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Abstract—Recently, the massive and diverse fake news from
politics to entertainment and health has amplified the social
distrust problem and has become a big challenge for the society
and research community. The existing fake news detection
methods are mostly designed for either a specific domain or
require huge labeled data from various domains. If there is not
enough labeled data in a certain domain, existing models may not
work well for detecting fake news from that domain. To overcome
these limitations we propose a novel framework based on multi-
source domain adaptation and weak supervision for early fake
news detection. The framework transfers sufficient labeled source
domains’ knowledge into a target/new domain with limited or
even no labeled data by the multi-source domain adaptation,
and applies researchers’ prior knowledge about fake news to the
target domain by the weak supervision. The weak supervision
assigns the weak labels to the unlabeled samples in the target
domain through known heuristic rules. Our experimental results
show that our approach outperforms 7 state-of-the-art methods
in three real-world datasets. In particular, our model achieves, on
average, 5.2% higher accuracy than the best baseline. Our model
with a more advanced encoder can further boost the performance
by 3.7%. The code is available at this clickable link.

Index Terms—fake news detection, weak supervision, domain
adaptation

I. INTRODUCTION

Social media platforms provide users with a convenient
and easily-accessed way to create, spread, and acquire di-
verse information. However, during the global pandemic of
COVID-19, there has been an abundance of deliberate and
domain variant disinformation1 has been spread online. Such
widespread fake news has already eroded the public trust in
the government and professional journalism and has made a
negative impact on both the online and offline worlds. Thus,
it is important to identify fake news across different domains
timely.

Due to the superior feature representation abilities, many
deep learning based fake news detection methods [1], [2] have
achieved promising results. However, the domain variance in
fake news topics and word usages brings new challenges into
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Fig. 1: (a) The vanilla classifier ignores the domain differ-
ence, (b) domain adaptation generalizes the classifier across
domains, and (c) weak supervision utilizes the weakly labeled
samples to adjust the decision boundary for the target domain.
Best viewed in color.

the early fake news detection [3]. This is because the existing
methods are specialized for one single news domain and may
not be generalized well across multiple domains, especially
unseen news domains [4], [5].

Cross-domain early fake news detection is a non-trivial
problem because of the following challenges. Firstly, fake
news is generally complex in terms of linguistic styles and
topics [6] and thus requires extensive training data for build-
ing an accurate detection models. However, newly emerging
domains may not contain enough labeled data due to the high
cost in time and labor of annotation. For example, journalists
at PolitiFact2 conduct thorough searches on online databases,
consultation with experts, and a review of publications to rate
and write each the fact-checking report. Thus, it is difficult
to label enough newly emerging fake news timely. Secondly,
the domain shifts or the distribution shifts across different
news domains will exacerbate the generalization errors for
the unseen news domain [4], [7]. It is not suitable to directly
apply a model trained on high-resource domains (i.e., source
domains with enough labeled data) to a low-resource domain
(i.e., a target domain with very limited or even no labeled data)
without any additional treatment, as shown in Figure 1(a).
Thirdly, only limited information is available at the early stage
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of news dissemination. Although some fake news detection
methods achieved strong performance by including additional
information (such as information propagation paths over social
media [8] and user credibility [9]), their approaches are
relatively expensive as they require collecting additional data,
and they require additional time to make predictions (e.g.,
the prediction can be done after fake news has been already
propagated). Late fake news intervention/detection may be less
useful as the social and knowledge-based consequences may
have already been inflicted before the content is identified as
fake. Agents are often unwilling to change or correct incorrect
beliefs [10]. Therefore, better and timely methods would be to
only require raw news content itself as input without additional
information. Our goal is to develop a news content based fake
news detection method to identify fake news early with limited
labeled data.

Given these challenges, one straightforward approach is to
employ the domain adaptation (DA) [11] on news content,
where a model is trained on enough labeled source domains
and limited labeled/unlabeled target domain. The benefit of
the DA is that the model can align the representation space
between the source and target domains, so the classifier’s
decision boundary can be generalized to the target domain.
This approach is shown in Figure 1(b). Wang et. al [12] and
Xu et. al [13] for example, applied adversarial training to learn
an event, and then used domain invariant feature representation
for the fake news detection, respectively. However, only using
DA may fall short in fitting the target domain data. This is
because DA learns the fake news classifier based on the gen-
eralized feature space and source domains’ supervision signals
without including supervision signals from the target domain.
To provide additional supervision at the target domain, we also
include fake news researchers’ prior knowledge in the target
domain to adjust the fake news classifier’s decision boundary
to the target domain. The addition is shown in Figure 1(c).

We propose a Multi-source Domain Adaptation with Weak
Supervision (MDA-WS) for early fake news detection. Our
approach integrates knowledge from multiple source domains
and fake news researchers. To transfer the knowledge from
multiple source domains, the model learns a domain invariant
feature representation through adversarial training [14], and
a set of fake news classifiers for multi-source domains. To
incorporate fake news researchers’ prior knowledge to the
target domain and properly aggregate multiple source domains,
we exploit the newly designed weight function, trained on
weakly labeled target samples, to combine all the source clas-
sifiers’ predictions. This approach is different from existing
multi-source domain adaptation with weak supervision method
CoDATS-WS [15], because we utilize the weakly labeled
target samples instead of posterior distribution constraints and
we treat each source differently, based on a weight model.

The main contributions of this work are as follows:

• To the best of our knowledge, we are the first to study
the problem of exploiting multi-source domain adaptation
with weak supervision for early fake news detection.

• We propose a novel fake news detection framework,
which integrates the cross-domain knowledge and prior
knowledge about fake news from the literature. It does
not require clean labels from the target domain during
training, and only requires limited clean labeled target
domain validation data for hyperparameter tuning.

• Extensive experimental results on three real-world fake
news datasets show the effectiveness of MDA-WS over
7 state-of-the-art methods. The models achieves a 5.2%
accuracy improvement over the best baseline, and an ad-
ditional 3.7% accuracy improvement with a more advanced
encoder.

II. RELATED WORK

Domain Adaptation: Domain adaptation aims to map the
target domain (test-dataset) into source domain (training-
dataset), and then applies the classifier learned from the source
domain to the target domain. Many works try to learn a
domain-invariant feature representation, where the features’
distribution is the same for samples sampled from target and
source domains [11]. In multi-source domain adaptation, to
integrate the information from different source domains, [15]
considers all the source domains into one without considering
the difference among these source domains. [16] weights the
source domain based on the distance between the source
domain and target domain. Different from existing works,
our MDA-WS has a weight function to weight each source
domain. Instead of weighting based on the domain distance,
our weight function weights source domains based on their
contributions on the weakly labeled target data, explicitly.

In addition, there are works in domain adaptation leveraging
the weak supervision [15]. However, these weak supervisions
are in different formats (e.g, providing the image-level label
in segmentation tasks, posterior regularization, etc.), which
cannot be applied to enforce and integrate different source
domain knowledge in our work. Instead, our method learned an
example-to-domain importance score for each source domain.

The most related work to ours is CoDATS-WS [15]. It
also combined the multi-source domain adaptation and weak
supervision. However, unlike ours, the source domains in
CoDATS-WS were considered equally important and its weak
supervision was prior distribution regularization which is hard
to be obtained in advance. Instead, our method learned an
example-to-domain importance score for each source domain.
Weak Supervision: To solve the limited labeled data problem
in deep learning, weak supervision techniques have been
developed. The weak supervision can provide an external but
weak supervision signal to the model during the training. The
weak supervision can be in a form of expected distribution
constrain [17], weak labeling functions [18] and so on. Our
work utilized the lexical characteristics of fake news as a weak
labeling function to assign weak labels to unlabeled fake news
contents in the target domain.
Fake News Detection: The existing fake news detection
methods mainly focused on utilizing the news content and
its social engagement [6]. Content based approaches learned



feature representations through the feature engineering or
utilized deep learning to learn the content representation end-
to-end [19]. Social engagements-based approaches extracted
the auxiliary information from user profiles [20], and social
discussion [21] and information propagation paths [7]. How-
ever, most of these methods are not specialized for cross-
domain fake news detection and cannot be generalized for
unseen news domains.

Several previous works aimed at cross-domain fake news
detection. They learned the domain/topic-invariant features
from the information propagation paths [3], [7] or news
content [12]. [22] carefully did the feature engineering to
identify the domain-invariant features. These works mainly
exploited the supervision signals from the source domains
without considering fake news researchers’ prior knowledge
in fitting decision boundary towards target news domain.

Two works utilized weak supervision in fake news de-
tection [23], [24]. [23] leveraged the reinforcement learning
to select high-quality weakly labeled samples from news’
comments. [24] leveraged weak supervision from social en-
gagements related to news. Compared with these approaches,
our MDA-WS does not require any social information. In
addition, our MDA-WS can integrate supervision signals from
domain adaptation and weak supervision simultaneously for
better fake news detection.

III. PROBLEM STATEMENT

Let {DSk
}Kk=1 denote K-source domains’ corresponding

datasets (i.e., one fake news dataset from each domain), where
DSk

= {(xSk
i , ySk

i )}|Sk|
i=1 , and xSk

i and ySk
i represent news

content and its clean label, respectively. In addition, we have
unlabeled samples XT = {xTi }

|XT |
i=1 from a target domain (e.g.,

health), and a weak labeling function g : x → ŷ to weakly
label a subset of XT . The weakly labeled target domain data
is denoted as DT̃ = {(xT̃i , ŷT̃i )}

|XT̃ |
i=1 . where XT̃ ⊆ XT . In this

paper, we aim to learn a fake news classifier from {DSk
}Kk=1,

XT and DT̃ , such that it will automatically predict whether
an unseen news content in the target domain is fake or not.
In the following sections, x, y and ŷ represent news content,
a clean label and a weak label, respectively.

IV. OUR PROPOSED FRAMEWORK

As shown in Figure 2, MDA-WS learns the supervision
signals by: (a) multi-source domain adaptation (MDA) based
on multiple labeled source domains, and (b) weak supervision
based on fake news researchers’ prior knowledge. Since ex-
isting MDA frameworks [16], [23], [25] did not exploit these
two heterogeneous supervision signals at the same time, they
cannot achieve optimal performance under this setting. In this
section, our proposed model MDA-WS aims to better integrate
the knowledge from multi-source domains and fake news
researchers by answering three fundamental questions:

• How to exploit knowledge from different source domains?
• How to integrate weak supervision and domain adaptation

without hurting a model’s performance?
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Fig. 2: The overall architecture of our MDA-WS. (a) Multi-
source domain adaptation is trained with labeled multiple-
source fake news domains {DSi

}Ki=1 and one unlabeled target
domain XT . (b) Weak supervision utilizes weakly labeled
target samples DT̃ to enforce and integrate knowledge from
multiple-source fake news domains. We jointly train them.

• How to provide high quality and enough weak supervision
signals to prevent the model from fitting into the noise?

MDA-WS adapts multi-task learning framework [26] with a
shared encoder E and a set of source-domain-specific classifi-
cation heads {Fk}Kk=1 and other auxiliary modules like domain
discriminator D and weight function G. In section IV-A,
we will introduce how to fully exploit the information from
different source domains. In section IV-B and IV-C, we
present our approach of integrating the weak supervision into
the multi-source domain and converting the prior knowledge
into high-quality weak labels. Lastly, in Section IV-D, we will
formalize our final objective function.

A. Multi-Source Domain Adaptation

Inspired by the previous work [27] in multi-source domain
adaptation, we focus on reducing both (i) the distribution
distance between source domains and target domain, and (ii)
the classification error on source domains to minimize the
actual classification error at the target domain.
Domain Invariant Feature Representation Learning: To
minimize the distribution distance and learn the domain
invariant feature representation, we utilize an adversarial
method [11], [14]. In particular, the encoder E in Figure 2
(a) tries to learn the domain invariant representations to fool
the domain discriminator D, while D tries to accurately
distinguish each sample’s source domain. The formulation of
the min-max game is as follows:

min max
E D

−
∑K

k=1 E(x,y)∼DSk
l (D(E(x)), dSk

)

−Ex∼XT
[l (D(E(x)), dT )]

(1)



where d{·} is the domain indicator, the target domain is dT = 0
and the source domain is dSk

= k. l is the cross-entropy loss
for multi-label classification.

To simplify the min-max game into one-step minimization,
we adopt the gradient reversal layer represented as R(x)
introduced in [11]. In the forward propagation, R(x) is the
identity function. However, during the backward propagation,
the gradients behind the R(x) and the gradients of encoder
E are reversed by multiplying −λ, and the gradients of the
preceding layers and the discriminator D are not changed.
The λ controls the importance of distribution distance reg-
ularization in feature learning, and in this paper, we follow
previous work [11], [12] set it to 1. The formulations of
reversal forward- and backward-behaviors are:

R(x) = x;
dR
dx

= −λI (2)

where the I is the identity matrix. We can then convert the
min-max game Eq. 1 into one-step optimization Eq. 3:

Ldis = min
E,D

∑K
k=1 Ex∼DSk

l (D(R(E(x))), dSk
)

+Ex∼XT
[l (D(R(E(x))), dT )]

(3)

Domain Specific Predictions: Since each news domain has
its characteristics, only building a fake news classifier based
on the domain invariant representations is sub-optimal. For
example, celebrity fake news often mentions celebrities’ di-
vorce, while the politics fake news discusses election events.
Therefore, the invariant representations would fail to capture
these domain-specific characteristics and eventually restrict the
capability of the fake news classifier [17].

To overcome this problem and minimize the classification
error on the source domains, we build K different source
classification heads {Fk}Kk=1 to make the domain-specific
predictions, as shown in Figure 2 (a).

Given the domain invariant representation of sample xSk
i

from source domain Sk, it will only go through the classifi-
cation head Fk and back-propagate the gradient through head
Fk towards encoder E. The objective function of the source
domain’s fake news classification is:

Lclf =
∑K

k=1 E(x,y)∼DSk
l (Fk(E(x)), y) (4)

By combining two objective functions in Eq. 3 and Eq. 4,
the multi-source domain adaptation’s objective function is:

LMDA = Ldis + Lclf (5)

B. Weak Supervision

To better aggregate the contribution from different source
domains, and include fake news researchers’ prior knowledge
into model training, we jointly train a weight function G and
aforementioned multi-source domain adaptation modules on
weakly labeled target samples DT̃ = {(xT̃i , ŷT̃i )}

|XT̃ |
i=1 as shown

in Figure 2 (b).
In this paper, the weak supervision is in the form of a

weak label, where we implement a weak labeling function

g : x → ŷ based on psychology or computation research
findings in the literature, interpreting them as fake news
researchers’ prior knowledge. Note that the detail of our
weak labeling function is described in Section IV-C. A weak
labeling function assigns a weak label for each sample from
a subset of unlabeled samples XT in the target domain. The
weakly labeled target dataset D̃T is utilized to learn the weight
function G and Encoder E and classification heads {Fk}Kk=1.
The objective function of weak supervision is:

LWS = E(x,ŷ) ∼DT̃
l (F (x), ŷ)

= E(x,ŷ) ∼DT̃
l
(∑K

k=1 wkFk(E(x)), ŷ
) (6)

where {wk}Kk=1 are float scores under the interval [0, 1]
generated by weight function G for every weakly labeled target
sample, to be used for computing averaged sum of the logits
from {Fk}Kk=1.

Training the model by these weakly labeled target samples
brings two advantages: (i) the weak supervision helps the
model fits well into the target domain by adjusting the decision
boundary as shown in Figure 1(c); and (ii) these weakly
labeled samples do not require manual annotations, which
resolves the limited labeled data issue at a new/an emerging
target domain such as health. This also makes our work
different from semi-supervised domain adaptation [28], where
the label at the target domain is from manual annotation
instead of labeling functions.

The steps of outputting {wk}Kk=1 from G are as follows:
given hidden representation of the weakly labeled target sam-
ples E(x) and learnable source domain embedding vector
dk ∈ RZ for each source classification head, our weight
function G will output {wk}Kk=1 through the shallow multi-
layer perceptions C with non-linearity:

wk = G(x)k = σ(C([E(x);dk])) (7)

where “[ · ; · ]” is the concatenate operation and σ is the
sigmoid activation function. The additional domain embedding
vector {dk}Kk=1 helps us to capture the global information
inside each domain. In our ablation study on Section V-D, we
have shown the effectiveness of the domain embedding vector.

Different from learning domain importance weights
{wk}Kk=1 from the distribution distance between the source
and target domains [29], [30], our approach considers the
contribution towards the weakly labeled samples DT̃ from
the target domain as the importance weight. In this way, the
weak supervision can directly enforce and reformulate the
knowledge from different source domains. In addition, by con-
catenating the domain embedding vector {dk}Kk=1 and weakly
labeled samples hidden representation E(x), the weight model
can better integrate the local and global information towards
target sample. We will present this in our ablation study in
Section V-D.

C. Weak Labeling Function

Inspired by the setting of weak labeling functions in [31],
our weak labeling function contains a feature transformation



function f and a threshold N as shown in Figure 3. As a
way to apply fake news researchers’ prior knowledge, we
analyzed the previous work in fake news content and found
the following characteristics: (i) There are more second-person
pronouns in fake news than real news [32], [33] because
real news editors prefer removing personal languages and
such pronouns were usually an indication of imaginative
writing which is close to the fake news; (ii) Researchers [19]
found that swear words are more often used in fake news
content because the fake news writers pay less attention to
informal words, and (iii) The number of adverbs is also an
indicator of the news veracity. Fake news used more adverbs to
exaggerate [19], [32]. Although other weak labeling functions
utilize social media engagements [23], [24] and agencies’
trustworthiness [34], they require not only the news content
but also additional contextual information which is not suitable
for early fake news detection.

Based on these characteristics, we came up three transfor-
mation functions f s, each of which measures news content’s
LIWCscore according to one of the categories: you, swear and
adverb [35]. We consider choosing a transformation function
as a hyperparameter. Each LIWC category contains multiple
pre-selected words and the calculation of LIWCscore is as
follows:

LIWCscore =
# of matched words

total# of words in news
∗ 100% (8)

To properly label the target training samples and reduce the
noise from the weak labeling function, we only keep and label
the largest N samples as fake news and the smallest N samples
as real news (refer to Figure 3). These |XT̃ | = 2N samples
with the weak labels are the weakly labeled dataset DT̃ . The
target domain’s validation set is used for the hyperparameter
tuning of the weak labeling function (i.e., the best f and N )3.
For these 2N weakly labeled samples, the accuracy scores for
the best combinations are (N=75 and f = “you” in Health),
(N = 25 and f = “swear” in PolitiFact) and (N = 50
and f = “adverb” in GossipCop) were 0.81, 0.70, and 0.58,
respectively. It should be noticed that these combinations are
selected based on hyperparameter analysis shown in Figure 5.
These accuracy scores are better than the random guess, 0.5,
which proves the effectiveness of our weak labeling function.
The detailed dataset information is described in Section V-A.

D. Final Objective Function
Our final objective function consists of two parts: (i)

training multi-source domain adaptation and (ii) training weak
supervision. In the first part, we input labeled source domain
datasets {DSk

}Kk=1 and unlabeled target domain samples XT

into the framework. In the second part, we input the same
{DSk

}Kk=1 and XT with the weakly labeled target sample data
DT̃ . Overall, the objective function of MDA-WS is:

Lfinal = βLMDA + LWS (9)

3We also tried combining outcomes of three weak labeling func-
tions/transformation functions and selected weak labels based on the majority
vote. But, this approach produced more noise and resulted in worse perfor-
mance. Therefore, we selected the best one for each target domain.
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where β is the hyperparameter controlling multi-source do-
main adaptation and weak supervision loss.

V. EXPERIMENTS

Through the experiments, we answer the following research
questions: RQ1: How accurately can MDA-WS detect fake
news in the target domain? RQ2: Does each component of
MDA-WS positively contribute? RQ3: How does hyperparam-
eter values affect the MDA-WS’s performance? RQ4: How
many clean labeled samples can be saved by MDA-WS? RQ5:
Can the weight function G properly identify the contribution
of each source domain? RQ6: Do baselines achieve better
performance by utilizing our weakly labeled samples DT̃ ?
Does our MDA-WS still outperform the baselines?

A. Evaluation Datasets

We selected fake news datasets from three different news
domains: GossipCop (GC), PolitiFact (PF) [36] and Health
DETERRENT (HD) [37]. These datasets contain news con-
tents and veracity labels annotated by professional journalists.
For HD, the authors split it into cancer and diabetes. In our
study, we combined them into one health dataset. Datasets’
statistical information is listed in Table I. Since some hy-
perlinks of the news content are inaccessible because of the
deletion, crawling news content will inevitably shrink the size
of the datasets. We evaluate our model and baselines under the
standard balance setting. We truncated news content into 300
tokens and utilized the RoBERTa-base’s tokenizer4 to encode
text.
Dataset Setting: We split each dataset into training, validation,
and test sets with a ratio of 7:1:2. We picked up a dataset as
the target domain dataset in the round-robin, and the remaining
two datasets were the source domain datasets. In other words,
there are three pairs of two source domain datasets and a
target domain dataset. Given a pair, we train our MDA-
WS by the labeled source domain training sets ({DSk

}Kk=1

where K=2) and unlabeled target domain training set (XT )
with weakly labeled target domain data DT̃ , a subset of the
target domain training set with weak labels as described in
Section IV-D. Then, the target domain’s validation is used
for hyperparameter tuning. Finally, the optimized model will
be evaluated over the target domain’s test set. We apply the
same setting to all the baselines described in Section V-B. This

4https://github.com/huggingface/transformers



TABLE I: The statistical in-
formation of the datasets.

Datasets Fake Real
GossipCop 4,252 4,252
PolitiFact 260 260

Health 1,992 1,992

GC PF HD

GC

PF

HD

100.0 12.1 30.9

12.1 100.0 19.4

30.9 19.4 100.0

Fig. 4: Vocabulary over-
lap (%) between differ-
ent domains.

setting can be considered as the upper bound on how well these
unsupervised domain adaptation methods can perform [38].
Dataset Analysis: To understand cross-domain relevance of
the datasets, we measured the vocabulary overlap in Figure 4.
We excluded less frequent words (<3) and stop words from
NLTK5 in each dataset. We can observe that GossipCop and
Health had the highest vocabulary overlap (30.9%), while Poli-
tiFact was less vocabulary overlap with GossipCop (12.1%)
and Health (19.4%). In our further analysis in Figure 7, our
weight function G can capture the domain relevance, and
assigns a large averaged importance weight to more relevant
source domain. Since the cross-domain similarity is low, it is
important to apply multi-source domain adaptation with weak
supervision.

B. Experimental Setting

Baseline Methods. We compare our MDA-WS with 7 base-
lines: Text-CNN [39], EANN [12], DANN [11], CNN-DDS
[38], MoE-A [17], MDAN [27] and CoDATS-WS [15].
Implementation Details. For a fair comparison, Text-
CNN [39] was used as the encoder of all the baselines and
ours. The WordPiece embedding of Text-CNN was initialized
from the RoBERTa-base6, and was frozen during training.
Text-CNN has three 1D convolutional layers with kernel size
3, 4, and 5. Each layer has 100 filters. We trained no-domain-
adaptation (NDA) methods like Text-CNN and EANN by using
a single source domain dataset or combination of two source
domain datasets to report both results. For NDA and DANN
trained on a single-source dataset, we report the best single-
source performance. We use the target validation set to tune the
hyperparameters and report each model’s performance in the
target test set. For model optimization, we use the optimizer
Adam with a learning rate of 0.001 and weight decay of 0.
All the models are trained for 50 epochs. We save the best
checkpoint at the end of each epoch and report the test result
for checkpoint with the best validation accuracy score. The
training is repeated 5 times and the average result is reported.
We implemented MDA-WS with PyTorch7 (version 1.7.0) and
utilized the Ray[Tune]8 for the hyperparameter search. All the
codes are available at9.

5https://www.nltk.org/book/ch02.html
6https://huggingface.co/roberta-base
7https://pytorch.org/
8https://docs.ray.io/en/master/tune/
9https://github.com/bigheiniu/BigData-MDA-WS

Evaluation Metrics. Since these datasets are balanced, we uti-
lize evaluation metrics such as accuracy, and macro- precision,
recall, and F1 to represent the performance of our approach
and these baseline methods. These evaluation tools are from
scikit-learn [40].

C. Effectiveness of our MDA-WS (RQ1)

To answer RQ1, we compared our MDA-WS with the
baselines and experimental results are shown in Table II. We
have several observations:
• Overall, our proposed method MDA-WS achieved the

best performance compared with all the baselines over
three different target domain datasets, improving 5.2%
accuracy on average compared with the best baseline.
When we closely compare our MDA-WS with CoDATS-
WS, the result demonstrated that our weak labeling func-
tion provided high-quality supervision signals compared
with the posterior regularization of CoDATS-WS. This
also demonstrated the importance of treating each source
domain differently. In addition, compared with MoE-A,
which weights each source by the distance between the
target and source domain, our model achieved considerable
performance improvement. This indicates the combination
of our weak supervision and weight function G contributes
to cross-domain fake news detection.

• Single-Source Domain Adaptation SDA methods (i.e.,
DANN and CNN-DDS) outperformed NDA (i.e., Text-
CNN and EANN) with one source domain dataset. In
general, MDA (i.e., MDAN and MoE-A) achieved better
performance than SDA (i.e., DANN, CNN-DDS). NDA
with multiple source training data achieved better per-
formance than NDA with a single source. However, in
Health dataset, Text-CNN with multiple sources showed
a performance drop. This may suggest the importance
of domain adaptation for better supervision signals with
omitting the domain conflict.

D. Ablation Study (RQ2)

Effects of MDA and WS. Our proposed method exploits two
kinds of supervision signals for cross-domain fake news detec-
tion. To understand the contribution of each supervision signal
and prove that weak supervision can boost the performance of
multi-source domain adaptation and vise versa, we eliminate
one of them (w/o MDA or w/o WS) in model training. We
can observe that both WS and MDA positively contributed to
the model’s performance. Its result confirms the importance
of combining knowledge from multiple source domains and
fake news researchers. In addition, we observe that w/o WS
shows relative performance drop (2% ∼ 6%) compared with
w/o MDA. This indicates that limited prior knowledge/weak
supervision makes more contribution than additional training
data from source domains/MDA.
Effects of Weak Supervision Components. To understand the
contribution of the weight function G and explicit domain em-
bedding vector {dk}Kk=1, we consider two variants of MDA-
WS: (i) Weight function G generates uniform weight for the



TABLE II: The experiment results on three fake news domains. Our MDA-WS significantly outperformed all baselines (t-test
with p < 0.05). The best performance is bold and the second best is underlined.

Methods GossipCop PolitiFact Health Avg. Rank
ACC Precision Recall F1 ACC Precision Recall F1 ACC Precision Recall F1 Acc

Single Source
Text-CNN 56.54 57.75 56.59 54.92 60.76 60.48 60.38 60.28 64.41 64.70 64.42 64.27 9.00
EANN 58.86 59.06 58.90 58.69 61.86 68.09 61.92 58.45 60.85 60.49 60.90 60.28 8.00
DANN 59.37 59.75 59.40 59.02 63.76 64.59 63.84 63.87 69.85 69.91 69.74 70.34 6.33
CNN-DDS 56.69 56.84 56.72 56.51 66.48 67.09 66.92 66.83 71.25 71.51 71.33 71.28 7.00
Multiple Sources
Text-CNN 57.02 57.06 57.05 57.04 67.72 67.89 67.69 67.61 50.96 51.20 51.06 49.11 7.67
EANN 58.73 58.82 58.76 58.68 67.26 67.68 67.12 66.84 72.09 75.51 72.14 71.25 5.67
MoE-A 60.18 60.27 60.20 60.13 69.47 70.28 69.03 68.53 61.96 69.40 62.07 58.12 5.00
MDAN 61.63 63.05 61.66 60.90 70.67 70.88 70.58 70.47 72.34 75.31 72.37 71.57 2.67
Multiple Sources + Weak Supervision
CoDATS-WS 61.91 62.49 61.97 61.55 69.21 69.24 69.04 68.96 82.46 83.32 82.53 82.42 2.67
MDA-WS 66.18 66.44 66.21 66.09 75.80 77.40 75.96 75.69 88.78 89.36 88.70 88.65 1.00

source domains, termed as w/o G. In our case, the weights for
two source domains will be both set to 0.5. (ii) Weight function
generates weights without domain embedding {dk}Ki=1. We
observe that our original weight function performed better
than the two variants over all of the target domain datasets,
indicating the effectiveness of our weight function G and the
domain embedding vector {dk}Kk=1.
Effects of Basic Encoder. To understand the influence of
the encoder, we replaced Text-CNN with RoBERTa-base.
MDA-WSRoBERTa−base achieved 3.7% accuracy improve-
ment compared with our original MDA-WS. The result of
MDA-WSRoBERTa−base confirms that an advanced encoder
can produce better performance, and also shows the flexibility
of our framework.

TABLE III: Ablation study w.r.t accuracy (p < 0.05).

Model GossipCop PolitiFact Health
w/o MDA 61.32 72.11 82.14
w/o WS 58.43 70.19 76.12
w/o Gate 57.38 54.81 85.48
w/o {dk}Ki=1s 58.45 65.38 86.48
MDA-WS 66.18 75.80 88.78
MDA-WSRoBERTa−base 69.96 80.77 90.99

E. Further Analysis

Hyperparameter Analysis (RQ3). To conduct hyperparame-
ter (HP) analysis, we varied values of the four hyperparameters
β, f , N and Z. Figure 5 shows how accuracy was changed
when we changed each hyperparameter. We first observed that
in GossipCop and Health, mid-range values of β achieved the
best performance while in PolitiFact, small β is preferred. This
is consistent with the observation from Figure 4, in which
PolitiFact has relatively low similarities with GossipCop and
Health. A large β score in PolitiFact would make the model
overfitting with the source domains. Secondly, the performance
gaps across different transformation function f were due to
domain shift. Thirdly, in GossipCop and Health, Mid-range N
achieved the best performance because large N would bring
much noise in the training, while small N would constrain the
researchers’ prior knowledge. However, in PolitiFact, small N
achieves better performance. This is due to the small size of

the dataset itself that N = 25 already covers enough part
of the dataset ((25 × 2)/520 = 9.6%). Lastly, for a domain
embedding size Z, we observe that the best performance was
achieved in all three datasets when Z = 128, because it can
overcome the Underfitting and overfitting problems.
Effects of Clean samples (RQ4). To understand the superior-
ity of our approach in the quantity of clean labeled samples,
we compare MDA-WS with supervised classification and
semi-supervised domain adaptation (SSDA). Specifically, the
supervised classification is the basic encoder trained on labeled
target samples, while the semi-supervised learning is based on
MDA-WS but replaces weakly labeled samples to manually
labeled target domain samples DT = {(xTi , yTi )}Mi=1, where
M < |XT |. As the result shows in Figure 6a and 6b, MDA-WS
can achieve compatible performance without manually labeled
samples. These flat lines are because MDA-WS did not use
any manually labeled samples in this setting. Specifically, in
the Health domain, MDA-WS can reduce at least 40 labeled
samples in supervised classification and SSDA. This result
indicates MDA-WS can solve the limited label problem in
newly emerged news domains.
Weight Function Analysis (RQ5). To answer RQ5, we vi-
sualized the normalized average weights associated with the
classification heads in Figure 7. The visualization weights
{ŵk}Kk=1 are calculated as follows:

ŵk =

1
|DSk

|
∑|DSk

|
i=1 wi

k∑K
k′=1

1
|DS

k′ |
∑|DS

k′ |
i=1 wi

k′

(10)

The figure shows that each source’s weight was different,
meaning each source contributed unequally. Specifically, when
a target domain dataset was GossipCop, Health DETER-
RENT’s classification head was higher or more important than
PolitiFact’s classification head. This pattern was also observed
in Figure 4. This result indicates that the weight function can
properly identify the instructive domain.
Baseline Methods with Weakly Labeled Target Samples
(RQ6). To understand the contribution of weakly labeled
samples DT̃ and effectiveness of MDA-WS, we also consider
providing these weakly labeled samples to two best baseline
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Fig. 5: Hyperparameter (HP) analysis w.r.t accuracy (ACC).
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Fig. 6: The efficiency of MDA-WS in saving clean labeled
target domain samples DT , compared with supervised classi-
fication and semi-supervised domain adaptation (SSDA).
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Fig. 7: Average normalized expert weights for each domain.

methods MDAN and CoDATS-WS. It should be noticed that
the weak labeling function f and the number of weakly labeled
samples N are consistent with MDA-WS. From the result
shown in Table IV, we can observe that both baseline meth-
ods got improved performance, but are still worse than our
method MDA-WS. This not only indicates the effectiveness
of the weak supervision, but also the advance information
aggregation mechanism of our method MDA-WS.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have studied a cross-domain early fake
news detection problem, especially focusing on limited or
even no labeled data at new/emerging news domains. It is

TABLE IV: Baseline methods’ accuracy score with additional
weakly labeled samples DT̃ .

Model GossipCop PolitiFact Health
MDAN 61.63 70.67 72.34

MDAN w/ DT̃ 61.67 72.12 85.73
CoDATS-WS 61.91 69.21 82.46

CoDATS-WS w/ DT̃ 62.21 72.12 86.86
MDA-WS 66.18 75.80 88.78

a challenging problem because a newly emerging domain
may have only limited annotated data for early fake news
detection. To perform early fake news detection effectively
under the limitation, we proposed a novel framework based
on multi-source domain adaptation and weak supervision. Our
proposed MDA-WS successfully integrated knowledge from
multiple news source domains and fake news researchers’
prior knowledge. Specifically, MDA-WS learned the domain-
invariant feature representation through the adversarial training
and utilized the weakly labeled samples to train a weight
function in order to aggregate the output from source-specific
fake news classifiers/classification heads. The comprehen-
sive experiments conducted on three different target domains
showed that our proposed model outperformed 7 baselines,
improving 5.2% accuracy compared with the best baseline.
In addition, we further improved our model’s performance by
3.7% accuracy, using a more advanced encoder.

In the future, we will investigate an alternative weak
labeling function which can potentially work well for any
target domain. In particular, we plan to study a universal
labeling function based on fake news’ general attributes like
text perplexity [41], logic reasoning [42] and etc. Another
possible future improvement is to reduce the human efforts
at constructing these weak labeling functions to catch up
quickly evolving fake news formats like a short-form, video
sharing, etc. We are also interested in automatically generating
weak labeling functions from natural language description or
constrains entailed in a dataset.
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