct partitions: meta-train and meta-test, with no
overlap between them. This setting expect the model first trained on meta-train then evaluated on
meta-test dataset. Our experiments encompass seven distinct meta-train and meta-test partitions3 as
outlined in Tab. 1. In ICL, the context length is directly proportional to the number of demonstrations.
For instance, in the Class→Class, with 16 demonstrations, each demonstration’s average length is
56.21 tokens. Consequently, during inference, the average context length extends to 899.36 tokens
(calculated as 16 × 56.21) which will bring additional computation compared with no demonstrations
length with 56.21.

Following MetaICL setup (Radford et al., 2019), we utilize whitespace to delineate input and output.
In most of our experiments, we have preset the number of demonstrations to K = 16. For evaluating
model performance, accuracy metrics are employed for classification tasks, while Macro-F1 is utilized
for non-classification tasks. In partitions that encompass both classification and non-classification
tasks (such as LR), we compute the average of Macro-F1 and accuracy to assess overall performance.

Base Models. To illustrate the adaptability of our proposed MEND framework, we assess its
performance using various backbone large language model architectures, including decoder-only
models, such as GPT2 (Radford et al., 2019), and encoder-decoder models, like T5 (Raffel et al.,

3The tasks and their corresponding abbreviations can be found in Appendix A.

4

Published as a conference paper at ICLR 2024

2019)4. We initially experimented with using different architectures for MEND and find that the when
MEND and LLM are from the same model family works best. Thus, for GPT-2, we choose gpt2-small5,
while for T5 we select t5-small-lm-adapt6.

Table 1: Statistics of seven different task partitions.
Each row indicates meta-training/test task partitions.

meta-train meta-test
Setting # task Avg. Len. Setting # task Avg. Len.

Class 43 44.54 Class 20 56.21non-Class 37 91.45

QA 37 91.58 QA 22 57.84non-QA 33 72.50

non-NLI 55 54.51 NLI 8 61.61

HR 61 82.44 LR 26 35.31

non-Para 59 55.97 Para 4 54.06

Baseline Methods. We compare the perfor-
mance of MEND against four primary groups of
baseline methodologies: 1) Zero-shot: This
approach utilizes the LLM for direct zero-shot
inference. 2) Vanilla ICL: Here, we employ
LLM for in-context learning by conditioning
on a concatenation of K randomly selected
demonstrations. 3) PromptTuning (Lester
et al., 2021): This strategy offers an efficient
approach to adapt LLM to new tasks without
requiring full retraining. 4) HyperTuning:
Phang et al. (2023) employs a language model
to distill demonstrations into condensed vec-
tors using a conditional language modeling
objective. For fairness, PromptTuning and HyperTuning, use same prompt lengths and hypermodel
sizes equivalent to those used in MEND. Further details regarding hyperparameter settings and analysis
can be found in Fig. 4.

4.2 Experiment Results

Effectiveness. This section outlines the results from our experiments, as detailed in Tab. 2. We make
the following observations: Firstly, the zero-shot approach predominantly underperforms, indicating
that the inductive biases introduced during meta-training (PromptTuning), meta-testing (Vanilla
ICL), or both (HyperTuning and MEND) enhance in-context learning. Secondly, when compared with
PromptTuning, both HyperTuning and MEND demonstrate marked improvements. This underscores
the effectiveness and generalizability of using hypernetworks to distill the supervising signal from
demonstrations to assist LLM. A potential reason for PromptTuning’s inferior performance is that
it solely captures inductive bias through gradient descent during meta-training and cannot leverage
bias from the meta-test’s demonstrations at meta-test time. Thirdly, Vanilla ICL outperforms
HyperTuning, while MEND consistently matches or even surpasses Vanilla ICL. This suggests that
our approach, incorporating Ldistill and Lpred, is adept at capturing the meta-knowledge facilitating
the distillation demonstration to aid LLM.

Inference Efficiency. Inference efficiency remains a fundamental aspect of our study. The core
idea of our work is to distill extensive natural language demonstrations, denoted as D, into concise
distillation vectors, denoted as SD, thereby reducing computational demands for LLM. To assess the
efficiency of our model, we report the computational costs associated with different representation
techniques in terms of processing time, memory consumption, and floating-point operations per
second (FLOPS). Specifically, for each meta-test partition, we select a single task, evaluate it with a
batch size of 1, and measure the aforementioned metrics. Considering that HyperTuning operates
identically to MEND during inference, we have chosen Vanilla ICL and PromptTuning as our
baseline methods. It is important to note that the inference efficiency of MEND encompasses both
the process of obtaining the distilled vectors and the subsequent inference by the LLM using these
vectors in conjunction with the test input. Compared with PromptTuning, MEND bring additional
computational cost at compressing demonstrations into compact vectors. As illustrated in Fig. 3, MEND
achieves up to 3.5 times greater computational efficiency compared to Vanilla ICL and requires less
peak GPU memory. Remarkably, while MEND demonstrates efficiency on par with PromptTuning, it
also presents a notable performance enhancement, as evidenced in Tab. 2. These observations indicate
our proposed method MEND can improve the LLM’s efficiency without sacrificing LLM’s effectiveness
in in-context learning.

4In § C, we have test our proposed method on flat-t5-xl and opt-6.7b.
5https://huggingface.co/gpt2
6https://huggingface.co/google/t5-small-lm-adapt

5

https://huggingface.co/gpt2
https://huggingface.co/google/t5-small-lm-adapt

Published as a conference paper at ICLR 2024

Table 2: Performance on the MetaICL Dataset: This table shows the average and stand deviation
scores from running our evaluation with five distinct random seeds. To enhance readability, we present
the meta-train and meta-test pairs in the format “meta-train → meta-test”. The best-performing
models are highlighted in bold, while the second-best are underlined. The standard deviation values
reflect the variability due to different demonstrations retrieved. Note that the “PromptTuning” and
“zero-shot” approaches do not require demonstration retrieval, hence their standard deviation is zero.

Methods Class →
Class

non-
Class →

Class
non-NLI
→ NLI

non-
QA→QA

QA →
QA

HR →
LR

non-
Para→Para AVG

gpt2-large
zero-shot 34.36 34.36 25.50 44.58 44.58 34.77 34.12 36.04
PromptTuning 37.65 38.78 31.34 38.71 45.77 40.68 34.23 38.17
Vanilla ICL 41.30±2.15 41.30±2.15 39.13±2.30 45.81±1.34 45.81±1.34 41.26±2.26 38.93±1.15 41.93
HyperTuning 40.42±1.64 42.54±1.79 36.49±2.01 41.11±0.82 46.20±0.50 41.63±1.72 39.63±0.66 41.15
MEND 43.35±2.17 43.38±1.62 39.96±1.99 44.29±0.86 46.92±0.49 40.92±1.80 42.54±0.44 43.05

gpt2-xl
zero-shot 32.08 32.08 25.54 46.09 46.09 33.95 33.61 35.63
PromptTuning 37.65 38.78 36.27 41.45 46.95 40.83 35.52 39.64
Vanilla ICL 40.63±2.53 40.63±2.53 37.35±1.83 48.32±0.88 48.32±0.88 42.27±2.08 37.53±1.04 42.15
HyperTuning 40.26±1.33 43.74±1.51 34.61±1.23 40.71±1.14 47.41±0.46 41.83±1.34 35.72±0.43 40.61
MEND 42.79±2.22 43.37±1.50 37.00±1.99 45.95±0.66 48.07±0.40 42.16±1.81 42.53±1.20 43.12

t5-lm-large
zero-shot 36.75 36.75 25.72 39.05 39.05 32.09 34.28 34.81
PromptTuning 32.56 32.37 25.80 39.48 39.44 32.43 36.44 34.07
Vanilla ICL 38.40±2.87 38.40±2.87 36.68±2.37 39.26±1.23 39.26±1.23 38.77±2.13 36.31±0.51 38.15
HyperTuning 31.17±2.46 29.06±1.96 33.56±1.76 39.03±1.09 41.17±0.86 34.28±1.27 37.39±2.67 35.09
MEND 41.75±1.82 38.93±1.43 37.15±2.00 41.76±0.60 42.91±0.55 39.07±2.16 36.99±0.55 39.79

Class
Class

HR
LR

QA
QA

non_NLI
NLI

non_Para
Para

0

1

2

3

4

5

2.38 2.29

4.37

3.77

2.45

0.58 0.40

0.90 0.86
0.48

0.68 0.54

1.04 1.01
0.62

Forward FLOPS (TFLOPS)

Vanilla ICL PromptTuning MEND

Class
Class

HR
LR

QA
QA

non_NLI
NLI

non_Para
Para

0.0

0.5

1.0

1.5

2.0

2.5

1.32
1.21

2.39

2.07

1.30

0.36
0.25

0.61 0.59

0.320.36
0.25

0.61 0.59

0.33

GPU Peak Memory (GB)

Class
Class

HR
LR

QA
QA

non_NLI
NLI

non_Para
Para

0.0

0.1

0.2

0.3

0.4

0.5

0.24 0.25

0.43
0.39

0.25

0.07
0.06

0.09 0.09
0.07

0.09 0.08
0.12 0.11

0.08

Time (Seconds)

(a) GPT2-Large (774M)

Class
Class

HR
LR

QA
QA

non_NLI
NLI

non_Para
Para

0

2

4

6

8

10

4.66 4.44

8.57

7.37

4.74

1.16 0.81

1.80 1.73
0.961.27 0.95

1.94 1.88
1.11

Forward FLOPS (TFLOPS)

Vanilla ICL PromptTuning MEND

Class
Class

HR
LR

QA
QA

non_NLI
NLI

non_Para
Para

0

1

2

3

4

1.97
1.82

3.60

3.10

1.96

0.54
0.38

0.86 0.88

0.460.54
0.38

0.86 0.88

0.46

GPU Peak Memory (GB)

Class
Class

HR
LR

QA
QA

non_NLI
NLI

non_Para
Para

0.0

0.2

0.4

0.6

0.8

0.43 0.44

0.77

0.69

0.46

0.11 0.09

0.18 0.17
0.10

0.13 0.12

0.19 0.20
0.14

Time (Seconds)

(b) GPT2-XL (1.5B)

Figure 3: Efficient Analysis of In-Context Learning at Inference Time. GPT2-large (774M)
and GPT2-XL(1.5B) are evaluated on the same task with batch size 1. The context length for both
PromptTuning and MEND is 100, while for Vanilla ICL varies on the partitions. (Class→Class is
469, HR→LR is 652, QA→QA is 639, non NLI→NLI is 848, and non Para→Para is 818).

5 Analysis

In this section, we conduct a comprehensive examination of our distillation approach across various
scenarios to gain deeper insights into its behavior and potential limitations. To mitigate computational
resource demands, we primarily employ the gpt2-large model as LLM on Class→Class setting unless
mentioned otherwise.

6

Published as a conference paper at ICLR 2024

5.1 Varying Demonstration Distillation Ratio

A crucial aspect of our experimental analysis was to comprehend how varying the demonstration
distillation ratio impacts the distillation of demonstrations and, consequently, the effectiveness of
LLM’s in-context learning. The demonstration distillation ratio is defined as the ratio of the number of
demonstrations to the length of distillation vectors. Specifically, we vary the distillation ratio from
two perspectives: the richness of input (the number of demonstration examples) and the compactness
of the output (the length of demonstration distillation).

Varying Number of Demonstrations. We assess the effectiveness of our method while altering
the value of K (the number of demonstration) while keeping the length of the distillation vector
l constant. As depicted in Fig. 4a, our MEND approach consistently outperforms the Vanilla
ICL and HyperTuning methods for various values of K (1, 2, 4, 8, and 16). Furthermore, MEND
demonstrates consistent performance improvement as K increases, whereas Vanilla ICL reaches its
peak performance at K = 4. This improvement suggests that MEND is excels at extracting supervision
information for in-context learning from the selected demonstration examples.

1 2 4 8 16
39

40

41

42

43

M
ac

ro
-F

1
(%

)

Vanilla-ICL HyperTuning MENDVanilla-ICL HyperTuning MEND

(a) Number of demonstrations.

1 10 50 100 200
25

30

35

40

45

M
ac

ro
-F

1
(%

)

PromptTuning HyperTuning MENDPromptTuning HyperTuning MEND

(b) Length of distillation vectors.

Figure 4: Performance with different demonstration distillation ratio. The distillation ratio is the ratio
of the number of demonstration examples to the length of the distillation.

Varying demonstration distillation Length. We manipulate the length of demonstration distillation
l = 1, 10, 50, 100 and 200 while keeping K = 16. It is worth noting that we retrain MEND with two
stages as shown in § 3.2 for different l values. The results in Fig. 4b yield the following observations:
Firstly, as the demonstration distillation length increases, the performance of all methods generally
improves, except for l = 200 in the case of PromptTuning. This suggests that there may be
information loss in demonstration distillation, and increasing the length of the demonstration may
help mitigate this issue. However, there exists a trade-off between efficiency and effectiveness,
as extending the length of the distillation vectors results in a quadratic time complexity increase.
Secondly, we observe that our proposed method achieves the best performance among the baseline
methods, including HyperTuning. This underscores the significance of our optimization design in
providing enhanced inductive bias for in-context learning.

5.2 Perturbation to Demonstrations

Given the significant influence of provided demonstrations on the performance of in-context learn-
ing (Min et al., 2022b), we aim to investigate whether our proposed approach, MEND, can effectively
distill and propagate modifications made to demonstrations to the distilled vectors. To address this,
we empirically perturb the demonstrations from both positive and negative perspectives.

Positive Perturbation. In light of previous research Liu et al. (2021) emphasizing the value
of semantically similar demonstrations and their positive impact on in-context learning, we aim
to ascertain whether MEND’s advantages are complemented by or enhanced through the use of
improved retrieved demonstrations. We transit from a random sampling approach to a more nuanced
semantic-based k-NN retrieval method. As indicated in Tab. 3, semantic-based retrieval methods,
including dense and bm25, exhibit superior performance compared to random selection under the
No Perturbation condition. Remarkably, MEND not only matches or even surpass the performance of
these advanced retrieval methods and does so with a reduced context size.

7

Published as a conference paper at ICLR 2024

Table 3: Performances when applying perturbations on demonstrations.

Methods No Perturbation Positive Perturbation Negative Perturbation
bm25-kNN dense-kNN No Label No Input Random Label Wrong Label

Vanilla ICL 41.30 45.38 48.33 30.57 42.29 37.25 28.13
HyperTuning 40.42 43.95 45.13 31.78 38.20 38.72 29.31
MEND 43.35 46.82 48.81 32.57 44.29 39.25 30.42

Negative Perturbation. We evaluate the impact of various negative perturbations, including the
following scenarios: 1) No Label: This perturbation involves removing the labels while retaining
the inputs. 2) No Input: The inputs are removed while keeping the labels intact. 3) Random Label:
This perturbation randomly selects one of the valid options as the output. 4) Wrong Label: In this
case, one of the incorrect options is randomly selected. The results are presented in Tab. 3. As
anticipated, a consistent trend emerges, with No Perturbation outperforming both Random Label
and Wrong Label for both theVanilla ICL and our proposed MEND. Moreover, it is noteworthy
that performance improves in most cases when the No Input perturbation is applied. This not only
underscores the significance of labels in the context of in-context learning but also illustrates MEND’s
ability to effectively distill label information into the distilled vectors.

5.3 Attention Weight Visualization

To gain a deeper understanding of how demonstration distillation impacts LLM, we employ visualization
techniques to explore the attention weights of LLM’s induction heads, as introduced by Olsson et al.
(2022). Induction heads are attention heads known for their prefix matching and copying properties,
which play a crucial role in the context of in-context learning. They empirically increase the likelihood
of [B] given [A][B] · · · [A] when repeated sequence of tokens. Our objective is to understand whether
our demonstration distillation can store the input-output pattern that will activate these induction
heads in a manner similar to the original demonstration tokens.

We visualize the attention weights of the four induction heads7 for both Vanilla ICL and MEND, as
illustrated in Fig. 5. A review of Fig. 5 reveals that the final prediction establishes a constructive
association with the demonstration distillations. Given that the length of demonstration tokens
(average=914) and compressed prompt tokens (100) significantly exceed the length of test input, we
employ max pooling to map the attention weights of the demonstrations into 20 tokens (Area enclosed
by red rectangle). This in-depth analysis further substantiates that the distillation derived from MEND
offers valuable context supervision signals for LLM.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

Layer Depth: 17/36
Head Index: 1/20

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

Layer Depth: 20/36
Head Index: 5/20

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

Layer Depth: 17/36
Head Index: 10/20

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

Layer Depth: 18/36
Head Index: 5/20

(a) Attention Visualization of Vanilla ICL.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

Layer Depth: 17/36
Head Index: 1/20

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

Layer Depth: 20/36
Head Index: 5/20

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

Layer Depth: 17/36
Head Index: 10/20

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

Layer Depth: 18/36
Head Index: 5/20

(b) Attention Visualization of MEND
Figure 5: Attention visualization. The left red surrounded x-axis denotes either the demonstrations
(Vanilla ICL) or the distilled vectors (MEND) and the other part of x-axis are the tokens from the
test input. The y-axis corresponds to the first token of the output word.

5.4 Ablation Study on demonstration distillation
To assess the significance of the Ldistill, we conducted an experiment that excluding this term during
both the pretraining and finetuning stages on several representative task paritions.

Pretraining. During the pretraining phase, we compare using no-pretraining, conditional language
modeling (CLM) (Phang et al., 2023), and CLM+Ldistill8. We find that (1) pretraining is crucial
as it substantially enhances performance compared to methods with no-pretraining, except for the
no-pretraining baseline; (2) our pretraining approach outperforms the alternatives. We hypothesize
that this superiority is attributed to our pretraining scheme better align the MEND and LLM.

7The details of identifying induction heads can be found in § C.
8More analysis about CLM+Ldistill can be found in Appendix B

8

Published as a conference paper at ICLR 2024

Finetuning. In this phase, we retained the same pretraining objective function but omitted various
finetuning components. Examining the lower section of Tab. 4, we observe that the removal of
each component leads to a decrease in performance. This observation underscores the positive
contributions of each component within our proposed method to the overall performance.

Table 4: Ablation study of knowledge distillation.

Methods non-Class
→ Class

non-NLI
→ NLI

non-
QA→QA QA → QA Avg.

Vanilla ICL 41.30 39.13 45.81 45.81 43.01
MEND 43.38 39.96 44.29 46.92 43.65

Ablation Study on Pretraining

No-Pretraining 38.25 34.33 42.18 45.65 40.10
CLM 42.00 39.09 44.13 46.47 42.92

CLM + Ldistill 41.38 38.79 43.69 45.10 42.24

Ablation Study on Finetuning

MEND w/o Lpred 37.64 33.90 43.97 44.54 40.41
MEND w/o Ldistill 39.26 37.22 40.29 45.78 40.64

In this experiment, we also observed that both the pretraining and finetuning ablations of MEND
significantly underperform compared to Vanilla ICL. This finding underscores the critical role of
the two-stage design, encompassing both pretraining and finetuning, in our model’s effectiveness.
Moreover, it highlights the essential contribution of knowledge distillation in replicating the teacher
model’s behaviors and harnessing meta-training knowledge. These results collectively illustrate the
synergistic impact of these components in enhancing MEND’s performance.

6 Related Work
Hypernetwork The concept of a Hypernetwork, as introduced by Ha et al. (2016), refers to an
auxiliary network designed to generate parameters for a primary network. In a similar view, MEND
can be perceived as a Hypernetwork, producing distilled vectors (parameters) to tailor LLM for new
tasks. Notable efforts like HyperTuning (Phang et al., 2023), HINT (Ivison et al., 2022), Hyper(Ye
& Ren, 2021) have employed a language model-based distillation model to condense demonstrations
into distilled vectors. While these methods can adapt to unseen demonstrations, they often degrade
with ICL performance. On the other hand, Gist (Mu et al., 2023) enhances the LLM with instruction
distillation and instruction following. However, given that the distillation model is synonymous
with the LLM, the distillation procedure induces computational overhead, especially when compared
with our approach that deploys a smaller language model for distillation. A distinctive advantage of
MEND over existing Hypernetwork-based demonstration distillations is its simultaneous realization
of efficiency and effectiveness as shown in Tab. 2 and Fig. 3.

Knowledge Distillation Knowledge distillation, as introduced by Hinton et al. (2015), seeks to
transfer insights from a high-capacity model to a model with lower capacity. This methodology is key
in ensuring both efficiency and effectiveness for MEND, setting MEND apart from other HyperNetwork
techniques. Askell et al. (2021); Snell et al. (2022) exploit the knowledge distillation to finetune LLM
with the ability to function as the language model with a prepended prompt when did not provide any
prompt. Nonetheless, given the diverse nature of demonstrations, as illustrated in Tab. 3, these methods
fail to include superior demonstrations for better ICL performance. Furthermore, as MEND functions
as a complementary module for LLM, it doesn’t hamper LLM’s inherent capabilities Furthermore, as
MEND functions as a complementary module for LLM, it doesn’t hamper LLM’s inherent capabilities.

7 Conclusion

We introduced MEND to not only tackle the inherent efficiency challenges in in-context learning with
large language models but also to address the effectiveness limitations of existing demonstration
distillation methodologies. Our innovative approach distilled in-context demonstrations into vectors,
tailored for downstream large language models. Rigorous evaluations of MEND across seven distinct
few-shot task partitions and two major large language model families have underscored its prowess.
Notably, MEND consistently matches or even surpasses the performance of traditional in-context
learning, all while demanding fewer FLOPs. This breakthrough paves the way for more efficient and
scalable applications of large language models in real-world scenarios. In the future, we aim to distill
an even broader spectrum of demonstrations, some potentially surpassing the context window limits
of both the demonstration distillation model and LLM.

9

Published as a conference paper at ICLR 2024

References
Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones,

Nicholas Joseph, Ben Mann, Nova DasSarma, et al. A general language assistant as a laboratory
for alignment. arXiv preprint arXiv:2112.00861, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Aydar Bulatov, Yuri Kuratov, and Mikhail S. Burtsev. Recurrent memory transformer, 2022.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language
models. arXiv preprint arXiv:2210.11416, 2022.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei
Li, and Zhifang Sui. A survey on in-context learning, 2023.

Sylvain Gugger, L Debut, Thomas Wolf, Philipp Schmid, Zachary Mueller, and Sourab Mangrulkar.
Accelerate: Training and inference at scale made simple, efficient and adaptable, 2022.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. ArXiv, abs/1609.09106, 2016. URL
https://api.semanticscholar.org/CorpusID:208981547.

Yaru Hao, Yutao Sun, Li Dong, Zhixiong Han, Yuxian Gu, and Furu Wei. Structured prompting:
Scaling in-context learning to 1,000 examples, 2022.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Hamish Ivison, Akshita Bhagia, Yizhong Wang, Hannaneh Hajishirzi, and Matthew Peters.
Hint: Hypernetwork instruction tuning for efficient zero-shot generalisation. arXiv preprint
arXiv:2212.10315, 2022.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, Peter Clark, and
Hannaneh Hajishirzi. Unifiedqa: Crossing format boundaries with a single qa system, 2020.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning, 2021.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
makes good in-context examples for gpt-3?, 2021.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. Metaicl: Learning to learn in
context, 2022a.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work?, 2022b.

Jesse Mu, Xiang Lisa Li, and Noah Goodman. Learning to compress prompts with gist tokens. 2023.

Neel Nanda and Joseph Bloom. Transformerlens, 2022. URL https://github.com/
neelnanda-io/TransformerLens.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
arXiv preprint arXiv:2209.11895, 2022.

10

https://api.semanticscholar.org/CorpusID:208981547
https://github.com/neelnanda-io/TransformerLens
https://github.com/neelnanda-io/TransformerLens

Published as a conference paper at ICLR 2024

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library, 2019.

Jason Phang, Yi Mao, Pengcheng He, and Weizhu Chen. Hypertuning: Toward adapting large
language models without back-propagation. In International Conference on Machine Learning, pp.
27854–27875. PMLR, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv e-prints, 2019.

Charlie Snell, Dan Klein, and Ruiqi Zhong. Learning by distilling context. arXiv preprint
arXiv:2209.15189, 2022.

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, and William Yang Wang. Large language
models are implicitly topic models: Explaining and finding good demonstrations for in-context
learning, 2023.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Qinyuan Ye and Xiang Ren. Learning to generate task-specific adapters from task description, 2021.

Qinyuan Ye, Bill Yuchen Lin, and Xiang Ren. Crossfit: A few-shot learning challenge for cross-task
generalization in nlp. arXiv preprint arXiv:2104.08835, 2021.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
Opt: Open pre-trained transformer language models. ArXiv, abs/2205.01068, 2022. URL
https://api.semanticscholar.org/CorpusID:248496292.

11

https://api.semanticscholar.org/CorpusID:248496292

Published as a conference paper at ICLR 2024

A Data, Training, Evaluation, and Compute Details

Code and data are available in the supplementary material and will be made public upon paper
acceptance via GitHub.

Data. For pretraining stage, we utilize the C4 validation dataset (Raffel et al., 2019) as our training
data. We truncate each passage into 1024 tokens. For meta-distillation stage, we limit the context
length into 900. Within the demonstrations, any example xi exceeding 256 tokens is truncated from
the end. However, we do not truncate the label yi. If the context length surpasses 900 tokens while
i < K, the subsequent demonstrations {(xi+1,yi+1)}K are omiited.

The tasks and their corresponding abbreviations are as follows: “Class” for classification, “QA” for
question answering, “NLI” for natural language inference, “HR” for high resource, “LR” for low
resource, and “Para” for paraphrase.

Training. The complete set of stable hyperparameters for training runs can be found in Tab. 5.
These parameters are adapted from MetaICL (Min et al., 2022a). Additional hyperparameters that
needed exploration and their corresponding search spaces are also detailed in Tab. 5.

For pretraining, we leverage the Class→Class meta-test validation dataset for early stopping. It
should be noticed that while determining pretraining hyperparameters, we focused our search solely
on gpt2-large and subsequently adapted the findings to other downstream MEND.

As for finetuning, we use specific meta-test validation data for early stopping. When it comes to
the meta-distillation finetuning hyperparameters, we conduct the search for each task split and MEND
independently.

The hyperparameter analysis of β and λ can be found in Fig. 7 and Fig. 6a.

Table 5: Hyperparameters for MEND.

Pretraining Finetuning
gpt2-large gpt2-xl t5-large-lm gpt2-large gpt2-xl t5-large-lm

Stable Hyperparameters

num steps 30,000 30,000 5,000 30,000 30,000 30,000
batch size 1 1 8 1 1 1

learning rate 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5
precision fp16 fp16 fp32 fp16 fp16 fp32
optimizer adamW adamW adamW adamW adamW adamW
LLMθ in 8bit True True False True True False

early stop patience 5 5 5 5 5 5

Searchable Hyperparameters

β [0.1, 0.5, 0.8, 0.9] N/A N/A N/A
λ N/A N/A N/A [0.01, 0.1, 1, 10]

Compute. We implemented our proposed methodology using PyTorch v1.13.1 (Paszke et al., 2019),
complemented by the HuggingFace Transformers library v4.24.0 (Wolf et al., 2019) and Accelerate
v0.20.0 (Gugger et al., 2022). All experiments were conducted on eight A10 NVIDIA GPUs, each
equipped with 24GB of memory.

B Hyperparameter analysis

Pretraining relevant Hyperparameters. During the pretraining stage, there are two important
factors greatly influence the distillation models performance for the following Meta-Distillation
fineuning: β and γ. β controls the length of demonstrations for distillation during pretraining and
γ controls the importance of knowledge distillation during pretraining. In Tab. 4, we show the
experiment results of CLM+1 × Ldistill). To comprehensively understand the superiority of sole
Ldistill, we consider an the hyperparameter analysis on the combination of CLM+1×Ldistill, which
can be formulated as L = LCLM+γLdistill. To save computational resource, different from Tab. 4 we
directly report the experiment result after pretraining without further Meta-distillation comprehension.

12

Published as a conference paper at ICLR 2024

0.2 0.4 0.8 0.9
34

36

38

40

M
ac

ro
-F

1
(%

)

(a) Analysis on β.

0.01 0.1 1 10
34

36

38

40

M
ac

ro
-F

1
(%

)

(b) Analysis on γ. Dashed line indicates no CLM.

Figure 6: Analysis on pretraining relevant hyperparameters.

As the result shown in Fig. 6, we have the following observations: 1) MEND achieves the best
performance when β = 0.8. This indicates that during pretraining, proper design the ratio of
demonstrations to inputs will achieve better performance than small or large ratios; 2) MEND achieves
better performance when increasing the γ. This indicates the importance of Ldistill (knowledge
distillation) in minimize the knowledge gap between the distillation model and downstream language
model.

0.01 0.1 1.0 10.0
0

1

2

3

Av
g

R
an

k

3.17

2.43 2.43

1.86

3.00

2.00 1.86

2.29

1.67 1.71

2.71

3.57

gpt2-large gpt2-xl t5-large-lm-adapt

Figure 7: Hyperparameter analysis on λ.

Meta-Distillation relevant Hyperparameters.
To understand the importance of knowledge dis-
tillation in Meta-distillation finetuning stage, we
vary λ in Eq. 4. As the result shown in Fig. 7, we
can observe that MEND achieve beter performance
when λ >= 1, this also indicates the importance
of knowledge distillation.

C Additional Analysis

Identify Induction Head. In § 5.3, we visu-
alize the attention weights of induction heads.
Here, we introduce how we identify these in-
duction heads. Following (Olsson et al., 2022;
Nanda & Bloom, 2022), we firstly create 10 ran-
domly sequences with length 500 then expand
them by concatenating with itself for time. Thus
we have 10 sequences with length 1000 and for
each sequence, the first 500 tokens is exact same
as the rest 500 tokens. Then, inside each self-attention layer, we take the diagonal of attention paid
from each destination position (position index > 500) to source positions 500− 1 back and get the
attention average of each head over these tokens. The average attention score are shown in Fig. 8 We
choose the 4 attention head with largest average attention score as the our interested inductive head.

Additional Large Language Model. To assess the efficacy and generalizability of MEND,
we conducted evaluations on larger models, specifically opt-6.7b Zhang et al. (2022) and
flan-t5-xl Chung et al. (2022). For demonstration distillation, we strategically selected smaller
counterparts as backbone models: opt-125m for opt-6.7b and flan-t5-base for flan-t5-xl.
We maintained consistent formatting and training methodologies across these evaluations, using
whitespace to separate inputs and outputs within and across demonstrations, as done with gpt2-large.
The results, as detailed in Tab. 6, show that MEND consistently outperforms other baseline methods.
This demonstrates its ability to effectively capture and utilize meta-knowledge, enhancing the efficiency
of demonstration distillation for aiding large language models (LLM).

13

Published as a conference paper at ICLR 2024

0 5 10 15

Head

0

5

10

15

20

25

30

35

La
ye

r

0.0

0.2

0.4

0.6

0.8

Figure 8: Average attention weight visualization of attention head from gp2-large .

14

Published as a conference paper at ICLR 2024

Table 6: Experiment on advanced large language
models.

Methods Class → Class

flan-t5-xl
PromptTuning 33.24
Vanilla ICL 40.63±2.21

HyperTuning 39.70±1.38

MEND 40.77±1.20

opt-6.7b
PromptTuning 38.81
Vanilla ICL 42.38
HyperTuning 32.67±2.17

MEND 44.27±1.12

Robustness towards Template Variations
While the primary objective of our study is to dis-
till demonstrations into compact vectors, the ex-
ploration of optimal prompt templates is beyond
the scope of this paper. In our experiments, we
consistently used whitespace to separate inputs
and outputs within and between demonstrations
across all models. To assess the robustness of
our models against template variations, we con-
ducted an additional evaluation. We transferred
the model trained with a whitespace separator to
a new template using newline characters (nn) for
separating inputs and outputs, and three newlines
for differentiating between demonstrations on
the gpt2-large LLM. The results, presented
in Tab. 7, indicate that MEND exhibits minimal
sensitivity to these format changes. The performance difference was negligible, with less than a 0.3%
variance between using spaces and newlines.

D Limitations

Table 7: Robustness of template variations. All
the method is evaluated on Class → Class setting.
The Diff. is the difference between newline result
minus whitespace result.

Methods whitespace newline Diff.
Vanilla ICL 41.30±2.15 38.90±2.21 −2.40
HyperTuning 40.42±1.64 40.08±2.54 −0.34
MEND 43.35±2.17 43.50±2.12 +0.15

Large Downstream language Models. Due
to computational constraints, our experiments
use models that are <2B. Whether these demon-
stration language distillation techniques gener-
alize o the largest models (10B+) is unknown.
However, given that our method can generalize
to different model structures and computation
efficiency without hurting the downstream lan-
guage model’s performance, we believe we are
shedding insights for future work.

Language Model dependent. Due to our de-
sign of distillation, the MEND may face the adap-
tation problem across different MENDs. This means we need to train a new distillation model for any
new LLM. In addition, because of our optimization design, we need the gradients that back propagate
on the top of MENDs. This will bring computation overhead when we try large LLM with larger
demonstration encoders.

Limited Context Window. Both MEND and LLM have a limited context window. Thus, when
demonstrations exceeds the length context, we inevitably need to truncate the demonstration. This
will not only lose the information from the discarded tokens and cannot distill large amount of
demonstration(e.g. K > 1000 (Hao et al., 2022)). Concurrent work utilizes recurrent memory
transformer (Bulatov et al., 2022) to compress long text documents beyond the constraint of context
window size into soft prompts. We consider handling extra-long demonstration as our future work.

15

	Introduction
	Problem Definition
	Methods
	Knowledge Distillation
	Optimization

	Experiments
	Experiment Setting
	Experiment Results

	Analysis
	Varying Demonstration Distillation Ratio
	Perturbation to Demonstrations
	Attention Weight Visualization
	Ablation Study on demonstration distillation

	Related Work
	Conclusion
	 Data, Training, Evaluation, and Compute Details
	Hyperparameter analysis
	Additional Analysis
	Limitations

