
Let’s Ask GNN: Empowering Large Language Model for
Graph In-Context Learning

Zhengyu Hu1*, Yichuan Li2*, Zhengyu Chen3, Jingang Wang3,
Han Liu1, Kyumin Lee2, Kaize Ding1,

1Northwestern University, 2Worcester Polytechnic Institute, 3MeiTuan
Correspondence: kaize.ding@northwestern.edu

Abstract

Textual Attributed Graphs (TAGs) are crucial
for modeling complex real-world systems, yet
leveraging large language models (LLMs) for
TAGs presents unique challenges due to the
gap between sequential text processing and
graph-structured data. We introduce AskGNN, a
novel approach that bridges this gap by lever-
aging In-Context Learning (ICL) to integrate
graph data and task-specific information into
LLMs. AskGNN employs a Graph Neural Net-
work (GNN)-powered structure-enhanced re-
triever to select labeled nodes across graphs, in-
corporating complex graph structures and their
supervision signals. Our learning-to-retrieve
algorithm optimizes the retriever to select ex-
ample nodes that maximize LLM performance
on graph. Experiments across three tasks and
seven LLMs demonstrate AskGNN’s superior ef-
fectiveness in graph task performance, open-
ing new avenues for applying LLMs to graph-
structured data without extensive fine-tuning.

1 Introduction

Textual attributed graphs (TAGs) (Chen et al.,
2024b,c; Hu et al., 2020) are pivotal in modeling
complex real-world systems, from social networks
to recommendation engines and information re-
trieval systems. In TAGs, nodes represent text
documents, while edges depict relationships be-
tween them like shown in Figure 1. The intercon-
nected nature of TAGs encapsulates rich knowledge
and context, offering a more comprehensive un-
derstanding of the underlying data structures than
isolated text analysis alone.

Recent advancements in large language models
(LLMs) (Brown et al., 2020; Dong et al., 2024; Hu
et al., 2024) have demonstrated remarkable zero-
shot and few-shot capabilities across a wide range
of tasks. These LLMs excel in areas such as data

*These authors contributed equally. This work was mainly
done during Zhengyu’s internship at Northwestern.

is CS.LG; is CS.AI .

𝒉 !

LLM

GNN
What is the
label of node? +

LLMStructure
Enhanced
Retriever

Textual Attributed Graph (TAG)

(c)AskGNN

(a)Text Serialization (b)Graph Projection

Query Node
Labeled Node
Unlabeled Node

Center node ; 1-
hops are , ; …
What is the label of ?

LLM

𝑥!

𝑥!

𝑥! What is the label of ?𝑥!

Figure 1: Illustration of methods utilizing LLMs for
graph tasks, with a focus on node classification. Our
proposed method enhances structure and task under-
standing by retrieving insightful examples that improve
the LLMs’ comprehension of graph complexities.

augmentation (Li et al., 2024b), text summariza-
tion (Jin et al., 2024b), and content recommen-
dation (Wu et al., 2024). However, despite their
impressive capabilities, LLMs usually face signif-
icant limitations in processing and leveraging the
structural information inherent in TAGs (Yasunaga
et al., 2022; Fatemi et al., 2023). Trained mainly
on unstructured text data, these LLMs lack the in-
nate ability to interpret and utilize the structural
information that are fundamental to TAGs. This
limitation hinders their effectiveness in tasks that
require a deeper understanding of interconnections
among text documents.

To bridge this gap and empower LLMs for data-
efficient graph learning (Zhang et al., 2022; Ding,
2024), researchers have developed two primary ap-
proaches to integrate structural information into
LLM understanding. One line of research, ex-
emplified by studies such as Fatemi et al. (2023)
and Ye et al. (2024), employs text-based serial-
ization methods to encode k-hop neighbors as the

1

mailto:email@domain

context around the query node for LLMs (as il-
lustrated in Figure 1 (a)). However, this method
often overlooks nodes beyond the k-hop neighbor-
hood, missing critical signals and introducing noise,
leading to underperformance compared to Graph
Neural Networks (GNNs) in tasks like node clas-
sification (Chen et al., 2024b; Fatemi et al., 2023).
Another line of research, explored by Chen et al.
(2024a); Perozzi et al. (2024); He et al. (2024), em-
ploys GNNs to encode TAGs into compact graph
tokens (Fig. 1 (b)). While this approach preserves
structural information through the message-passing
mechanism, it raises the modality misalignment
issue between graph structure and text spaces, im-
peding effective integration with LLMs. These
limitations underscore the need for a new solution
that can better elicit the power of LLMs on TAGs.

In this paper, we propose AskGNN, a novel frame-
work that transforms graph structural information
and task supervision signals into a limited number
of document node-label pairs. This approach bene-
fits from LLMs’ exceptional power in In-Context
Learning (ICL) (Kaplan et al., 2020; Brown et al.,
2020; Li et al., 2024c; Dong et al., 2024), lever-
aging both graph structural information and tex-
tual information without extensive fine-tuning. At
the core of AskGNN is a GNN-based structure-
enhanced retriever, designed to select the most
relevant document node-label pairs as ICL exam-
ples for LLM few-shot prompting. This strategy
harnesses GNNs’ prowess in extracting structural
information while circumventing the semantic gaps
between text and non-text tokens (Ding et al., 2020,
2022; Hu et al., 2023). To optimize the retriever,
we further introduce a learning-to-retrieve algo-
rithm that fine-tunes the structure-enhanced GNN
retriever, ensuring the selection of the most per-
tinent ICL node examples. By integrating these
components, AskGNN offers a new solution that ad-
dresses the limitations of previous approaches, en-
abling LLMs to effectively process and utilize the
rich structural and supervisory information inher-
ent in TAGs, while leveraging the adaptability of
ICL to diverse tasks with limited supervision, as
depicted in Figure 1(c). To summarize, our main
contributions are as follows:

• We introduce AskGNN, a new graph in-context
learning framework that empowers LLMs for
few-shot learning on TAGs.

• We develop a learning-to-retrieve algorithm that
enhances the retriever’s ability to retrieve exam-

ples that are both structurally informative and
contextually relevant for LLMs’ ICL tasks.

• We conduct extensive evaluations across three
distinct tasks and seven LLMs, demonstrating the
superior robustness and effectiveness of AskGNN
in improving graph task performance.

2 Related Work

LLMs for Graph Learning. Applying LLMs to
text-attributed graph tasks provides significant op-
portunities for advancing data-efficient graph learn-
ing (He et al., 2023; Li et al., 2023b; Ding, 2024;
Jin et al., 2024a; He et al., 2024). These tasks re-
quire LLM to process and understand the complex
graph structural information, a challenge that has
only recently gained attention (Wang et al., 2024;
Ye et al., 2024; Huang et al., 2024; He et al., 2024).
Some approaches enable LLMs to learn structural
information by tuning their parameters (Ye et al.,
2024) or through graph instruction tuning (Tang
et al., 2024). Others transform graphs into hid-
den embeddings to aid in understanding relational
data (He et al., 2024; Ye et al., 2024; Chen et al.,
2023). However, these methods either cannot fully
capture informative graph structural information or
align the graph and text tokens.

In-Context Learning. ICL (Dong et al., 2024;
Xie et al., 2022) allows pretrained LLMs to make
predictions for diverse downstream tasks by di-
rectly prompting them with a few examples of the
task or textual instructions (Pathak et al., 2016; Min
et al., 2016; Zhang et al., 2024)without finetuning.
Jiang et al. (2023) improves language models by
iteratively retrieving relevant information during
text generation, boosting performance in long-form
tasks. Asai et al. (2024)enhances language mod-
els through adaptive retrieval and self-reflection,
outperforming state-of-the-art models in various
tasks. Rubin et al. (2022); Li et al. (2023a); Wu
et al. (2023) train a separate retriever that selects
relevant examples using a unified ranking frame-
work, outperforming task-specific methods. This
capability significantly reduces the adaptation ef-
fort compared to traditional fine-tuning approaches
and has shown robust performance across a vari-
ety of models and tasks (Dong et al., 2024; Rubin
et al., 2022; Li et al., 2024c). Unlike models such
as BERT (Devlin et al., 2019), which require ex-
tensive fine-tuning for new tasks, LLMs leverage
their pretrained knowledge effectively through in-
context prompts (He et al., 2024; Ye et al., 2024).

2

You are an AI trained to categorize arXiv computer science papers into
specific categories based on their abstracts. Your task is to analyze the
paper description provided and identify the most relevant category. Give
me the category of this content. Respond only with the category key
(e.g., ’cs.AI’, ’cs.SY’), without any additional text or explanation.

Input: Neural networks have proven effective at solving difficult
problems but designing their architectures can be challenging, even for
image classification problems alone. Our goal is to minimize human
participation, so we employ evolutionary…

Output: cs.NE

In this paper, we propose Efficient Progressive Neural Architecture
Search, a neural architecture search that efficiently handles large search
space through a novel progressive ... Your Answer:

[Query Node]

[ICL Examples]

[System Prompt]

Figure 2: Example of node classification task, illustrat-
ing how retrieved ICL examples are integrated with the
query node with the prompt.

3 Problem Definition

In this work, we define a TAG as G = (A,X),
where A ∈ {0, 1}N×N represents the adjacency
matrix, with Aij = 1 indicating a connection be-
tween nodes i and j, N is the total number of nodes
and X = {xi}Ni=0 is text corpus for each node.
Each node i is associated with a text document rep-
resented as a sequence of tokens xi = {wv}|xi|

v=0.
Among the nodes in TAG, only a subset are labeled,
denoted as D = {(xi, yi)}Mi=0, where M ≪ N and
yi = {wv}|yi|v=0 represents the text labels of node i
(e.g., ’cs.LG’ in the context of arxiv classification).

Our objective is to encode both the graph struc-
tural information and task supervision signals by
retrieving a subset of K labeled examples, Dq =
{(xi, yi)}i∈[K] from D. These examples serve as
context for prompting LLMs to address graph-
specific tasks for a query node q. This retrieval
process, constrained by both context length and
computational costs, selects far fewer examples
than the number of labeled nodes, with K ≪ N .
The retrieval and prompting process is formalized
as follows:

Dq = R(xq,D,G), (1)

ŷq = LLM(T (Dq, xq)), (2)

where T is the prompt template used to encode
both the text from the labeled nodes in Dq and the
query node xq. An illustrative example for the node
classification task is provided in Figure 2.

4 Proposed Approach – AskGNN

We present AskGNN, a structure-enhanced frame-
work designed to optimize LLMs for graph ICL.

The whole framework is illustrated in Figure 3.
This section details the key components: the GNN-
based structure-enhanced retriever (Section 4.1),
LLM feedback collection (Section 4.2), retriever
optimization (Section 4.3), and the utilization of
the optimized retriever for ICL example selection
(Sectio 4.4).

4.1 Structure-Enhanced Retriever

The Structure-Enhanced Retriever (SE-Retriever)
plays a key role in utilizing GNNs to enhance
the ICL process for LLMs. Previous methods
based solely on text similarity (Lewis et al., 2020;
Karpukhin et al., 2020; Xiong et al., 2021) fall
short when applied to TAGs, overlooking valu-
able structural information. The SE-Retriever is
designed to select the most relevant ICL exam-
ples from a graph-structured dataset, leveraging
both semantic and structural information. The re-
trieval process starts with the GNN extracting fea-
ture representations from the nodes. For a query
node xq, its representation at the l-th GNN layer
is hl

q = GNN(h0
q ,A,H0), with hq denoting the

final layer output. The retriever identifies the top
K labeled nodes from M labeled nodes based on
cosine similarity:

{(xk, yk)}Kk=1 = TopKi∈[M] sim(hq,hi). (3)

The selected ICL examples for the query are for-
malized as:

Dq = {(xi, yi)}i∈[K]. (4)

The SE-Retriever ensures that, for each query x, the
top K samples with the highest cosine similarity
are selected, effectively incorporating both textual
and structural information into the ICL example
selection process.

4.2 Learning-to-Retrieve via LLM Feedback

We propose a novel Learning-to-Retrieve (L2R)
approach that leverages LLM feedback as a train-
ing signal to optimize the retriever. This method
establishes a dynamic learning loop that continu-
ously refines the retriever’s selection of examples
based on LLM feedback. The following subsec-
tions detail the components and implementation of
this learning process.

ICL Training Example Curation. Our ap-
proach, AskGNN aims to identify which K labeled
nodes from the TAGs can serve as effective context

3

The label of paper is

what is category of ?

Structure-
Enhanced
Retriever

𝐿!""#$%&'

…

0.5 0.2…

Score LLM

Cosine

TopK

0.2

0.5
0.4

… 0.5

0.4

…

…

Ar
g

To
pK

…

…

𝒉!

𝑦#(

The label of first node is .

The label of 𝐾th node is .

what is label of ?

𝑦)
𝑦*

…
𝑥)
𝑥*

𝑥(

The label of paper is

what is label of ?

𝑦)
𝑥(

Inference LLM

Training Inference

…𝑥+ 𝑥, 𝑥(𝑥-

…𝑥+ 𝑥, 𝑥-
𝑥)

𝑥*
𝑥)

𝑥* 𝑦*

Labeled Node

Query Node

Unlabeled Node

Frozen

Tunable

Forward
Backward

Figure 3: The overall framework of AskGNN, illustrating the structure-enhanced retriever based on GNNs for
selecting ICL examples. The framework integrates LLM feedback to optimize the retriever, improving its ability to
select relevant examples for graph-based tasks.

for the query node in the LLM. However, evaluat-
ing all K! permutations of examples for each query
node xq is computationally prohibitive. To address
this, we decompose the problem into evaluating
individual examples and collect LLM feedback for
each ICL example separately. To further reduce
computational costs and iteratively improve GNN
retriever, we only collect feedback for the top-K
most similar nodes to each query node, caching the
results for efficiency.

LLM Feedback Quantification. We introduce a
novel "utility score" based on the inverse of perplex-
ity (PPL) to quantify the contribution of a selected
example towards the LLM’s correct prediction. The
utility score for an ICL example e = (xe, ye) is de-
fined as:

s(e) =

1
PPL(yq)∑

yc∈Y
1

PPL(yc)

, (5)

where Y represents the set of all possible classes.
The perplexity for a query xq with respect to a can-
didate class yc and an ICL example e is computed
as:

PPL(yc) = exp

− 1

|yc|
∑

v∈[|yc|]

log p (wv | w<v, xq, e)

 .

(6)

This approach allows us to evaluate the contribu-
tion of each sample in Dq, capturing the LLM’s
implicit feedback on the effectiveness of different
ICL examples.

ICL Example Ranking and Feedback Loss. We
rank the ICL examples in descending order based
on their utility scores:

D̂q = Desc.(s(e) | e ∈ Dq) (7)

The resulting ranked set D̂q serves as a training
signal to optimize the GNN retriever, effectively
incorporating LLM feedback into the retrieval pro-
cess. To achieve this optimization, we define a loss

function Lfeedback that focuses on retrieving optimal
ICL examples:

Lfeedback = −
∑
q∈[M]

∑
k∈[K]

log
esim(hq ,hk)∑K
j=0 e

sim(hq ,hj)
,

(8)
where k represents the k-th example in D̂q.

4.3 Optimization
The final loss function combines two components:

L = β × Lfeedback + (1− β)× Lclf, (9)

where Lfeedback focuses on retrieving optimal ICL
examples, and Lclf targets the graph learning. The
Lclf is the node classification loss, defined as:

Lclf = −
∑
i∈[N]

Cross-Entropy (xi, yi) . (10)

Optimizing Lclf helps the SE-Retriever learn both
local and global structural patterns, complementing
the Lfeedback to improve example selection and task
performance.

4.4 Model Inference
ICL Example Selection. The SE-Retriever R is
employed to select an optimal set of ICL examples
from the labeled TAGs. This selection is driven by
the learned structural information and the similarity
between the query xq and the potential examples:

{(xi, yi)}i∈[K] = R(xq,D,G). (11)

Node Classification. The LLM leverages the se-
lected ICL examples D̂q = {(xi, yi)}i∈[K] along-
side the query xq to perform the classification task.
This process is formalized as follows:

ŷq = LLM(T (D̂q, xq)), (12)

where T is the prompt template used to encode both
the labeled nodes in D̂q and the text of the query

4

node xq. By integrating the most relevant examples,
this approach enhances the LLM’s understanding,
resulting in improved prediction accuracy for our
tasks.

5 Experiment

5.1 Experimental Setup

Evaluation Datasets. In this paper, we adopt the
following TAG datasets widely used for node clas-
sification: ogbn-arxiv, ogbn-products (OGB) (Hu
et al., 2020) and arxiv2023 (He et al., 2023), The
statistics and descriptions of these datasets are pro-
vided in Appendix C. To assess the effectiveness
of AskGNN under low-data scenarios, we limit the
training dataset to 1%, 5%, and 10% of the labeled
nodes. We use Accuracy as the evaluation metric in
all experiments and employ the default numerical
node embeddings as document node representation.

Baseline Methods. The baseline methods in
our study fall into the following categories: (1)
Bare GNNs: GCN (Kipf and Welling, 2017),
GraphSAGE (Hamilton et al., 2017) and Graph-
SAINT (Zeng et al., 2020). (2) Text-based se-
rialization: K-Hop (Chen et al., 2024b), Graph-
CoT (Jin et al., 2024a)); (3) Graph projection: In-
structGLM (Ye et al., 2024); (4) ICL: Zero-shot,
randomly sampling based few-shot and semantic-
based k-NN few-shot; (5) InstructTuning (Zheng
et al., 2024). To show the superiority of our ap-
proach, we first include both widely used and state-
of-the-art methods as our baselines. A detailed
description of these methods can be found in Ap-
pendix A.

Implementation Details. We adopted Qwen1.5-
72B (Bai et al., 2023) and Llama3-70B (AI@Meta,
2024) as our primary inference LLMs in the main
experiments. For scoring, we utilize smaller mod-
els like Qwen1.5-7B and Llama-8B to complement
the larger inference LLMs. Additional model archi-
tectures, such as Mistral-8x7B (Mistralai, 2024),
and varying model scales, including 7B, 14B, and
32B, are tested in Section 6.1. We use Graph-
SAGE (Hamilton et al., 2017) as our retriever back-
bone.

5.2 Experiment Results

Main Results. To evaluate the overall perfor-
mance of AskGNN, we conducted experiments
across three datasets. The results presented in
Table 1 highlight several key findings: First, our

approach consistently outperforms other methods
across all datasets and baselines, demonstrating
its effectiveness in selecting optimal examples for
ICL. Second, the correct selection of ICL examples
significantly enhances LLM performance, whereas
poorly chosen ICL examples can have detrimen-
tal effects. For instance, with the Llama3-70B
model, Few-Shot learning performs worse than
Zero-Shot. However, when the ICL examples are
selected using AskGNN, the model’s performance
improves markedly. Similar conclusions are drawn
for Few-shot (Rand.) and Few-shot (k-NN). Third,
we observe that the impact of Instruct Tuning is
correlated with the power of the LLM. Specifically,
when the LLM is more powerful (e.g., Llama3-
70B), the gains from Instruct Tuning are smaller
compared to those observed with weaker mod-
els (e.g., Qwen1.5-72B). This may be because
Llama3 has undergone extensive training on rel-
evant tasks (AI@Meta, 2024). Finally, consistent
with previous studies (Chen et al., 2024b), text-
based serialization methods do not show signif-
icant improvement in text-attributed graph tasks
compared to Zero-Shot methods. In graph datasets,
these methods are less effective than ICL methods
that effectively leverage structural information.

Extended Results. We expanded the evaluation
of AskGNN to diverse tasks such as link prediction
and conditional text generation, demonstrating its
broader applicability and versatility in addressing
various graph-based challenges. The results of link
prediction and conditional text generation can be
found in Figure 4. For the link prediction task, we

G
CN

Fe
w-S

ho
t (k

-N
N)

In
st

ru
ct

Tun
in

g

Ask
G

NN

80

85

90

A
cc

Link Prediction

G
CN

Fe
w-S

ho
t (k

-N
N)

In
st

ru
ct

Tun
in

g

Ask
G

NN
18

19

20

21

22

23

R
ou

ge
-L

N/A

Conditional Text Generation

GCN Few-Shot (k-NN) Instruct Tuning AskGNN

Figure 4: Performance of AskGNN on different tasks, in-
cluding link prediction and conditional text generation.

reformulated the problem as binary question clas-
sification. In this setting, given a pair of nodes,
the model predicts whether a connection exists be-
tween them. In our experiments, AskGNN outper-
formed baseline methods, achieving 89.06% accu-

5

Table 1: Averaged node classification accuracy on the ogbn-arxiv, ogbn-products, and arxiv2023 datasets with
1%, 3%, and 10% of labeled nodes. For each LLM family, the best results are bold.

Methods ogbn-arxiv ogbn-products Arxiv2023 Avg.
1% 5% 10% 1% 5% 10% 1% 5% 10%

N
/A

GCN 57.56 ±4.18 65.91 ±1.65 67.77 ±1.75 68.21 ±1.75 73.06 ±1.50 74.45 ±1.45 53.41 ±3.42 61.91 ±1.60 64.66 ±1.48 65.22
GraphSAGE 57.72 ±1.66 62.20 ±2.23 65.71 ±2.33 65.72 ±1.66 71.32 ±1.80 72.45 ±1.75 54.67 ±2.14 61.71 ±1.50 64.51 ±1.50 64.00
GraphSAINT 58.03 ±2.17 62.73 ±3.03 65.92 ±2.78 66.13 ±1.53 71.73 ±1.23 73.54 ±1.18 54.92 ±2.07 61.95 ±1.79 64.84 ±1.94 64.42

Q
w

en
1.

5-
72

B

K-Hop 62.21 ±0.22 62.21 ±0.22 62.21 ±0.22 66.85 ±0.15 66.85 ±0.15 66.85 ±0.15 67.47 ±0.24 67.47 ±0.24 67.47 ±0.24 65.29
Graph-CoT 59.73 ±0.21 59.73 ±0.21 59.73 ±0.21 67.78 ±0.17 67.78 ±0.17 67.78 ±0.17 64.89 ±0.13 64.89 ±0.13 64.89 ±0.13 64.13

InstructTuning 65.33 ±0.35 70.63 ±0.76 71.47 ±0.58 73.70 ±0.53 80.16 ±0.41 81.99 ±0.26 69.32 ±0.23 70.72 ±0.33 71.23 ±0.25 72.72
InstructGLM 65.55 ±0.26 70.81 ±0.62 71.51 ±0.36 73.83 ±0.48 80.28 ±0.51 82.12 ±0.24 69.31 ±0.19 70.86 ±0.28 71.31 ±0.21 72.84

Zero-Shot 61.63 ±0.30 61.63 ±0.30 61.63 ±0.30 62.85 ±0.27 62.85 ±0.27 62.85 ±0.27 67.76 ±0.53 67.76 ±0.53 67.76 ±0.53 64.08
Few-Shot (Rand.) 61.90 ±0.02 62.30 ±0.14 62.17 ±0.31 66.80 ±0.04 67.18 ±0.27 67.62 ±0.08 67.56 ±0.23 67.66 ±0.69 68.16 ±0.23 65.70
Few-Shot (k-NN) 63.47 ±0.37 64.77 ±0.12 64.87 ±0.35 74.58 ±0.39 75.21 ±0.21 76.48 ±0.22 67.47 ±0.57 68.06 ±0.09 68.86 ±1.52 69.30
AskGNN 64.67 ±0.10 66.95 ±0.23 67.82 ±0.16 76.79 ±0.26 78.72 ±0.19 79.91 ±0.23 69.56 ±0.22 69.97 ±0.12 70.46 ±0.17 71.65

L
la

m
a3

-7
0B

K-Hop 66.27 ±0.28 66.27 ±0.28 66.27 ±0.28 75.93 ±0.29 75.93 ±0.29 75.93 ±0.29 68.23 ±0.19 68.23 ±0.19 68.23 ±0.19 70.14
Graph-CoT 64.51 ±0.21 64.51 ±0.21 64.51 ±0.21 77.52 ±0.13 77.52 ±0.13 77.52 ±0.13 64.31 ±0.36 64.31 ±0.36 64.31 ±0.36 68.84

InstructTuning 68.30 ±0.10 71.10 ±0.30 71.07 ±0.67 72.20 ±0.89 81.87 ±0.27 82.42 ±0.21 68.96 ±0.24 69.43 ±0.24 69.52 ±0.22 72.76
InstructGLM 68.35 ±0.16 71.17 ±0.25 71.13 ±0.42 72.19 ±0.77 81.70 ±0.29 82.59 ±0.32 69.02 ±0.17 69.57 ±0.13 69.61 ±0.32 72.82

Zero-Shot 68.43 ±0.31 68.43 ±0.31 68.43 ±0.31 77.00 ±0.16 77.00 ±0.16 77.00 ±0.16 69.03 ±0.22 69.03 ±0.22 69.03 ±0.22 71.48
Few-Shot (Rand.) 66.27 ±0.21 66.10 ±0.17 66.20 ±0.17 76.87 ±0.18 76.86 ±0.21 77.00 ±0.26 68.21 ±0.23 68.35 ±0.16 68.18 ±0.28 70.44
Few-Shot (k-NN) 68.23 ±0.25 67.80 ±0.10 67.63 ±0.35 78.76 ±0.39 79.00 ±0.10 79.19 ±0.18 68.36 ±0.17 68.47 ±0.14 68.25 ±0.18 71.74
AskGNN 69.13 ±0.24 70.29 ±0.25 71.53 ±0.11 81.35 ±0.23 82.54 ±0.13 82.88 ±0.17 73.86 ±0.22 74.07 ±0.12 74.97 ±0.17 73.86

racy, surpassing both GCN and instruction-tuned
models. In the conditional text generation task,
we evaluated AskGNN’s ability to integrate graph
knowledge into language generation. The model
was given with 10% of a query node’s text and
tasked with generating the remaining 90%. Us-
ing Rouge-L (Lin, 2004) as the evaluation metric,
AskGNN achieved a score of 22.15, surpassing both
few-shot learning and instruction-tuned baselines.
These results underscore AskGNN’s flexibility and
adaptability in many other tasks besides node clas-
sification.

6 Further Analysis

6.1 Analysis on LLMs’ Sizes and Families

This section aims to provide a comprehensive
understanding of how varying inference LLM’s
sizes and architectures impact the performance of
AskGNN in integrating semantic and structural infor-
mation from text-attributed graphs.

Same Family but Different Sizes. As shown
in Figure 5, we explore the scalability of the
Qwen1.5 (Bai et al., 2023) architecture on the ogbn-
product and ogbn-arxiv datasets, with model scales
ranging from 7B to 72B parameters. The empirical
results indicate that AskGNN consistently outper-
forms both few-shot (k-NN) and few-shot (Rand.),
highlighting the effectiveness of selecting structure
ICL examples across all model scales. Interestingly,
we observe an inverse scaling phenomenon, where

7B 14B 32B 72B
Parameters

0.50

0.60

0.70

A
cc

Arxiv

7B 14B 32B 72B
Parameters

0.40

0.60

0.80

A
cc

Products

Few-Shot (Rand.) Few-Shot (kNN) GraphSAGE AskGNN

Figure 5: Performance of the Qwen1.5 family across
parameter sizes (7B to 72B) on ogbn-product and ogbn-
arxiv datasets.

performance initially rises but then declines as the
model size increases from 7B to 72B parameters.
This behavior, seen in both datasets, contradicts
the conventional expectation that larger models
should inherently yield better performance. For
ogbn-product, the 72B model shows lower accu-
racy compared to the 32B model, and a similar
trend is observed for ogbn-arxiv This aligns with
previous findings (McKenzie et al., 2023; Dohma-
tob et al., 2024), which suggest that inverse scaling
behavior arises from misleading few-shot demon-
strations, where larger models capture nuanced lan-
guage aspects but are also misled by noise or non-
representative features.

Different LLM Families. We tested our frame-
work across various LLM families, including
Dense models like Qwen1.5-72B and Llama3-70B,
as well as Mixture of Experts (MoE) models like

6

Table 2: Comparison of performance between Majority
Voting (MV), Few-shot (k-NN), and AskGNN across vari-
ous experimental settings. MV selects the most frequent
class in the ICL examples and consistently underper-
forms compared to LLM predictions, demonstrating the
LLM’s ability to make more nuanced decisions beyond
simple class frequency.

Methods ogbn-arxiv

1% 3% 5% 10%

Few-Shot (k-NN) 61.90± 0.02 62.06± 0.11 62.30± 0.14 62.17± 0.31

MV+k-NN 29.97 ±0.32 35.50 ±0.82 34.10 ±0.10 35.33 ±0.12

AskGNN 69.13± 0.24 69.42± 0.12 70.29± 0.25 71.53± 0.11

MV+AskGNN 57.27± 0.21 59.37± 0.17 58.00± 0.10 60.87± 0.40

ogbn-products

1% 3% 5% 10%

Few-Shot (k-NN) 66.80± 0.04 67.38± 0.19 67.18± 0.27 67.62± 0.08

MV + k-NN 47.30 ±0.44 54.69 ±0.31 54.09 ±0.72 53.01 ±0.31

AskGNN 65.24± 0.20 68.24± 0.19 82.54± 0.13 82.88± 0.17

MV + AskGNN 65.24± 0.20 68.24± 0.21 71.39± 0.39 71.63± 0.31

Mistral-8x7B. The results are shown in Figure 6.
Our results show that AskGNN consistently outper-
forms Few-Shot, emphasizing the importance of
selecting ICL examples across different model ar-
chitectures, whether Dense or MoE. Notably, for
less powerful models, optimal ICL example se-
lection leads to greater performance gains, with a
larger gap between AskGNN and Few-shot (k-NN)
compared to Few-shot (Rand.). This highlights the
significant impact of example selection on enhanc-
ing the capabilities of smaller or weaker models.
For weaker models (e.g., Qwen1.5-72B), instruct
tuning surpasses AskGNN. However, for stronger
models like Llama3-70B, AskGNN proves more ef-
fective, likely due to Llama3-70B’s training on
more relevant tasks. Additionally, the performance
gap between instruct tuning and AskGNN narrows
under the MoE architecture. This is likely due
to MoE’s dynamic allocation capabilities, which
enhance flexibility and efficiency in processing di-
verse inputs, leading to better integration of instruct
tuning and ICL, thereby reducing the disparity be-
tween the two methods.

6.2 Hyperparameter Analysis on β

To investigate the impact of the classification loss
Lclf introduced in Equation 9, we conducted a com-
prehensive hyperparameter analysis on the weight-
ing factor β. Figure 7 illustrates the performance
trends as β varies from 0.0 to 1.0 on both the
ogbn-arxiv and ogbn-products datasets using
the Qwen1.5-72B model. For ogbn-arxiv, we
observe peak performance at β ≈ 0.2, suggest-

Q
wen

1.
5-

72
B

Lla
m

a3
-7

0B

M
ist

ra
l-8

x7
B

0.55

0.60

0.65

0.70

A
cc

Arxiv

Q
wen

1.
5-

72
B

Lla
m

a3
-7

0B

M
ist

ra
l-8

x7
B

0.60

0.70

0.80

A
cc

Products

Few-Shot (Rand.) Few-Shot (kNN) Instruct Tuning AskGNN

Figure 6: Performance comparison of AskGNN across
different LLM architectures, including Dense models
(Qwen1.5-72B, Llama3-70B) and MoE models (Mistral-
8x7B).

0.0 0.5 1.0
β

0.62

0.64

0.66

A
cc

Arxiv

0.0 0.5 1.0
β

0.65

0.70

0.75

A
cc

Products

Figure 7: Performance variation with respect to hyperpa-
rameter β on ogbn-arxiv and ogbn-products datasets
using Qwen1.5-72B.

ing a balanced contribution from both feedback-
based and structural-based losses maximizes per-
formance. In contrast, ogbn-products exhibits
higher sensitivity to β, peaking at β = 0.3 with
a steeper subsequent decline, indicating a greater
dependence on the structural component. We hy-
pothesize this is due to the complex nature of prod-
uct descriptions benefiting more from structural
insights. These observations underscore the im-
portance of fine-tuning the balance between dif-
ferent components of the loss function tailored to
the specific characteristics of the dataset, thereby
enabling optimal model performance. These obser-
vations underscore the importance of fine-tuning
the balance between different components of the
loss function tailored to the specific characteris-
tics of the dataset, thereby enabling optimal model
performance.

6.3 Analysis on ICL Examples

Cast Study. We provide a case study of retrieved
examples from the ogbn-product dataset to illus-
trate the difference in example selection between
AskGNN and k-NN, as shown in Table 4. This case
study demonstrates that while k-NN selects se-

7

Table 3: Experiment results of different heuristic ICL examples retrieve appraoches. The best results are bold.

Methods ogbn-arxiv ogbn-products Arxiv2023 Avg.
1% 5% 10% 1% 5% 10% 1% 5% 10%

Q
w

en
1.

5

72
B

NPL 63.91 ±0.26 63.91 ±0.26 63.91 ±0.26 73.83 ±0.17 73.83 ±0.17 73.83 ±0.17 63.07 ±0.83 65.78 ±0.69 65.82 ±0.43 67.54
NPG 62.43 ±0.38 66.47 ±0.29 65.90 ±0.33 75.23 ±0.34 76.62 ±0.26 77.89 ±0.17 62.17 ±0.23 63.46 ±0.17 64.62 ±0.13 68.42

AskGNN 64.67 ±0.10 66.95 ±0.23 67.82 ±0.16 76.79 ±0.26 78.72 ±0.19 79.91 ±0.23 69.56 ±0.22 69.97 ±0.12 70.46 ±0.17 71.65

L
la

m
a3

70
B

NPL 69.49 ±0.35 69.49 ±0.35 69.49 ±0.35 80.86 ±0.18 80.86 ±0.18 80.86 ±0.18 72.27 ±0.19 72.27 ±0.19 72.27 ±0.19 73.65
NPG 65.50 ±0.20 68.57 ±0.21 68.33 ±0.21 77.61 ±0.06 79.03 ±0.16 80.22 ±0.27 67.77 ±0.22 70.35 ±0.14 71.08 ±0.19 71.16

AskGNN 69.13 ±0.24 70.29 ±0.25 71.53 ±0.11 81.35 ±0.23 82.54 ±0.13 82.88 ±0.17 73.86 ±0.22 74.07 ±0.12 74.97 ±0.17 75.62

mantically similar examples (focusing on under-
water themes), it misses the crucial “Toy” classi-
fication. In contrast, AskGNN retrieves an example
that, despite having lower semantic similarity, cor-
rectly captures the “Toy” category. This highlights
AskGNN’s ability to prioritize task-relevant infor-
mation over semantic similarity, resulting in more
accurate classifications for the LLM.

Table 4: Comparison of retrieved examples from the
ogbn-product dataset. Bold words indicate semantic
similarity.

Type Text Label

Query wonder pets flyboat with 3
removable figures for everyday fun Toy

k-NN

dive into adventure with your
favorite underwater explorers, the
octonauts! on this exciting dvd,
captain barnacles tangles with a
colossal squid

Movie

AskGNN

choose your favorite paw patrol
character and rush into adventure
bay action with their special
vehicle!

Toy

Comparison with 1-hop Neighbors with Pseudo
Labels. To understand the importance of retrieve
ICL examples across whole graph, we consider
utilize the query node’s 1-hop neighbors. Huang
et al. (2023) suggests that leveraging a query’s
neighbor and its label can yield satisfactory results.
However, since actual labels for the query nodes’
neighbors are not accessible, we design two ap-
proaches for getting the pseudo label: NPL and
NPG, NPL stands for Neighbors Pseudo Labels
generated by the LLM, while NPG stands for
Neighbors’ Pseudo Labels generated by the GNN.
Results in Table 3 show that AskGNN surpasses GE,
NPL, and NPG, highlighting the importance of re-
trieving high-quality samples for LLM prediction.
Notably, even with pseudo labels, NPL and NPG
outperform GE with true labels, suggesting that

effective ICL examples can significantly improve
LLM predictions, even when the labels are noisy.
Finally, NPG outperforms NPL with Qwen1.5-72B,
while NPL performs better than NPG with Llama3-
70B. Combined with the GNN and Zero-Shot re-
sults in Table 1, we conclude that the quality of the
pseudo-label is crucial for effectively using a query
node’s neighbors as ICL examples.

10 20 30 40
ICL examples

0.65

0.70

A
cc

Arxiv

10 20 30 40
ICL examples

0.70

0.75

0.80

A
cc

Products

Few-Shot (Rand.) Few-Shot (kNN) AskGNN

Figure 8: Performance comparison of AskGNN, Few-shot
(Rand.), and Few-shot (k-NN) with varying numbers
of ICL examples on the ogbn-arxiv and ogbn-products
datasets.

of ICL Examples. To evaluate the generaliza-
tion ability of our approach across different num-
bers of ICL examples, we conducted an experiment
to assess its performance under varying conditions.
This analysis is essential for understanding the ro-
bustness and scalability of AskGNN across differ-
ent datasets. As shown in Figure 8, we compare
the sample efficiency of Few-shot (Rand.), Few-
shot (k-NN) and AskGNN. We observe that perfor-
mance improves for all methods as the number
of ICL examples increases. This improvement is
more pronounced on the ogbn-arxiv dataset than
on the ogbn-products dataset. Additionally, our

8

method consistently outperforms Few-Shot across
all datasets, demonstrating its strong generaliza-
tion capability, even as the ratio of ICL examples
increases.

ICL Example Purification. To address the po-
tential impact of noise in retrieved In-Context
Learning (ICL) examples, we conducted exper-
iments exploring two noise reduction strategies
through ICL example purification. Given that per-
formance often plateaus as context length increases
(Li et al., 2024a), we focused on two heuristic ap-
proaches: (1). LLM-Selection. This approach
involves prompting the Large Language Model
(LLM) to select the most informative examples
from multiple retrieved instances based on criteria
such as relevance and diversity. The underlying
intuition is that LLMs, when tasked with curating
their own input data, can identify examples that
offer the most value for downstream tasks while fil-
tering out noisy or redundant entries; (2). Minority-
Class-Removal. This method involves removing
ICL examples with less frequent labels. We hypoth-
esized that such outliers might introduce unwanted
noise into the retrieval process. By removing these
minority class examples, we aimed to reduce the
likelihood of including anomalous data that could
detract from model performance.

The results from these experiments, conducted
using Qwen1.5-72B on the obgn-arxiv dataset, are
summarized in Table 5. Our findings indicate that
LLM-Selection improved performance by approx-
imately 1% (e.g., from 69.02% to 71.10% accu-
racy on ogbn-arxiv). In contrast, Minority-Class-
Removal had a minimal impact, with changes in
performance generally within ±0.1%. Overall,
these additional experiments demonstrate that im-
proving the quality of retrieved ICL examples can
positively impact performance.

6.4 Are LLMs Just Repeaters?

To determine whether LLMs merely replicate the
most prevalent class from ICL examples, rather
than engaging in meaningful graph reasoning and
task understanding, we analyzed performance in
two scenarios: Few-shot (k-NN) and AskGNN. Addi-
tionally, we implemented a Majority Voting (MV)
strategy, which selects the class that appears most
frequently in the ICL examples as the prediction.
As shown in Table 2, MV consistently underper-
formed compared to LLM predictions across all
experimental conditions, indicating that LLMs are

Table 5: Performance of ICL example purification tech-
niques on the ogbn-arxiv dataset using Qwen1.5-72B.

ogbn-arxiv ogbn-products

of ICL Examples 30 33 36 24 27 30

AskGNN 70.74 69.02 70.43 81.44 80.76 81.50

LLM Selection 70.81 71.10 71.39 81.49 81.66 81.70

Minority-Class-Removal 70.72 69.17 70.41 81.42 80.77 81.52

making more nuanced decisions rather than simply
mimicking the most common class. This outcome
highlights the importance of selecting relevant ex-
amples strategically in ICL.

7 Conclusion
In this work, we introduced AskGNN, a novel ap-
proach leveraging the ICL capabilities of LLMs for
graph-based tasks. By implementing a structure-
enhanced retriever (SE-Retriever) based on GNNs,
AskGNN bridges the gap between sequential text
processing and graph-structured data while pre-
serving the inherent supervision signals of graph
nodes. Our evaluations across three distinct tasks
and seven LLMs show that AskGNN significantly im-
proves node classification performance compared
to existing methods, confirming its robustness and
effectiveness. Looking forward, future work will
focus on extending AskGNN to a broader range of
graph-based applications, such as dynamic graph
analysis, where the complexity of the data increases
and requires more sophisticated handling. This re-
search establishes a promising foundation for utiliz-
ing structured graph data to expand the capabilities
of LLMs in advanced applications.

8 Limitations
We also recognize the following limitations of
this work: First, data quality issues, such as low-
quality product descriptions, can hinder larger mod-
els more than smaller ones, affecting performance
on complex datasets. Second, the limited input
window of current open-source LLMs capped the
number of ICL examples at 45, restricting the ex-
ploration of larger example sets that might improve
performance. Last, our approach relies heavily
on the learned GNN retriever, meaning inaccurate
structure information could reduce overall model
effectiveness.

9 Acknowledgement
This research was supported in part by NIH
R01LM01372201.

9

References
AI@Meta. 2024. Llama 3 model card.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2024. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
In ICLR.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In NeurIPS.

Pei Chen, Soumajyoti Sarkar, Leonard Lausen, Balasub-
ramaniam Srinivasan, Sheng Zha, Ruihong Huang,
and George Karypis. 2023. Hytrel: Hypergraph-
enhanced tabular data representation learning. In
NeurIPS.

Runjin Chen, Tong Zhao, Ajay Jaiswal, Neil Shah, and
Zhangyang Wang. 2024a. Llaga: Large language and
graph assistant. In ICML.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi
Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei Yin,
Wenqi Fan, Hui Liu, et al. 2024b. Exploring the
potential of large language models (llms) in learning
on graphs. In SIGKDD.

Zhikai Chen, Haitao Mao, Hongzhi Wen, Haoyu Han,
Wei Jin, Haiyang Zhang, Hui Liu, and Jiliang Tang.
2024c. Label-free node classification on graphs with
large language models (llms). In ICLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL.

Kaize Ding. 2024. Data-efficient graph learning. In
AAAI.

Kaize Ding, Jianling Wang, Jundong Li, Dingcheng Li,
and Huan Liu. 2020. Be more with less: Hypergraph
attention networks for inductive text classification.
In EMNLP.

Kaize Ding, Zhe Xu, Hanghang Tong, and Huan Liu.
2022. Data augmentation for deep graph learning: A
survey. In SIGKDD.

Elvis Dohmatob, Yunzhen Feng, Pu Yang, Francois
Charton, and Julia Kempe. 2024. A tale of tails:
Model collapse as a change of scaling laws. arXiv
preprint arXiv:2402.07043.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan
Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu,
Tianyu Liu, Baobao Chang, Xu Sun, Lei Li, and
Zhifang Sui. 2024. A survey on in-context learning.
arXiv preprint arXiv:2301.00234.

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi.
2023. Talk like a graph: Encoding graphs for large
language models. arXiv preprint arXiv:2310.04560.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017.
Inductive representation learning on large graphs. In
NeurIPS.

Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam
Perold, Yann LeCun, and Bryan Hooi. 2023. Har-
nessing explanations: Llm-to-lm interpreter for en-
hanced text-attributed graph representation learning.
In ICLR.

Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh V Chawla,
Thomas Laurent, Yann LeCun, Xavier Bresson, and
Bryan Hooi. 2024. G-retriever: Retrieval-augmented
generation for textual graph understanding and ques-
tion answering. arXiv preprint arXiv:2402.07630.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong,
Hongyu Ren, Bowen Liu, Michele Catasta, and Jure
Leskovec. 2020. Open graph benchmark: Datasets
for machine learning on graphs. In NeurIPS.

Zhengyu Hu, Linxin Song, Jieyu Zhang, Zheyuan Xiao,
Jingang Wang, Zhenyu Chen, Jieyu Zhao, and Hui
Xiong. 2024. Rethinking llm-based preference evalu-
ation. arXiv preprint arXiv:2407.01085.

Zhengyu Hu, Jieyu Zhang, Haonan Wang, Siwei Liu,
and Shangsong Liang. 2023. Leveraging relational
graph neural network for transductive model ensem-
ble. In SIGKDD.

Jin Huang, Xingjian Zhang, Qiaozhu Mei, and Jiaqi Ma.
2023. Can llms effectively leverage graph structural
information: when and why. TMLR.

Qian Huang, Hongyu Ren, Peng Chen, Gregor Kržmanc,
Daniel Zeng, Percy S Liang, and Jure Leskovec. 2024.
Prodigy: Enabling in-context learning over graphs.
In NeurIPS.

Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun,
Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie
Callan, and Graham Neubig. 2023. Active retrieval
augmented generation. In EMNLP.

Bowen Jin, Chulin Xie, Jiawei Zhang, Kashob Kumar
Roy, Yu Zhang, Suhang Wang, Yu Meng, and Jiawei
Han. 2024a. Graph chain-of-thought: Augmenting
large language models by reasoning on graphs. In
ACL Finding.

Hanlei Jin, Yang Zhang, Dan Meng, Jun Wang, and
Jinghua Tan. 2024b. A comprehensive survey on
process-oriented automatic text summarization with
exploration of llm-based methods. arXiv preprint
arXiv:2403.02901.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeff Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In EMNLP.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In ICLR.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. In NeurIPS.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and
Wenhu Chen. 2024a. Long-context llms strug-
gle with long in-context learning. arXiv preprint
arXiv:2404.02060.

Xiaonan Li, Kai Lv, Hang Yan, Tianyang Lin, Wei Zhu,
Yuan Ni, Guotong Xie, Xiaoling Wang, and Xipeng
Qiu. 2023a. Unified demonstration retriever for in-
context learning. In ACL.

Yichuan Li, Kaize Ding, and Kyumin Lee. 2023b.
Grenade: Graph-centric language model for self-
supervised representation learning on text-attributed
graphs. In EMNLP Findings.

Yichuan Li, Kaize Ding, Jianling Wang, and Kyumin
Lee. 2024b. Empowering large language models for
textual data augmentation. In ACL Findings.

Yichuan Li, Xiyao Ma, Sixing Lu, Kyumin Lee, Xi-
aohu Liu, and Chenlei Guo. 2024c. Mend: Meta
demonstration distillation for efficient and effective
in-context learning. In ICLR.

Chin-Yew Lin. 2004. ROUGE: A package for automatic
evaluation of summaries. In ACL.

Ian R McKenzie, Alexander Lyzhov, Michael Pieler,
Alicia Parrish, Aaron Mueller, Ameya Prabhu, Euan
McLean, Aaron Kirtland, Alexis Ross, Alisa Liu,
et al. 2023. Inverse scaling: When bigger isn’t better.
TMLR.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2016. Rethinking the role of demonstrations:
What makes in-context learning work? In EMNLP.

Mistralai. 2024. Mixtral-8x7b model card.

Deepak Pathak, Philipp Krähenbühl, Jeff Donahue,
Trevor Darrell, and Alexei A. Efros. 2016. Context
encoders: Feature learning by inpainting. In CVPR.

Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsit-
sulin, Mehran Kazemi, Rami Al-Rfou, and Jonathan
Halcrow. 2024. Let your graph do the talking: En-
coding structured data for llms. arXiv preprint
arXiv:2402.05862.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning. In NAACL.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su,
Suqi Cheng, Dawei Yin, and Chao Huang. 2024.
Graphgpt: Graph instruction tuning for large lan-
guage models. arXiv preprint arXiv:2310.13023.

Jianing Wang, Junda Wu, Yupeng Hou, Yao Liu, Ming
Gao, and Julian McAuley. 2024. Instructgraph:
Boosting large language models via graph-centric
instruction tuning and preference alignment. In ACL
Finding.

Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-
Han Wu, Yuxiao Dong, and Anshul Kanakia. 2020.
Microsoft academic graph: When experts are not
enough. Quantitative Science Studies.

Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang,
Hongchao Gu, Tingjia Shen, Chuan Qin, Chen Zhu,
Hengshu Zhu, Qi Liu, Hui Xiong, and Enhong Chen.
2024. A survey on large language models for recom-
mendation. In WWW.

Zhenyu Wu, YaoXiang Wang, Jiacheng Ye, Jiangtao
Feng, Jingjing Xu, Yu Qiao, and Zhiyong Wu. 2023.
Openicl: An open-source framework for in-context
learning. In ACL.

Sang Michael Xie, Aditi Raghunathan, Percy Liang,
and Tengyu Ma. 2022. An explanation of in-context
learning as implicit bayesian inference. In ICLR.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold
Overwijk. 2021. Approximate nearest neighbor neg-
ative contrastive learning for dense text retrieval. In
ICLR.

Michihiro Yasunaga, Jure Leskovec, and Percy Liang.
2022. Leveraging relational graph neural network for
transductive model ensemble. In ACL.

Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu,
and Yongfeng Zhang. 2024. Language is all a graph
needs. In EACL.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Ra-
jgopal Kannan, and Viktor Prasanna. 2020. Graph-
saint: Graph sampling based inductive learning
method. In ICLR.

Chuxu Zhang, Kaize Ding, Jundong Li, Xiangliang
Zhang, Yanfang Ye, Nitesh V Chawla, and Huan Liu.
2022. Few-shot learning on graphs. In IJCAI.

Yuanhan Zhang, Kaiyang Zhou, and Ziwei Liu. 2024.
What makes good examples for visual in-context
learning? In NeurIPS.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
ICML.

11

https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, and Yongqiang Ma. 2024. Llamafac-
tory: Unified efficient fine-tuning of 100+ language
models. In ACL.

12

A Baseline Details.

• Bare GNN: GCN (Ye et al., 2024) is a
semi-supervised learning approach for graph-
structured data, employing convolutional opera-
tions to aggregate and transform node features. It
is particularly effective in tasks such as node clas-
sification and link prediction. GraphSAGE (Ye
et al., 2024) is an inductive framework for learn-
ing node embeddings by sampling and aggregat-
ing features from a node’s neighbors, thereby en-
abling scalability for large graph datasets. Graph-
SAINT (Ye et al., 2024) enhances the scalability
of GNNs through graph sampling, reducing com-
putational burden and memory usage by gener-
ating smaller subgraphs for training, making it
well-suited for large-scale graph tasks.

• Text-based Serialization: K-Hop (Chen et al.,
2024b) leverages 2-hop neighbors as in-context
examples, utilizing the typical 2-layer structure
of GNNs for enhanced context. Graph-CoT (Jin
et al., 2024a) augments LLMs through iterative
reasoning on graphs via the Graph Chain-of-
Thought framework, consistently outperforming
baseline methods.

• Graph Projection: InstructGLM (Ye et al.,
2024) employs natural language prompts to de-
scribe graph structures, enabling generative lan-
guage models to handle graph machine learn-
ing tasks. This approach eliminates the need
for complex graph-specific mechanisms and sup-
ports scalable training.

• InstructTuning: This technique fine-tunes LLM
parameters to enable the model to learn informa-
tion within graph datasets (Zheng et al., 2024).

• In-Context Learning: Zero-Shot (Chen et al.,
2024c) relies solely on the node’s attributes for
prediction without additional context. Few-Shot
(Rand.) (Chen et al., 2024c) involves randomly
selecting a few labeled examples along with the
node’s attributes to assist LLMs in understand-
ing the task, utilizing random sampling for these
selections. Few-Shot (k-NN) (Lewis et al., 2020)
selects the most similar sample to the query as the
in-context example based on retrieval-augmented
generation.

B Prompt Design

Table 6 presents the prompts utilized across differ-
ent datasets. Each prompt begins with the abstract

and title of the paper, followed by a task-specific
question designed to probe the model on a particu-
lar aspect of the paper and to request an explanation
for the prediction. The answer section is left blank
for the model to complete. Our analysis indicates
that the current instructions enable the LLM to gen-
erate output that closely adheres to the expected
format, with minimal deviations. This consistency
facilitates the straightforward extraction of answers
from the LLM’s text output.

Exploring Prompt Variations. We conducted
an extensive exploration of the impact of different
prompts on the ogbn-arxiv dataset. As shown in
Table 7, the performance across most prompts is
generally similar. However, a slight improvement
in accuracy is noted when the title is placed after
the abstract. This observation supports the princi-
ple suggested by (Zhao et al., 2021), which posits
that positioning more critical information later in
the prompt can enhance performance.

C Dataset

We conduct experiments on three TAGs:
ogbn-arxiv, ogbn-products (Hu et al., 2020),
and arxiv23. Table 8 summarizes the statistics of
these datasets.

C.1 Dataset Description
• ogbn-arxiv (Hu et al., 2020). The
ogbn-arxiv dataset is a directed graph rep-
resenting the citation network of all computer
science arxiv papers indexed by MAG (Wang
et al., 2020). Each node is an arxiv paper, and
each directed edge represents a citation. The
task is to predict the 40 subject areas of arxiv
CS papers, such as cs.AI, cs.LG, and cs.OS,
which are manually labeled by the authors and
arxiv moderators.

• ogbn-products (Hu et al., 2020). The
ogbn-products dataset represents an Ama-
zon product co-purchasing network, with
nodes representing products and edges indi-
cating co-purchases. The task is to predict the
category of a product in a multi-class classifi-
cation setup, using 47 top-level categories as
target labels.

• arxiv23 (He et al., 2023). The arxiv23
dataset is a directed graph representing the
citation network of all computer science arxiv
papers published in 2023 or later. Similar to

13

Table 6: Prompts used in this study to query the LLM.

Dataset Prompt

ogbn-arxiv & arxiv23 You are an AI trained to categorize arxiv computer science papers into specific categories based
on their abstracts. Your task is to analyze the paper description provided and identify the most
relevant category. \n Paper description:<paper description>. \n Give me the category of this
content. Respond only with the category key (e.g., ’cs.AI’, ’cs.SY’), without any additional text
or explanation. Here are some of the papers cited by this paper: <ICL examples>: \n \n Answer:

ogbn-products You are an AI trained to categorize products into specific categories based on their descriptions
and characteristics. Your task is to analyze the product description provided, consider its
characteristics, and identify the most relevant category among hundreds of possible categories.
There are a total of 46 categories, including 1) Home & Kitchen, 2) Health & Personal Care, 3)
Beauty, 4) Sports & Outdoors, 5) Books, 6) Patio, Lawn & Garden, 7) Toys & Games, 8) CDs &
Vinyl, 9) Cell Phones & Accessories, 10) Grocery & Gourmet Food, 11) Arts, Crafts & Sewing,
12) Clothing, Shoes & Jewelry, 13) Electronics, 14) Movies & TV, 15) Software, 16) Video
Games, 17) Automotive, 18) Pet Supplies, 19) Office Products, 20) Industrial & Scientific, 21)
Musical Instruments, 22) Tools & Home Improvement, 23) Magazine Subscriptions, 24) Baby
Products, 25) NAN, 26) Appliances, 27) Kitchen & Dining, 28) Collectibles & Fine Art, 29)
All Beauty, 30) Luxury Beauty, 31) Amazon Fashion, 32) Computers, 33) All Electronics, 34)
Purchase Circles, 35) MP3 Players & Accessories, 36) Gift Cards, 37) Office & School Supplies,
38) Home Improvement, 39) Camera & Photo, 40) GPS & Navigation, 41) Digital Music,
42) Car Electronics, 43) Baby, 44) Kindle Store, 45) Kindle Apps, 46) Furniture. \n Product
description: <product description>. \n Consider its characteristics and give me the category of
this product. Respond only with the category key (e.g., ’Electronics’, ’Toys & Games’), without
any additional text or explanation. \n Here are some examples to help you understand how to
categorize products based on their descriptions: <ICL examples>. \n \n Answer:

ogbn-arxiv, each node is an arxiv paper, and
each directed edge represents a citation. The
task is to predict the 40 subject areas of arxiv
CS papers, such as cs.AI, cs.LG, and cs.OS,
which are manually labeled by the authors and
arxiv moderators.

C.2 Dataset splits and random seeds
In our experiments, we adhered to specific dataset
splits and employed random seeds for reproducibil-
ity. For the ogbn-arxiv and ogbn-products
datasets, we used the standard train/validation/test
split provided by OGB (Hu et al., 2020). For
arxiv23 datasets, we followed the splits used in
previous works (Huang et al., 2023; He et al., 2023).
Additionally, we utilized 10 random seeds to en-
sure the reproducibility of our experiments. This
approach enabled consistent evaluation of our pro-
posed method across the respective datasets, with
detailed results available in the supplementary ma-
terial.

D Experiment Details

Computing Environment and Resources. The
proposed method was implemented using PyG
modules, which are licensed under the MIT Li-
cense. Our experiments were conducted on a high-
performance computing setup featuring an Intel(R)
Xeon(R) Platinum 8358P CPU at 2.60GHz, with

512GB of memory. The computational resources
included eight NVIDIA A6000 GPUs, each with
48GB of memory.

Hyperparameters. Table 9 presents the hyperpa-
rameters utilized for the GCN (Kipf and Welling,
2017), GraphSAGE (Hamilton et al., 2017), and
GraphSAINT (Ye et al., 2024) models, as derived
from the official OGB repository*. Additionally,
the hyperparameters for GraphSAINT and the as-
sociated language models align with those speci-
fied in the GraphSAINT repository*. It is critical
to emphasize that these hyperparameters were not
individually optimized for each dataset; instead,
they were uniformly applied across all three TAG
datasets, in accordance with established practices.
This uniform application underscores the flexibil-
ity, user-friendliness, and compatibility of our pro-
posed method with prevailing GNN baselines.

Selection of Hyperparameter K. In our exper-
iments, we investigated the impact of varying the
hyperparameter K in Eq.4, which controls the num-
ber of examples utilized for LLM feedback. The
analysis was conducted on the ogbn-products
dataset using 10% of the training data. As shown
in our results, setting K = 2 achieved an accu-
racy of 79.08%, while increasing K to 20 and

*https://github.com/snap-stanford/ogb
*https://github.com/GraphSAINT/GraphSAINT

14

https://github.com/snap-stanford/ogb
https://github.com/GraphSAINT/GraphSAINT

Table 7: Prompts employed in our experiments to investigate the impact of various prompting strategies. The results
indicate relatively uniform performance across most prompts.

Description Prompt Accuracy

Default prompt You are an AI trained to categorize arxiv computer science papers into specific
categories based on their abstracts. Your task is to analyze the paper description
provided and identify the most relevant category. \n Paper description: Abstract:
<abstract text> \n Title: <title text>. \n Give me the category of this content. Respond
only with the category key (e.g., ’cs.AI’, ’cs.SY’), without any additional text or
explanation. Here are some of the papers cited by this paper: <ICL examples>: \n
\n Answer:

0.729

Title first You are an AI trained to categorize arxiv computer science papers into specific
categories based on their titles and abstracts. Your task is to analyze the paper
description provided and identify the most relevant category. \n Title: <title text>
\n Paper description:<paper description>. \n Give me the category of this content.
Respond only with the category key (e.g., ’cs.AI’, ’cs.SY’), without any additional
text or explanation. Here are some of the papers cited by this paper: <ICL exam-
ples>: \n \n Answer:

0.700

Focus on text content You are an AI trained to categorize arxiv computer science papers into specific
categories based on their abstracts. Your task is to analyze the paper description
provided and identify the most relevant category. \n Paper description:<paper
description>. \n Give me the category of this content. Focus only on content in the
actual text and avoid making false associations. Respond only with the category
key (e.g., ’cs.AI’, ’cs.SY’), without any additional text or explanation. Here are
some of the papers cited by this paper: <ICL examples>: \n \n Answer:

0.698

Chain of thought prompt You are an AI trained to categorize arxiv computer science papers into specific
categories based on their abstracts. Your task is to analyze the paper description
provided and identify the most relevant category. \n Paper description: Abstract:
<abstract text> \n Title: <title text>. \n Give me the category of this content. Please
think about the categorization in a step by step manner and avoid making false
associations. Respond only with the category key (e.g., ’cs.AI’, ’cs.SY’), without
any additional text or explanation. Here are some of the papers cited by this paper:
<ICL examples>: \n \n Answer:

0.709

Table 8: Statistics of the TAG datasets

Dataset #Nodes #Edges Task

ogbn-arxiv 169,343 1,166,243 40-class classif.
ogbn-products 2,449,029 61,859,140 47-class classif.
arxiv23 46,198 78,548 40-class-classif.

Table 9: Hyperparameters for the GCN, GraphSAGE,
and GraphSAINT models.

Hyperparameters GCN GraphSAGE GraphSAINT

layers 3 3 3
hidden dim 256 256 256
learning rate 0.01 0.01 0.001
dropout 0.5 0.5 0.5
epoch 200 200 200

200 improved accuracy to 82.54% and 83.09%,
respectively. However, this increase in K also
led to a significant rise in computational cost,
with K = 200 incurring approximately 10 times
the cost of K = 20. Our findings indicate that
K = 20 offers a balanced trade-off between accu-
racy and computational efficiency, providing sub-

stantial performance improvements without incur-
ring excessive computational overhead. This flex-
ibility in adjusting K allows the method to adapt
to larger datasets or resource-constrained environ-
ments. Based on this analysis, we selected K = 20
as the default setting for our experiments, as it
achieves an optimal balance between performance
gains and computational efficiency.

15

	Introduction
	Related Work
	Problem Definition
	Proposed Approach – AskGNN
	Structure-Enhanced Retriever
	Learning-to-Retrieve via LLM Feedback
	Optimization
	Model Inference

	Experiment
	Experimental Setup
	Experiment Results

	Further Analysis
	Analysis on LLMs' Sizes and Families
	Hyperparameter Analysis on
	Analysis on ICL Examples
	Are LLMs Just Repeaters?

	Conclusion
	Limitations
	Acknowledgement
	Baseline Details.
	Prompt Design
	Dataset
	Dataset Description
	Dataset splits and random seeds

	Experiment Details

