
0

Campaign Extraction from Social Media

KYUMIN LEE, Texas A&M University
JAMES CAVERLEE, Texas A&M University
ZHIYUAN CHENG, Texas A&M University
DANIEL Z. SUI, Ohio State University

In this manuscript, we study the problem of detecting coordinated free text campaigns in large-scale so-
cial media. These campaigns – ranging from coordinated spam messages to promotional and advertising
campaigns to political astro-turfing – are growing in significance and reach with the commensurate rise
in massive-scale social systems. Specifically, we propose and evaluate a content-driven framework for ef-
fectively linking free text posts with common “talking points” and extracting campaigns from large-scale
social media. Three of the salient features of the campaign extraction framework are: (i) first, we investigate
graph mining techniques for isolating coherent campaigns from large message-based graphs; (ii) second, we
conduct a comprehensive comparative study of text-based message correlation in message and user levels;
and (iii) finally, we analyze temporal behaviors of various campaign types. Through an experimental study
over millions of Twitter messages we identify five major types of campaigns – Spam, Promotion, Template,
News, and Celebrity campaigns – and we show how these campaigns may be extracted with high precision
and recall.
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1. INTRODUCTION
Social media has become very popular in recent years, leading to new opportunities
for global-scale user engagement, sharing, and interaction. Many users of social media
organically engage with social media to share opinions and interact with friends; on
the other, social media is a prime target for strategic influence. For example, there is
widespread anecdotal evidence of “astroturfing” campaigns [Films 2011], in which po-
litical operatives insert memes such as a phrase into sites like Twitter and Facebook in
an effort to influence discourse about particular political candidates and topics. In ad-
dition, there are large campaigns of coordinated spam messages in social media [Gao
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et al. 2010], templated messages (e.g., auto-posted messages to social media sites from
third-party applications announcing a user action, like joining a game or viewing a
video), high-volume time-synchronized messages (e.g., many users may repost news
headlines to social media sites in a flurry after the news has been initially reported),
and so on. In the case of spam and promotion campaigns, the relative openness of many
social media sites (typically requiring only a valid email address to register) suggests
coordinated campaigns could be a low-cost approach for strategically influencing par-
ticipants.

And in a sinister direction, there is growing evidence that tightly-organized
strategic campaigns are growing in significance [Motoyama et al. 2011; Wang
et al. 2012]. One example is the development of sites like SubvertAndProfit
(www.subvertandprofit.com), which claims to have access to “25,000 users who earn
money by viewing, voting, fanning, rating, or posting assigned tasks” across so-
cial media sites. Related services can be found at fansandinvites.com, socioniks.com,
and usocial.net. Even within the great firewalls of China, we have witnessed the
emergence of the so-called “Wang Luo Shui Jun” or “Online Water Army” (e.g.,
http://shuijunwang.com). According to a recent CCTV report [CCTV 2010], online mer-
cenaries in China help their customers by (i) promoting a specific product, company,
person or message; (ii) smearing the competitor or adversary or competitors’ products
or services; or (iii) deleting unfavorable posts or news articles. Most online “mercenar-
ies” work part-time and are paid around 5 US cents per action.

User-driven campaigns – often linked by common “talking points” – appear to be
growing in significance and reach with the commensurate rise of massive-scale social
systems. However, there has been little research in detecting these campaigns “in the
wild”. While there has been some progress in detecting isolated instances of long-form
fake reviews (e.g., to promote books on Amazon), of URL-based spam in social media,
and in manipulating recommender systems [Gao et al. 2010; Hurley et al. 2007; Lam
and Riedl 2004; Lim et al. 2010; Mehta 2007; Mehta et al. 2007; O’mahony et al. 2002;
Ray and Mahanti 2009; Su et al. 2005; Wu et al. 2010], there is a significant need for
new methods to support web-scale detection of campaigns in social media.

Hence, we focus in this manuscript on detecting one particular kind of coordinated
campaign – those that rely on “free text” posts, like those found on blogs, comments,
forum postings, and short status updates (like on Twitter and Facebook). For our pur-
poses, a campaign is a collection of users and their posts bound together by some com-
mon objective, e.g., promoting a product, criticizing a politician, or inserting disinfor-
mation into an online discussion. Our goal is to link messages with common “talking
points” and then extract multi-message campaigns from large-scale social media. De-
tecting these campaigns is especially challenging considering the size of popular social
media sites like Facebook and Twitter with 100s of millions of unique users and the
inherent lack of context in short posts.

Concretely, we propose and evaluate a content-based approach for identifying cam-
paigns from the massive scale of real-time social systems. The content-driven frame-
work is designed to effectively link free text posts with common “talking points” and
then extract campaigns from large-scale social media. Note that text posts contain-
ing common “talking points” means the contents of the posts are similar or the same.
We find that over millions of Twitter messages, the proposed framework can identify
100s of coordinated campaigns, ranging in size up to several hundred messages per
campaign. The campaigns themselves range from innocuous celebrity support (e.g.,
fans retweeting a celebrity’s messages) to aggressive spam and promotion campaigns
(in which handfuls of participants post hundreds of messages with malicious URLs).
Through an experimental study over millions of Twitter messages we identify five ma-
jor types of campaigns – Spam, Promotion, Template, News, and Celebrity campaigns
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– and we show how these campaigns may be extracted with high precision and re-
call. We also find that the less organic campaigns (e.g., Spam and Promotion) tend
to be driven by a higher ratio of messages to participants (corresponding to a hand-
ful of accounts “pumping” messages into the system). Based on this observation, we
propose and evaluate a user-centric campaign detection approach. By aggregating the
messages posted by a single user, we find that the method can successfully discover
cross-user correlations not captured at the individual message level (e.g., for two users
posting a sequence of correlated messages), resulting in more robust campaign de-
tection. In addition, we analyze each campaign type’s temporal behavior to see the
possibility to automatically determine a campaign’s campaign type.

The rest of the manuscript is organized as follows. Section 2 highlights relevant
work in spam and campaign detection, information credibility, and persuasion. Then in
Section 3, we formalize the problem statement and present the datasets and evaluation
metrics. Section 4 presents the proposed content-driven campaign detection approach
in detail. In Section 5, we experimentally test the content-driven campaign detection
in message and user levels, and analyze temporal behaviors of several campaign types
that we found in the datasets. We conclude in Section 6 with some final thoughts.

2. RELATED WORK
The prior work relevant to this manuscript covers spam and campaign detection, in-
formation credibility, trust and persuasion. We summarize several related efforts in
this section.

Researchers have proposed several approaches to detect spam in emails and web
pages. Representative solutions include link analysis algorithms for link farms [Bec-
chetti et al. 2008; Benczur et al. 2006; Gyöngyi et al. 2006; Wu and Davison 2005], data
compression and machine learning algorithms for email spam [Bratko et al. 2006; Sa-
hami et al. 1998; Yoshida et al. 2004], and machine learning algorithms for spam web
pages [Fetterly et al. 2004; Ntoulas et al. 2006].

As social networking sites become more popular, researchers have studied the cate-
gorization of spam content, analyzed spammers’ behaviors, and proposed possible solu-
tions. Grier et al. [Grier et al. 2010] declared that blacklists are too slow in identifying
incoming real-time threats on Twitter, allowing more than 90% of visitors to view a ma-
licious web page before it becomes blacklisted. Koutrika et al. [Koutrika et al. 2008]
proposed a framework to detect spam in social tagging systems, in which they built
user models such as good user model and bad user model, and showed that tagging
systems can be spammed by bad users. Machine learning algorithms have been used
to detect video content spammers and promoters by Benevenuto et al. [Benevenuto
et al. 2009]. Researchers also studied trending topic (hashtag) spam problems on Twit-
ter and proposed content-based and machine learning based approaches to solve those
problems [Irani et al. 2010; Benevenuto et al. 2010]. Social Honeypots on Twitter and
MySpace were deployed to collect spammers’ information and to analyze their behav-
iors, and machine learning algorithms were used to detect spammers [Lee et al. 2010;
Lee et al. 2011b].

In addition, researchers have begun studying group spammers and their tactics.
Mukherjee et al. [Mukherjee et al. 2011] proposed an approach, which consists of fre-
quent pattern mining techniques, computing spam indicator value, and using SVM
Rank to rank possible spam groups, to detect group review spammers. Gao et al. [Gao
et al. 2010] studied spam behavior on Facebook; their approach finds coordinated spam
messages that use the same malicious URL. The Truthy system [Ratkiewicz et al.
2011] detects astroturf political campaigns on Twitter. They first define memes consist-
ing of hashtags, mentions, URLs and phrases. If Twitter users post tweets or retweet a
message containing one of these memes, they assumed that the users participate in a
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coordinated effort. The researchers detect these political campaigns as follows: (1) first
identify memes; (2) compute features (network features, sentiment scores, the number
of “truthy” button clicks and etc); (3) train a classifier with binary class (either a legit-
imate campaign or “truthy” campaign’ - Astroturf political campaign); and (4) predict
unlabeled memes’ class. Their approach achieved high accuracy.

Other researchers have studied information credibility, trust and persuasion tech-
niques in social media. Castillo et al. [Castillo et al. 2011] studied information cred-
ibility, especially in newsworthy topics in Twitter and built a classifier to determine
whether messages associated with a topic are credible or not. Given a set of confirmed
trustworthy and untrustworthy nodes such as web pages on the Web or users in so-
cial systems as inputs, researchers have studied trust propagation methods in local
computation and global computation based on the taxonomy presented by Ziegler and
Lausen [Ziegler and Lausen 2005]. In a local trust computation [Levien and Aiken
1998; Mui et al. 2002; Ziegler and Lausen 2005], each node has multiple trust values
measured by a single user’s perspective while in a global trust computation, each node
has a single trust value measured by the perspective of the whole network [Gyöngyi
et al. 2004; Caverlee et al. 2008; 2010]. Young et al. [Young et al. 2011] presents their
persuasion model and the hostage negotiation corpus (a microtext corpus) [Gilbert and
Henry 2010] which contains 12% persuasive utterances. Their persuasion model based
on Cialdini’s persuasion model [Cialdini 2007] focuses on reciprocity, commitment and
consistency, scarcity, liking, authority and social proof. Based on the persuasion model
and using the corpus, they build classifiers to detect persuasion automatically.

In the literature, researchers have proposed solutions to detect spammers or mea-
sure information credibility in both email and social systems. In contrast, our focus is
on identifying campaigns from massive scale of real-time social systems, understand-
ing what types of campaigns exist in the social systems, and analyzing temporal be-
haviors of various campaign types.

3. CONTENT-DRIVEN CAMPAIGN DETECTION
In this section, we describe the problem of campaign detection in social media, intro-
duce the data, and outline the metrics for measuring effective campaign detection.

3.1. Problem Statement
We consider a collection of n participants across social media sites U = {u1, u2, . . . , un},
where each participant ui may post a time-ordered list of k messages Mui

= {mi1, mi2,
. . ., mik}. Our hypothesis is that among these messages and users, there may exist
coordinated campaigns.

Given the set of users U , a campaign Mc can be defined as a collection of messages
and the users who posted the messages:Mc = {mij , ui|ui ∈ U∩mij ∈Mui∩theme(mij) ∈
tk} such that the campaign messages belong to a coherent theme tk. Themes are
human-defined logical assignments to messages and application dependent. For ex-
ample, in the context of spam detection, a campaign may be defined as a collection
of messages with a common target product (e.g., Viagra). In the context of astroturf,
a campaign may be defined as a collection of messages promoting a particular view-
point (e.g., the veracity of climate change). Additionally, depending on the context, a
message may belong to one or multiple themes. For the purposes of this manuscript
and to focus our scope of inquiry, we consider as a theme all messages sharing similar
“talking points” as determined by a set of human judges.

3.2. Data
To evaluate the quality of a campaign detection approach, we would ideally have ac-
cess to a large-scale “gold set” of known campaigns in social media. While researchers
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have published benchmarks for spam webpages [Webb et al. 2006; TREC 2007], ad-hoc
text retrieval [Voorhees and Dang 2005], and other types of applications [TREC 2004;
Cheng et al. 2010; Lee et al. 2011b], we are not aware of any standard social media
campaign dataset. Hence, we take in this manuscript a twofold approach for message
level campaign detection: (i) a small-scale validation over hand-labeled data; and (ii) a
large-scale validation over 1.5 million Twitter messages for which ground truth is not
known.

CDSmall: First, we sample a small collection of messages (1,912) posted to Twitter
in October 2010. Over this small campaign dataset (CDSmall), two judges labeled all
pairs of the 1,912 tweets as sharing similar “talking points” or not, finding 298 pairs
of messages sharing similar “talking points”. Based on these initial labels, the judges
considered all combinations of messages that may form campaigns consisting of four
messages or more, and found 11 campaigns ranging in size from four messages to
eight messages. While small in size, this hand-labeled dataset allows us to evaluate
the precision and recall of several campaign detection methods.

CDLarge: Second, we supplement the small dataset with a large collection of messages
(1.5 million) posted to Twitter between October 1 and October 7, 2010. We sampled
these messages using Twitter’s Streaming API, resulting in a representative random
sample of Twitter messages. Over this large campaign dataset (CDLarge), we can test
the precision of the campaign detection methods and investigate the types of cam-
paigns that are prevalent in-the-wild. Since we do not have ground truth knowledge
of all campaigns in this dataset, our analysis will focus on the campaigns detected for
which we can hand-label as actual campaigns or not.

Additionally, we also consider a user-based dataset, in which all of the messages
associated with a single user are aggregated:
CDUser Since the datasets CDSmall and CDLarge are collected by a random sample
method from Twitter (meaning most users were represented by only one or two mes-
sages), we collected a user-focused dataset from Twitter consisting of 90,046 user pro-
files with at least 20 English-language messages, resulting in 1.8 million total mes-
sages.

3.3. Metrics
To measure the effectiveness of a campaign detection method, we use variations of
average precision, average recall, and the average F1 measure. The average precision
(AP) for a campaign detection method is defined as:

AP =
1

n

n∑
i=1

maxCommonMessages(PCi, TCs)

|PCi|

where n is the total number of predicted campaigns by the campaign detec-
tion method, PC is a predicted campaign, and TC is an actual (true) campaign.
MaxCommonMessage function returns the maximum of the number of common mes-
sages in both the predicted campaign i (PCi) and each of the actual (true) campaigns
(TCs). For example, suppose a campaign detection method identifies a three-message
campaign: {m1,m10,m30}. Suppose there are two actual campaigns with at least one
message in common: {m30,m38,m40} and {m1,m10,m35,m50,m61}. Then the Precision
is max(2, 1)/3 = 2/3. In the aggregate, this individual precision will be averaged with
all n predicted campaigns.

Similarly, we can define the average recall (AR) as:
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AR =
1

n

n∑
i=1

maxCommonMessages(PCi, TCs)

|TCj |

where n is the number of the predicted campaigns, and TCj is a true campaign which
has the largest common messages with the predicted campaign i (PCi). Continuing the
example from above, the Recall would be max(2, 1)/5 = 2/5.

Finally, we can combine precision and recall as the average F1 measure (AF):

AF1 =
2 ∗AP ∗AR
AP +AR

An effective campaign detection approach should identify predicted campaigns that
are composed primarily of a single actual campaign (i.e., have high precision) and that
contain most of the messages that actually belong to the campaign (i.e., have high
recall). A method that has high precision but low recall will result in only partial
coverage of all campaigns available (which could be especially disastrous in the case
of spam or promotional campaigns that should be filtered). A method that has low
precision but high recall may identify nearly all messages that belong to campaigns but
at the risk of mislabeling non-campaign messages (resulting in false positives, which
could correspond to mis-labeled legitimate messages as belonging to spam campaigns).

4. CAMPAIGN DETECTION: FRAMEWORK AND METHODS
In this section, we describe the high-level approach for extracting campaigns from
social media, present the message and user level campaign detection in detail, and
discuss a MapReduce-based implementation for efficient campaign detection.

4.1. Overall Approach
To detect coordinated campaigns, we explore in this manuscript several content-based
approaches for identifying campaigns. Our goal is to find methods that can balance
both precision and recall for effective campaign detection. In particular, we propose
a content-driven campaign detection approach that views social media from two per-
spectives.

Message Level: In the first perspective, we view each message as a potential member
of a campaign. Our goal is to identify a campaign as a collection of its constituent
messages. In this way, we can identify related message as shown in Figure 1. Given a
set of messages (6 messages in the example), our goal is to build a message graph in
which a node represents a message and if the similarity of a pair of messages is larger
than a threshold (τ ) then an edge exists between the pair of messages. Note that the
similarity of a pair of messages means how much the pair of messages is similar in
terms of number of common tokens, and a token can be defined as a n-gram word or
n-gram character depending on a message similarity identification algorithm. In this
way, we can identity significant subgraphs as campaigns, which should reflect multiple
messages sharing the same key “talking points”.

User Level: In the second perspective, rather than viewing the message as the core
component of a campaign, we view each user as a potential member of a campaign. In
this way, a campaign is composed of constituent users. This second perspective may
be more reasonable in the case of campaigns that span multiple messages posted by
a single user, or in the case of campaigns in which evidence of the campaign is clear
at the user-level but perhaps not at the individual message level (say, in cases of 3
spam accounts that post similar messages in the aggregate, although no two individual
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Fig. 1. Overall approach showing how to identify campaigns given a list of messages.

messages may share the same talking points). For this perspective, we construct a
graph, but where nodes represent users and their aggregated messages. Edges exist
between users based on some overall measure of their similarity.

In the following, we detail these two approaches – at the message level and at the
user level – in great detail.

4.2. Message Level Campaign Detection
For the task of message level campaign detection, we consider a graph-based frame-
work, where we model messages in social media as a message graph. Each node in the
message graph corresponds to a message; edges correspond to some reasonable notion
of content-based correlation between messages, corresponding to pairs of messages
with similar “talking points.” Formally, we have:

DEFINITION 1 (MESSAGE GRAPH). A message graph is a graph G = (V,E) where
every message in M corresponds to a vertex mix in the vertex set V . An edge (mix,mjy) ∈
E exists for every pair of messages (mix,mjy) where corr(mix,mjy) > τ , for a measure
of correlation and some parameter τ .

A message graph which links unrelated messages will necessarily result in poor
campaign detection (by introducing spurious links). Traditional information retrieval
approaches for document similarity (e.g., cosine similarity [Manning et al. 2008], KL-
divergence [Manning and Schütze 1999]) as well as efficient near-duplicate detection
methods (e.g., Shingling [Broder et al. 1997], I-Match [Chowdhury et al. 2002] and
SpotSigs [Theobald et al. 2008]) have typically not been optimized for the kind of
short posts of highly-variable quality common in many social media sites (including
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Facebook and Twitter). Concretely we consider six approaches for measuring whether
messages share similar “talking points”:

— Unigram Overlap: The baseline unigram approach considered two messages to be
correlated if they have higher Jaccard similarity than a threshold after we extract
unigrams from each message and compute Jaccard similarity. The Jaccard coefficient
between the unigrams of each pair of messages A and B is used to measure the
similarity of the pair of messages:

Jaccard(A,B) =
|A ∩B|
|A ∪B|

≤ min(|A|, |B|)
max(|A|, |B|)

— Edit Distance: An alternative is to consider the edit distance between two messages,
that is, two messages are correlated if the number of edits to transform one message
into the other is less than some threshold value. Concretely, we adopt the Leven-
shtein distance as a metric for measuring the amount of difference between two mes-
sages [Levenshtein 1966]. The distance is the minimum number of edits required in
order to transform one message into the other.

— Euclidean Distance: Another similarity metric is Euclidean distance which is the
length of the line segment connecting two vectors (two messages in this context).
First convert messages to vectors in the vector space model and then compute their
distance. The smaller Euclidean distance between two messages is, the more similar
they are.

— Shingling: As an exemplar of near-duplicate detection, Broder’s shingling algorithm
[Broder et al. 1997] views a document d as a sequence of words w1 w2 w3 . . . wn,
where n is the number of words in d. It extracts unique k-grams {g1, g2, . . . , gm},
such that m is the number of unique k-grams. For easy processing and reduction of
storage usage, each gi is encoded by 64-bit Rabin fingerprints F. The encoded value
is called a shingle. Now, d’s shingles S = {s1, s2, s3, . . . sm}, such that si is a shingle
(i.e., a signature) and si = F (gi). The Jaccard coefficient between the shingles of each
pair of documents A and B is used to measure the similarity of the pair of documents.
If the similarity score of a pair of documents (messages) is higher than a threshold,
they will be considered as near-duplicates (and hence, correlated messages for our
purposes).

— I-Match: In contrast to Shingling, the I-Match [Chowdhury et al. 2002] approach
explicitly leverages the relative frequency of terms across messages. First, it defines
an I-Match lexicon L based on a message frequency of each term in a collection of
documents (i.e., Twitter messages). Usually, L consists of a bag of words (i.e., terms
or unigrams) which have mid-idf values in the collection. I-Match extracts unigrams
U from a document d and only use some unigrams P, which have mid-idf values in
the collection (i.e., P = L ∩ U ). The idea behind this approach is that infrequent and
too frequent terms are not helpful to detect near duplicate documents. Then, I-Match
sorts P and concatenates it in order to make a single string, which is then encoded
to a single hash value h by SHA-1; in our case, pairs of messages with identical hash
values shall be considered correlated messages.

— SpotSigs: The final approach we consider is SpotSigs [Theobald et al. 2008], which
observes that noisy content, such as navigational banners and advertisements in
web pages, may result in poor performance of traditional Shingling-based methods.
By observing that stopwords rarely occur in the noisy content, SpotSigs scans a docu-
ment to find stopwords as antecedents (anchors), and extracts special k-grams called
“spot signatures”, one of which consists of an antecedent and a k-gram after the
antecedent, excluding stopwords. A hash function is applied to detect identical dupli-
cates.
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Fig. 2. In a messages graph, a node represents a message and there exists an edge between correlated
messages. This figure shows an example of a message graph before extracting campaigns.

It is of course an open question how well each of these methods performs toward the
ultimate goal of identifying campaigns in social media. Hence, we shall investigate ex-
perimentally in Section 5 each of these approaches for determining pairwise message
correlation which guides the formation of the message graph.

Given a message graph, we propose to explore three graph-based approaches for
extracting campaigns:

— (i) loose extraction;
— (ii) strict extraction; and
— (iii) cohesive extraction.

Experimentally, we compare these graph-based approaches versus a traditional k-
means clustering approach and reach poor results for clustering as compared to the
graph methods. For now, we focus our attention on extracting content-driven cam-
paigns via graph mining.

4.2.1. Loose Campaign Extraction. The first approach for content-driven campaign de-
tection is what we refer to as loose campaign extraction. The main idea is to identify as
a logical campaign all chains of messages that share common “talking points”. In this
way, the set of all loose campaigns is the set of all maximally connected components in
the message graph:

DEFINITION 2 (LOOSE CAMPAIGN). A loose campaign is a subgraph s = (V ′, E′),
such that s is a maximally connected component of G, in which s is connected, and for
all vertices mix such that mix ∈ V and mix /∈ V ′ there is no vertex mjy ∈ V ′ for which
(mix,mjy) ∈ E.

As an example, Figure 2 illustrates a collection of 10 messages, edges corresponding
to messages that are highly correlated, and the two maximal components (correspond-
ing to loose campaigns): {1, 2, 3, 6, 7, 8, 9} and {4, 5}. Such an approach to campaign
detection faces a critical challenge, however: not all maximally connected components
are necessarily campaigns themselves (due to long chains of tangentially-related mes-
sages). For example, a chain of similar messages A–B–C–...–Z, while displaying local
similarity properties (e.g., between A and B and between Y and Z) will necessarily
have low similarity across the chain (e.g., A and Z will be dissimilar since there is no
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edge between the pair, as in the case of messages 9 and 1 in Figure 2). In practice,
such maximally connected components could contain disparate “talking points” and
not strong campaign coherence.

4.2.2. Strict Campaign Extraction. A natural alternative is to constrain campaigns to be
maximal cliques, what we call strict campaigns:

DEFINITION 3 (STRICT CAMPAIGN). A strict campaign s′ = (V ′′, E′′) in a message
graph G = (V,E), in which V ′′ ⊆ V and E′′ ⊆ E, such that for every two vertices mix

and mjy in V ′′, there exists an edge (mix,mjy) ∈ E′′ and the clique cannot be enlarged
by including one more adjacent vertex (corresponding to a message in M ).

To identify these strict campaigns, we can first identify all loose campaigns – by iden-
tifying all maximally connected components over the message graph, we can prune
from consideration all singleton messages and are left with a set of candidate cam-
paigns. Over these candidates, we can identify the strict campaigns through maximal
clique mining. However, discovering all maximal cliques from a graph is an NP-hard
problem (i.e., the time complexity is exponential). Finding all maximal cliques takes
O(3n/3) in the worst case where n is the number of vertices [Tomita et al. 2006]. Over
large graphs, even with parallelized implementation over MapReduce-style compute
clusters, the running time is still O(3n/3/m) in the worst case, where n is the number
of vertices and m is the number of reducers [Wu et al. 2009].

And there is still the problem that even with a greedy approximation, strict cam-
paign detection may overconstrain the set of campaigns, especially in the case of
loosely-connected campaigns. Returning to the example in Figure 2, the maximal
cliques {1, 2, 3} and {2, 3, 6} would be identified as strict campaigns, but perhaps {1,
2, 3, 6, 7} form a coherent campaign even though the subgraph is not fully-connected.
In this case the strict approach will identify multiple overlapping campaigns and will
miss the larger and (possibly) more coherent campaign. In terms of our metrics, the
expectation is that strict campaign detection will favor precision at the expense of re-
call.

4.2.3. Cohesive Campaign Extraction. Hence, we also consider a third approach which
seeks to balance loose and strict campaign detection by focusing on what we refer to
as cohesive campaigns, which relaxes the conditions of maximal cliques:

DEFINITION 4 (COHESIVE CAMPAIGN). Given a message graph G = (V,E), a sub-
graph G’ is called a cohesive campaign if the number of edges of G’ is close to the
maximal number of edges with the same number of vertices of G’.

The intuition is that a cohesive campaign will be a dense but not fully connected sub-
graph, allowing for some variation in the “talking points” that connect subcomponents
of the overall campaign. There are a number of approaches mining dense subgraphs
[Hu et al. 2005; Gibson et al. 2005; Wang et al. 2008] and the exact solution is again
NP-hard in computation complexity, so we adopt a greedy approximation approach fol-
lowing the intuition in [Wang et al. 2008]. The approach to extract cohesive campaigns
requires a notion of maximum co-clique CC(mix,mjy) for all neighbors:

DEFINITION 5 (MAXIMUM CO-CLIQUE: CC(mix,mjy)). Given a message graph G =
(V,E), the maximum co-clique CC(mix,mjy) is the (estimated) size of the largest clique
containing both vertices mix and mjy, where mjy ∈ V and mjy is a neighbor vertex of
mix (i.e., they are connected).

Considering all of a vertex’s neighbors, we define the largest of the maximum co-
cliques as C(mix):
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DEFINITION 6 (C(mix)). Then, C(mix) is the largest value between mix and
any neighbor mjy, formally defined as C(mix) = max{CC(mix,mjy),∀mjy ∈
Neighbor(mix)}.

With these definitions in mind, our approach to extract cohesive campaign is as
follows:

1. Estimate each vertex’s C(mix): In the first step, our goal is to estimate the C
values for every vertex in a candidate campaign which indicates the upper bound of
the maximum clique size the vertex belongs to. Starting at a random vertex mix in s,
we compute the maximum co-clique size CC(mix,mjy), where mjy ∈ V ′ and mjy is a
neighbor vertex of mix. Then, we compute C(mix). We insert mjy into a priority queue
and sort all mjy by CC(mix,mjy). Next, we greedily advance to the mjy, which has
the largest CC(mix,mjy) among all mjy, and remove it from the queue. Finally, we
compute C(mjy). We repeat this procedure for every vertex in the candidate campaign.
At the conclusion of this procedure, we have an estimated C(mix) for every vertex.

2. Cohesive campaign extraction: Given the estimated C(mix) for every vertex in a
candidate campaign, by considering the order in which the greedy algorithm in Step 1
encounters each vertex, we can consider consecutive neighbors as potential members of
the same coherent campaign. Intuitively, the C(mix) values should be high for vertices
in dense subgraphs but should drop as the algorithm encounters nodes on the border of
the dense subgraph, then rise again as the algorithm encounters vertices belonging to
a new dense subgraph. We identify the first vertex with an increasing C(mix) over its
neighbor as the initial boundary of a cohesive campaign. We next include all vertices
between this first boundary up to and including the vertex with a C(mix) value larger
than or equal to some threshold (= the local peak value * λ). By tuning λ to 1, the
extracted cohesive campaigns will be nearly clique-like; lower values of λ will result
in more relaxed campaigns (i.e., with less density). We repeat this procedure until we
extract all cohesive subgraphs in the candidate campaign.

The output of the cohesive campaign extraction approach is a list of cohesive cam-
paigns, each of which contains a list of vertices forming a cohesive subgraph.

4.3. User Level Campaign Detection
We turn our attention to a user-aggregated perspective. In the message level campaign
detection in the previous subsection, we have viewed all messages without considera-
tion for who is posting the messages. By also considering user-level information, we are
interested to see how this impacts campaign detection. The intuition is that by aggre-
gating the messages posted by a single user, we may discover cross-user correlations
not captured at the individual message level (e.g., for two users posting a sequence of
correlated messages), leading to more robust campaign detection.

DEFINITION 7 (USER-AGGREGATED MESSAGE GRAPH). A user-aggregated mes-
sage graph is a graph Gu = (V,E) where V is a collection of n users’ aggregate mes-
sages V = {Mu1 ,Mu2 , ...Mun}. An edge (Mui ,Muj ) ∈ E exists for every pair of vertices
(Mui ,Muj ) in V where confidence (Mui,Muj) > threshold, for some measure of confi-
dence and threshold. In the confidence computation, message similarity for every pair
of messages (mix,mjy) is computed where corr(mix,mjy) > τ , mix ∈ Mui

, mjy ∈ Muj

and Mui
,Muj

⊆M , for some measure of correlation and some parameter τ .

An important challenge is to define the correlation across vertices in the user-
aggregated message graph, since each vertex now represents multiple messages (and
so straightforward adoption of the message-level correlation approach is insufficient).
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Fig. 3. Four matches of correlated messages between user u1 and u2.

For example the two users in Figure 3 could have several different degrees of message-
level correlation, based on the overlap between their messages. In the figure, we show
messages Mu1 = {m11,m12}, and Mu2 = {m21,m22} from two users u1 and u2 respec-
tively. An edge represents that a pair of two messages between Mu1 and Mu2 are cor-
related.

To compute user-based correlation, we propose a measure called confidence that ag-
gregates message-message correlation and reflects (i) that one edge in a one-to-many
match receives same weight comparing to the edge in a one-to-one edge; (ii) that extra
edges in a one-to-many match receive less weight than the weight for the edge in a one-
to-one match, but still credits the one-to-many match for more evidence of user-based
correlation.

Concretely, we calculate confidence in the following way: Given two users u1 and
u2 and their latest k messages Mui = {mi1, mi2, . . ., mik} where i is a user id (i.e., 1
or 2 in our example). First, we compute pairwise message correlation across Mu1 and
Mu2

, where pairs are P = {m1x,m2y|1 ≤ x, y ≤ k}. If the correlation of a pair in P
is larger than threshold τ , we consider the pair to be correlated. By continuing this
procedure for each pair in P, we have correlated pairs P ′ and can calculate: (1) the
number of pairs in P ′, N = |{m1x,m2y|corr(m1x,m2y) ≥ τ, 1 ≤ x, y ≤ k}|; and (2) the
minimum n between number of distinct messages belonging to P ′ in Mu1

and number
of distinct messages belonging to P ′ in Mu2

, where n = MIN(|{m1x| m1x ∈ Mu1
and

M1x ∈ P ′}|,|{m2y| m2y ∈Mu2
and m2j ∈ P ′}|). Now, we define that confidence as:
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Fig. 4. Logical data flow of the three MapReduce jobs for identifying correlated messages.

confidence = αn+ (1− α)(N − n)
where α is the weight for the only edge in a one-to-one match or one edge in a one-
to-many match, and 1 − α is the weight for each of the extra edges in a one-to-many
match. We assigned 0.95 to α to balance between αn and (1− α)(N − n). Returning to
Figure 3(a),(b),(c),(d), we have {N=1, n=1, confidence=0.95}, {N=2, n=1, confidence=1},
{N=2, n=2, confidence=1.9}, and {N=4, n=2, confidence=2} showing that in order of
user-based correlation a < b < c < d.

4.4. MapReduce-Based Implementation
To support scalable identification of correlated messages, we implement the proposed
approach over the MapReduce framework, which was introduced by Google to pro-
cess large datasets on a cluster of machines [Dean and Ghemawat 2004]. In MapRe-
duce style programming, each task is divided into two sub-functions: (1) a mapper:
a sequence of data is inserted to a computation to generate partial results; and (2)
a reducer: the results are then aggregated. We implemented our correlated message
identification approach on Hadoop [Apache 2012] which can facilitate the handling of
large scale social message data.

The implementation consists of three MapReduce jobs, illustrated in Figure 4 with
the following notation: (1) dk is an auto-increasing message ID for a message; (2) mij

indicates the jth message from user ui; (3) a near-duplicate detection algorithm gen-
erates three signatures (s1, s2, s3) from the message m11; (4) { } means a tuple and [ ]
means a list. To calculate the correlation of the Jaccard coefficient (we use Jaccard co-
efficient in this example, but use Overlap coefficient in the experiments), we calculate
each message’s number of signatures in the map function of the signature generation
job and pass the information associated to the message ID to later jobs. The near-
duplicate detection returns pairs of near-duplicate messages (e.g., m11 and m21 have
0.66 similarity). To test the gains from a MapReduce-based implementation, we ran
the message correlation component over 1.5 million Twitter messages as a MapRe-
duce job on a small nine-node cluster and as a single-threaded (non MapReduce) job
on a single machine. The MapReduce job took only 7 minutes as compared to one day
in the non-MapReduce approach, indicating the gains from parallelization.

5. EXPERIMENTAL STUDY
In this section, we explore campaign discovery over social media through an applica-
tion of the framework to messages and user-aggregated messages sampled from Twit-
ter. For message level campaign detection, we begin by examining how to accurately
and efficiently construct the campaign message graph, which is the critical first step
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necessary for campaign detection. We find that a short-text modified Shingling-based
approach results in the most accurate message graph construction. Based on this find-
ing, we next explore campaign detection methods over the small hand-labeled Twitter
dataset, before turning our sights to analysis of campaigns discovered over the large
(1.5 million messages) Twitter dataset. Based on the insights learned from the exper-
iments in message level campaign detection, we run user level campaign detection to
see whether we can find more evidence of spam and other coordinated campaigns. In
the end of this section, we analyze the temporal patterns of campaigns, which suggest
the potential of predicting a campaign’s category based on its temporal pattern.

5.1. Message Level
We begin by examining message graph construction, which is the critical first step
necessary for campaign detection.

5.1.1. Message Graph Construction. Recall that each node in the message graph corre-
sponds to a message; edges correspond to some reasonable notion of “relatedness” be-
tween messages corresponding to human-labeled similar “talking points”. Our first
goal is to answer the question: can we effectively determine if two messages are cor-
related (i.e., algorithmically determine if they share similar “talking points”) across
hundreds of millions of short messages for constructing the message graph in the first
place? This step is critical for accurate message graph formation for discovering cam-
paigns.

Using the small campaign dataset (CDSmall), we consider the 298 pairs of messages
sharing similar “talking points” (as determined by human judges) as the ground truth
for whether an edge should appear in the message graph between the two messages.
We can measure the effectiveness of a message correlation method by precision, recall,
and F1. Precision (P) is the fraction of predicted edges that are correct:

# of correctly predicted edges
# of predicted edges

Recall (R) is the fraction of correct edges that are predicted:

# of correctly predicted edges
# of edges

The F1 measure balances precision with recall: 2PR
P+R .

Identifying Correlated Messages: We investigate the identification of correlated
messages through a comparative study of the six distinct techniques described in Sec-
tion 4: unigram-based overlap between messages, edit distance, Euclidean distance
and three representative near-duplicate detection algorithms (Shingling [Broder et al.
1997], I-Match [Chowdhury et al. 2002], SpotSigs [Theobald et al. 2008]). The near-
duplicate detection approaches such as Shingling, I-Match and SpotSigs have shown
great promise and effectiveness by web search engines to efficiently identify duplicate
web content, but their application to inherently short messages lacking context is un-
clear.

To evaluate each approach, we considered a wide range of parameter settings. For
example, the quality of Shingling depends on the size of the shingle (2, 3, 4). I-Match
requires minimum and maximum IDF values; we varied the min and max IDF values
over the range [0.0, 1.0] in 0.1 increments and considered all possible pairs (e.g., min
= 0.1, max = 0.6). SpotSigs requires a number of antecedents (which we varied across
10, 50, 100, and 500) and a specification of what antecedents will be used. As the
authors of SpotSigs [Theobald et al. 2008] did in their experiments, we used stopwords
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Fig. 5. Performance of Shingling, I-Match and SpotSigs with different parameter value.

as antecedents. And across all approaches, we must also set a predefined threshold
value τ , above which a pair of messages are considered correlated (and hence and edge
should appear in the message graph).

With this large parameter space in mind, we show in Table I the results across all
approaches that optimizes the F1 score (The details of performance of Shingling, I-
Match and SpotSigs with different parameter value are shown in Figure 5).

Table I. Identifying correlated messages.

Approach F1 Precision Recall
Unigram (τ = 0.8) 0.63 0.97 0.46

Edit Distance (τ = 11) 0.54 0.97 0.38
Euclidean Distance (τ = 5) 0.61 0.99 0.44

4-Shingling (τ = 0.3) 0.81 0.89 0.73
I-Match (IDF=[0.0, 0.8]) 0.50 0.53 0.47

SpotSigs (#A=500, τ = 0.4) 0.70 0.77 0.64

We see that the baseline Shingling approach performs the best, with an F1 = 0.81.
In contrast, both I-Match and SpotSigs performed much worse (0.50, 0.70), in sharp
contrast to their performance in near-duplicate detection of web pages (with F1 near
95%) [Theobald et al. 2008; Zhang et al. 2010]. While these approaches work well in
news articles and web pages (relatively long text), they do not work well for short text.
We also observe that unigram, edit distance and Euclidean distance based methods
perform poorly, primarily due to their low recall. This indicates that short messages
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that do share common “talking points” may be missed by these approaches which em-
phasize on only minor syntactic changes across messages.
Refining Shingling: Based on these results, we further explore refinements to the
baseline Shingling approach. First, we vary the base tokenization unit for message
comparison, which is especially critical for short messages. We consider three gen-
eral approaches for extracting tokens to generate shingles: (i) word-based k-grams, in
which k consecutive words are treated as base tokens; (ii) character-based k-grams, in
which k consecutive characters are treated as base tokens. As compared to word-based
k-grams, character-based k-grams generate more tokens but offer finer granularity
of measuring message correlation; and (iii) orthogonal sparse bigrams, introduced by
Cormack et al. [Cormack 2008] for lexically expanding a short message by generating
sparse bigrams by the number of intervening words, each of which we denote by “?”.
For example, “lady gaga is unique person” generates sparse bigrams: lady + gaga, lady
+ ? + is, lady + ? + ? + unique, gaga + is, gaga + ? + unique, gaga + ? + ? + person, is +
unique, is + ? + person, unique + person.

Finally, we note that straightforward application of the Jaccard coefficient over short
messages may underestimate the degree of overlap between two messages, resulting
in the mislabeling of correlated messages as unrelated. For example, suppose we apply
4-shingling to the following two messages, splitting each message on whitespace and
punctation:

— Here’s How Apple’s iPad Is Invading The Business World (AAPL, RIMM, MSFT) -
San Francisco Chronicle: http://bit.ly/dhqDGf

— Here’s How Apple’s iPad Is Invading The Business World (AAPL, RIMM, MSFT)
http://bit.ly/d3ClTj

With 18 and 15 shingles, respectively, and 11 shingles in common, the Jaccard coef-
ficient will identify a correlation of only 0.5 (11 / (18+15-11)), even though the two
messages are nearly identical. With a typical threshold τ of 0.6 or above, these two
messages, though clearly correlated would not be properly identified. Hence, we pro-
pose as a measure of correlation the overlap coefficient:

corroverlap(A,B) =
|A ∩B|

min(|A|, |B|)
which in this case results in a correlation value of 11/15 = 0.73. In general, smaller
number of words in two messages will give us higher Jaccard and overlap coefficients
diverge. Experimentally, we evaluate the impact of these approaches on the quality of
correlated message identification.

Table II. Refinements to shingling.

Approach F1 Precision Recall
4-Shingling (τ = 0.3) 0.81 0.89 0.73

Character k-grams (k = 6, τ = 0.6) 0.74 1 0.59
OSB. (τ = 0.5) 0.68 0.6 0.79

With Short Message Overlap 0.88 0.92 0.83

Interestingly, as seen in Table II, neither character-based k-grams nor orthogo-
nal sparse bigrams, which have shown promise in other short text domains, per-
formed as well as shingling or the short-message optimized approach presented in
this manuscript. We conjecture that word-based tokens can capture similar messages
well compared to character k-grams and orthogonal sparse bigrams which may gen-
erate too many features, leading to message correlation confusion. The short message
overlap optimization, however, results in the best results and so we shall use this as a
core approach for generating the message graphs in all subsequent experiments.
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5.1.2. Campaign Detection over Small Data. In the previous set of experiments, we evalu-
ated several approaches to measuring message correlation. Now we turn our attention
to evaluating campaign detection methods. We begin in this section with the small
dataset (which recall allows us to measure precision and recall against ground truth)
before considering the large dataset.

Over the hand-labeled campaigns in CDSmall, we apply the three graph-based cam-
paign extraction methods: (i) loose; (ii) strict; and (iii) cohesive, over the message graph
generated via the best performing message correlation method identified in the previ-
ous section. We also compare campaign extraction using a fourth approach based on
text clustering. For this non-graph-based approach, we consider k-means clustering,
where each message is treated as vector with 10K bag-of-words features, weighted us-
ing TF-IDF, with Euclidean distance as a distance function. We vary the choice of k
value, and report the best result.

Table III. Effectiveness comparison of campaign detection
approaches.

Approach NumC F1 Precision Recall
Loose 12 0.962 0.986 0.940
Strict 12 0.906 0.907 0.904
Cohesive 11 0.963 0.977 0.950
k-means 5 0.89 1 0.805

Table III presents the experimental results of the four campaign detection ap-
proaches. The cohesive campaign detection approach found 11 campaigns (NumC) like
the ground truth, but missed a message in two campaigns. The strict approach found
12 campaigns, missed one message in a true campaign, and divided a true campaign
to two predicted campaigns because the approach due to the strict campaign rule (all
nodes in a campaign should be completely connected). The loose approach found 12
campaigns, one of which is not an actual campaign (false positive) and some predicted
campaigns contain dissimilar messages due to long chains. The k-means clustering
algorithm found only 5 campaigns. Overall, the cohesive and strict approaches outper-
formed the loose and cluster-based approaches. In practice, the ideal approach should
return the same number of campaigns as the ground truth and do so quickly. In this
perspective, the cohesive approach would be preferred over the strict approach because
the number of its campaigns is the same with the ground truth, and it is relatively
faster than the strict approach.

5.1.3. Campaign Detection over Large Data. We next examine campaign extraction from
the large Twitter dataset, CDLarge. Can we detect coordinated campaigns in a large
message graph with 1.5 million messages? What kind of campaigns can we find? Which
graph technique is the most effective to find campaigns?

Message Graph Setup: Based on the best message graph construction approach iden-
tified in the previous section, we generated a message graph consisting of 1.5 million
vertices (one vertex per message). Of these, 1.3 million vertices are singletons, repre-
senting messages without any correlated messages in the sample (and hence, not part
of any campaign). Based on this sample, we find 199,057 vertices have at least one
edge; in total, there are 1,027,015 edges in the message graph.

Identifying Loose Campaigns: Based on the message graph, we identify as loose
campaigns all of the maximally connected components, which takes about 1 minute on
a single machine (relying on a breadth-first search with time complexity O(|E| + |V |).
Figure 6 shows the distribution of the size of the candidate campaigns on a log-log
scale. We see that the candidate campaign sizes approximately follows a power law,
with most candidates consisting of 10 or fewer messages. A few candidates have more
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Fig. 6. This figure depicts the distribution of the size of candidate campaigns on a log-log scale. It follows a
power law.

Fig. 7. This figure depicts a candidate with 61,691 vertices. A blue dot and a black line represent a vertex
and an edge, respectively. The area in the center is dark because most vertices in the center are very densely
connected.

than 100 messages, and the largest candidate consists of 61,691 messages. On closer
inspection, the largest candidate (as illustrated in Figure 7) is clearly composed of
many locally dense subgraphs and long chains. Examining the messages in this large
candidate, we find many disparate topics (e.g., spam messages, Justin Bieber retweets,
quotes, Facebook photo template) and no strong candidate-wide theme, as we would
expect in a coherent campaign.
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Fig. 8. An example dense subgraph campaign: the center area is dark because vertices in the area are
very densely connected; this subgraph is almost fully connected except a few vertices. While strict campaign
detection identifies 5 different maximal cliques, cohesive campaign detection identifies a single coherent
campaign including all vertices.

Identifying Strict Campaigns: To refine these candidates, one approach suggested
in Section 4 is strict campaign detection, in which we consider only maximal cliques
as campaigns (in which all message nodes in a subgraph are connected to each other).
While maximal clique detection may require exponential time and not be generaliz-
able to all social message datasets, in this case we illustrate the maximal cliques found
even though it required ∼7 days of computation time (which may be unacceptable for
campaign detection in deployed systems). Considering the top-10 strict campaigns dis-
covered in order of size: [559, 400, 400, 228, 228, 227, 227, 217, 217, 214], we find high
overlap in the campaigns discovered. For example, the 2nd and 3rd strict campaigns
(each of size 400) have 399 nodes in common. Similarly, the 4th, 5th, 6th, 7th, and 10th
strict campaigns have over 200 nodes in common, suggesting that these five different
strict campaigns in essence belong to a single coherent campaign (see Figure 8). This
identification of multiple overlapping strict campaigns – due to noise, slight changes
in message “talking points”, or other artifacts of short messages – as well as the high
cost of maximal clique detection suggests the cohesive campaign detection approach
may be preferable.

Identifying Cohesive Campaigns: We next applied the cohesive campaign extrac-
tion approach to the set of candidate campaigns corresponding to maximal connected
components. We assign λ to 0.95 and use the CSV tool [Wang et al. 2008] for an ef-
ficient implementation of computing each vertex mix’s C(mix) by mapping edges and
vertices to a multidimensional space. Although computing C(mix) of all vertices takes
O(|V |2 log |V |2d) where d is a mapping dimension, the performance for real datasets
is typically sub-quadratic. Figure 9 shows the distribution of the size of the cohesive
campaigns in a log-log scale. Like the candidate campaign sizes, we see that the cohe-
sive campaigns follow a power law. Since the cohesive campaign extraction approach
can isolate dense subgraphs, we see that the large 61,691 message candidate has been
broken into 609 sub-components. Compared to strict campaign detection, the cohesive
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Fig. 9. This figure depicts the distribution of the size of cohesive campaigns on a log-log scale. It also follows
a power law.

Table IV. Top-10 largest campaigns.

Msgs Users Talking Points
560 34 Iron Man 2 spam
401 390 Facebook photo template
231 231 Support Breast Cancer Research (short link)
218 218 Formspring template
203 197 Chat template (w/ link)
166 166 Support Breast Cancer Research (full link)
165 154 Quote “send to anyone u don’t regret meeting”
153 153 Justin Bieber Retweets
145 31 Twilight Movie spam
111 111 Quote “This October has 5 Fridays ...”

campaign extraction approach required only 1/7 the computing time on single work-
station.

Examining the top-10 campaigns (shown in Table IV) we see that the cohesive cam-
paign detection approach overcomes the limitations of strict campaign detection by
combining multiple related cliques into a single campaign (recall Figure 8). The biggest
campaign contains 560 vertices and is a spam campaign. The “talking point” of this
campaign is an Iron Man 2 promotion of the form: “#Monthly Iron Man 2 (Three-Disc
Blu-ray/DVD Combo + Digital Copy) ... http://bit.ly/9L0aZU”, though individual mes-
sages vary the exact wording and inserted link.

Based on a manual inspection of the identified campaigns, we categorize the cam-
paigns into five categories:

— Spam campaigns: These campaigns typically post duplicate spam messages (chang-
ing @username with the same payload), or embed trending keywords; often with a
URL linking to a malware website, phishing site or a product website. Example:
“Want FREE VIP, 100 new followers instantly and 1,000 new followers next week?
GO TO http://alturl.com/bpby”.
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— Promotion Campaigns: Users in these campaigns promote a website or product. Their
intention is to expose it to other people. Example: “FREE SignUp!!! earn $450 Per
Month Do NOTHING But Getting FREE Offers In The Mail!! http://budurl.com/
PPLSTNG”.

— Template Campaigns: These are automatically-generated messages typically posted
by a third-party service. Example: “I’m having fun with @formspring. Create an ac-
count and follow me at http://formspring.me/xnadjeaaa”.

— News Campaigns: Participants post recent headlines along with a URL. Example:
“BBC News UK: Rwanda admitted to Commonwealth: Rwanda becomes the 54th
member of the Commonwealth g.. http://ad.vu/nujv”.

— Celebrity Campaigns: Users in these campaigns send messages to a celebrity
or retweet a celebrity’s tweet. Example: “@justinbieber please follow me i love
youuu<3”.

Some of these campaigns are organic and the natural outgrowth of social behav-
ior, e.g., a group of Justin Bieber fans retweeting a message, or a group posting news
articles of interest. On closer inspection, we observe that many of the less organic cam-
paigns (e.g., spam and promotion campaigns) are driven by a higher ratio of messages
to participants. For example in Table IV, the Iron Man 2 spam campaign consists of
560 messages posted by only 34 different participants. In contrast, the Justin Bieber
retweet campaign consists of 153 messages posted by 153 different participants.

5.2. User Level
Based on this observation – of a handful of accounts aggressively promoting particular
“talking points” in Twitter – we next turn to user-aggregated campaign detection. By
collapsing multiple messages from a single user in the user-aggregated message graph,
do we find more evidence of spam and other coordinated campaigns (since edges cor-
respond to users with highly-correlated messages)? What impact does the confidence
threshold have on campaign detection?

Data and Setup: Since the dataset for the previous study was based on a random
sample of Twitter (meaning most users were represented by only one message), we
use a user-focused dataset CDUser from Twitter consisting of 90,046 user profiles with
at least 20 English-language messages. Based on these messages, we constructed a
user-aggregated message graph where each vertex corresponds to a user and an edge
exists between all users passing a threshold confidence value. For a threshold of 3.8
(i.e., n = 4) we find 2,301 vertices with at least one edge, and a total of 89,294 edges in
the user-aggregated message graph.

Campaign Detection: Following the campaign framework in Section 4.2.3, we find
303 candidate campaigns illustrated in Figure 10. Applying the cohesive campaign
extraction approach we find 62 campaigns with at least four users. Through manual
inspection, we labeled each of the 62 campaigns according to campaign type (see Fig-
ure 11). We observe that spam and template campaigns are major campaign types in
the all three partitions divide by ranges of the size.

We next analyze whether different campaign category has significantly different con-
tent/terms in messages. To identify significant terms for the users in each category
type, we identify terms with high mutual information for each campaign category.
Mutual information is a standard information theoretic measure of “informativeness”
and, in our case, can be used to measure the contribution of a particular term to a
category of campaign. Concretely, we build a unigram language model for each cate-
gory of campaign by aggregating all messages by all users belonging to a particular
campaign category (e.g, all users participated in spam campaign). Hence, mutual in-
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Fig. 10. 303 candidate campaigns in the user-aggregated message graph.

formation is measured as: MI(t, c) = p(t|c)p(c)log p(t|c)
p(t) where p(t|c) is the probability

that a user which belongs to category c has posted a message containing term t, p(c) is
the probability that a user belongs to category c, and p(t) is the probability of term t
over all categories. That is, p(t) = count(t)/n. Similarly, p(t|c) and p(c) can be simplified
as p(t|c) = count(c, t)/count(c) and p(c) = count(c)/n respectively, where count(c, t) de-
notes the number of users in category c which also contain term t, and count(c) denotes
the number of users in category c.

Table V shows the top-10 significant terms for each campaign category. In spam
campaigns, we observe that spammers have posted messages regarding increasing fol-
lowers via a software service. An example message is “Hey Get 100 followers a day
using http://yumurl.com/p74ZY6. Its super fast!”. Note that the Twitter Safety team
considers promoting such automated friend software as spam [Twitter 2012]. Promo-
tion campaigns promote particular links or products. An example message is “if you
like iq quize’s then check out this free iq quiz http://tiny.cc/amazingfreeiqquiz #dont-
trytoholla”. Messages of the users in the news campaign contain hot keywords (e.g.,
social, media, android and iphone) or media name (e.g., bbc, engadget). The significant
terms in template campaigns describe a user’s status (playing, xbox) or reflect a service
being used (chat, #tinycat and live). Users participating in celebrity campaigns often
post messages targeting a particular celebrity (e.g., @justinbieber) expressing love or
asking for the celebrity to reciprocate and follow the user.

Varying the Confidence Threshold: Now, we are interested in how the confidence
threshold influences the campaigns detected. A higher confidence corresponds to more
tightly-correlated users (pairs who tend to post a sequence of similar messages), and
would perhaps suggest a strategic rather than organic campaign. When we increase
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Fig. 11. Campaign type distribution (threshold = 3.8).

Table V. Top-10 significant terms for each campaign category.

Category Top 10 Terms

spam followers 100 day site fast
check twitter account upload twtmuzik

promotion iq broadcasting stickam stream quiz
michael #140kingofpop jackson free woot

news media social bbc engadget windows
#news apple android africa iphone

template video #epicpetwars xbox chat #tinychat
joined people playing youtube live

celebrity @justinbieber follow justin bieber love
mee song plss hiii dream

Table VI. Campaign categories
for low confidence threshold and
high confidence threshold.

Category Low High
Spam 42% 65%
Promotion 8% 3%
Template 37% 29%
News 11% 3%
Celebrity 2% 0%

the confidence threshold to 9.5 (i.e., n = 10) we find 28 campaigns as shown in Fig-
ure 12. Compared to the lower confidence threshold, the proportion of spam campaigns
increases to 65% compared with 42% in the previous experiment (see Table VI). Sec-
ond, we see that for campaigns of the largest size, all are spam campaigns. This in-
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Fig. 12. Campaign type distribution (threshold = 9.5).

dicates that the confidence threshold can be an effective tunable knob for identifying
strategic campaigns in large-scale social media. Overall, these user-aggregated mes-
sage graph results show that content-based campaign detection can effectively identify
campaigns of multiple types at low confidence and specifically of spam campaigns at
high confidence.

5.3. Temporal Analysis
We next analyze temporal behaviors of the cohesive campaigns. Especially, we study
each cohesive campaign category’s temporal behaviors to see whether each campaign
category has different temporal behavior. Using CDLarge (one week data) may be not
enough to study temporal patterns because of sparse data. In order to overcome this
sparsity, we extend the one week data to three weeks data collected between October 1
and October 21, 2010 (again, we used Twitter Streaming API which allows us to collect
randomly 1% of all messages. If we can access all messages generated on Twitter, we
may just need to use 1 week data or even shorter data for the temporal analysis.)

For temporal analysis, we selected the top-50 cohesive campaigns detected in Sec-
tion 5.1.3, and added similar messages in the extended dataset into each campaign1.
Then, we manually labeled the top-50 cohesive campaigns to one of four categories:
spam, promotion, celebrity and template. The campaign category distribution is shown
in Table VII.

For temporal behavior analysis, a cohesive campaign is represented by a time se-
ries vector Ta = (Ta1, Ta2, . . . , Tan). Each value in the vector denotes a number of

1There was no news campaign in the top-50 cohesive campaigns.
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Table VII. Categories of Top-50 cohesive campaigns.

Category Percent Category Percent
Spam 26% Promotion 6%
Celebrity 34% Template 34%
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Fig. 13. Average temporal graphs of four campaign categories.

messages belonging to the campaign in a time unit (e.g., 1 day). Likewise, we cre-
ate 50 time series (campaign vectors) based on 1 day unit. To make a time se-
ries graph smooth (less fluctuated), we use two days moving average. For example,
given a time series Ta = (Ta1, Ta2, Ta3, . . . , Tan), two days moving average of Ta is
T ′
a = (Ta1+Ta2

2 , Ta2+Ta3

2 , . . . , Tan−1+Tan

2 ).
We use dynamic time warping barycenter averaging (DBA) which is a global tech-

nique for averaging a set of sequences [Petitjean et al. 2011]. Compared to approaches
like balanced hierarchical averaging or sequential hierarchical averaging, DBA avoids
some of the deficiencies of these alternative [Niennattrakul and Ratanamahatana
2007].

Figure 13 presents an average time series of each campaign type calculated by DBA.
Spam campaigns have a sharp spike, reflecting how spammers post many similar mes-
sages at the beginning and then reduce the frequency of messages or change payload to
avoid being caught by Twitter administrators. Users in promotion campaigns post mes-
sages over a longer period, suggesting that promotion and spam campaigns (though
closely related) may reveal distinctions in their temporal patterns to support automatic
differentiation. Celebrity campaigns have two spikes and then the frequency drops off.
We conjecture that this phenomenon happens as people quickly retweet a celebrity’s
message (the first spike) and then the retweet passes through those user’s social net-
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works and is echoed (the second spike). Template campaigns have different temporal
patterns from the others. As we can expect a temporal pattern of template campaigns,
messages forming template campaign are posted constantly and statically over time.
This phenomenon makes sense because these messages are posted by third party ser-
vices or tools. Overall, each type of campaigns has different temporal pattern. This
temporal analysis reveals the possibility to automatically classify a campaign type by
its temporal pattern.

5.4. Summary
Through the above experiments, we found that it is possible to detect content-based
campaigns in message and user levels in social media. Also, we found five campaign
categories–spam, promotion, template, celebrity and news campaigns. The proposed
cohesive campaign detection approach outperformed loose and strict campaign detec-
tion approaches and k-means clustering approach in terms of effectiveness and effi-
ciency. The most encouraging results are the messages posted by users who participate
in negative campaigns (spam and promotion campaigns) have higher content similar-
ity. Temporal analysis of campaigns reveals that each campaign type has different
temporal pattern, showing us the possibility to automatically determine a campaign’s
category.

6. CONCLUSION AND FUTURE WORK
In this manuscript, we have investigated the problem of campaign detection in so-
cial media. We have proposed and evaluated an efficient content-driven graph-based
framework for identifying and extracting campaigns from the massive scale of real-
time social systems. Based on the success of the system we are extending this work
to incorporate adaptive statistical machine learning approaches for isolating artificial
campaigns from organic campaigns. Do we find that strategically organized campaigns
engage in particular behaviors that make them clearly identifiable? Our results in this
manuscript suggest that campaigns are not necessarily “invisible” to automated detec-
tion methods. We are also interested in exploring if campaigns are centralized around
common types of users or are they embedded in diverse groups. How early in a cam-
paign’s lifecycle can a strategic campaign be detected with high confidence? Do we
find a change in campaign membership and detection effectiveness after it reaches a
critical mass? These challenges motivate our continuing research.
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