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Abstract—Human Activity Recognition (HAR) is an impor-
tant task in ubiquitous computing, with impactful real-world
applications. While recent state-of-the-art HAR research has
demonstrated impressive performance, some key aspects remain
under-explored. First, we believe that for optimal performance,
HAR models should be both Context-Aware (CA) and personal-
ized. However, prior work has predominantly focused on being
Context-Aware (CA), largely ignoring being User-Aware (UA).
We argue that learning user-specific differences in performing
various activities is as critical as considering user context while
performing HAR tasks. Secondly, we believe that the predictions
of HAR models should be unified, reliably recognizing the same
activity even when performed by different users. As such, the
representations utilized by CA and UA models should explicitly
place different users performing the same activity closer together.
Moreover, identifying the user performing an activity is useful
in applications such as thwarting cheating by having another
person perform medically-prescribed activities.

To bridge this gap, we introduce Contrastive Learning with
Auxiliary User Detection for Identifying Activities (CLAUDIA),
a novel framework designed to address these issues. Specif-
ically, we expand the contextual scope of the CA-HAR task
by integrating User Identification (UI) within the CA-HAR
framework, jointly predicting both CA-HAR and UI in a new
task called User and Context-Aware HAR (UCA-HAR). This
approach enriches personalized and contextual understanding by
jointly learning user-invariant and user-specific patterns. Inspired
by state-of-the-art designs in the visual domain, we introduce a
supervised contrastive loss objective on instance-instance pairs
to enhance model efficacy and improve learned feature quality.
Through theoretical exposition, empirical analysis of real-world
datasets, and rigorous experimentation, we demonstrate the
significance of each component of CLAUDIA and discuss its
relationship with existing methodologies. Evaluation across three
real-world CA-HAR datasets reveals substantial performance
enhancements, with average improvements ranging from 11.7%
to 14.2% in Matthew’s Correlation Coefficient (MCC) and 5.4%
to 7.3% in Macro F1 score. To encourage further research, we
share code with additional supplement material in repository
https://github.com/GMouYes/CLAUDIA.

Index Terms—Ubiquitous and mobile computing, supervised
learning, human activity recognition

I. INTRODUCTION

Human Activity Recognition (HAR), which identifies ac-
tivities such as walking or running from sensor data, plays
a crucial role in health and medical applications [1]–[4].
HAR is challenging due to co-occurring activities (e.g., talking
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while walking), making it a multi-label classification task that
requires modeling these relationships.

Human activities are highly contextualized; people per-
form different activities in different contexts/situations. Conse-
quently, recent studies have increasingly focused on Context-
Aware Human Activity Recognition (CA-HAR) [5]–[7] as a
promising approach. The fundamental premise of CA-HAR
lies in acknowledging and capturing the significant impact
of context on sensor signals by integrating context classifi-
cation as an auxiliary task [8]–[10]. However, another crucial
perspective is often overlooked: human activities can also be
highly personalized. The variety and heterogeneity in human
behavior inevitably lead to variances in action-performing pat-
terns [11], [12], even for the same activity. HAR frameworks
focusing solely on external contextual settings may easily
overlook the innate differences across users performing the
activities, potentially leading to erroneous results. Inspired by
this observation, our work aligns with the field of CA-HAR
research while also extending beyond its scope by devising a
novel framework that accounts for both external contexts and
internal user identities. Specifically, we incorporate User Iden-
tification (UI) as an auxiliary subtask, effectively extending
traditional context-aware (CA) HAR design into user-context-
aware (UCA) HAR. Identifying the user performing an activity
is useful in applications such as thwarting cheating by having
another person perform medically-prescribed activities.

Adding UI as a subtask enables the model to acknowledge
user identity but does not necessarily guarantee overcoming
inter-user differences. To address the challenge of user-specific
variability, we introduce Contrastive Learning with Auxiliary
User Detection for Identifying Activities (CLAUDIA) with
a supervised contrastive loss that regularizes (different-user,
same-activity) representations, ensuring closer vector similar-
ity and capturing both user-specific and user-invariant infor-
mation effectively.

In summary, we propose a novel framework Contrastive
Learning with Auxiliary User Detection for Identifying
Activities (CLAUDIA) that incorporates User Identification
(UI) as a subtask alongside the primary CA-HAR task,
explicitly regularizing the modeling process using an addi-
tional loss objective. This User-Context-Aware HAR (UCA-
HAR) framework achieves a balance between capturing user-
invariant patterns and user-specific attributes in a single model.
Drawing inspiration from inter-instance relationship modeling
in computer vision and natural language processing domains,



we introduce a novel supervised contrastive loss on instance-
instance pairs. By leveraging inter-instance relationships, the
CLAUDIA framework bridges the gaps observed in current
CA-HAR approaches, resulting in refined instance representa-
tions. This research offers the following contributions:

• We extend the context definition in CA-HAR by incor-
porating a UI subtask to capture both user-invariant and
user-specific patterns, improving HAR performance.

• We propose the CLAUDIA framework, which integrates
multi-modality sensor data and a novel supervised con-
trastive loss to enhance HAR.

• Extensive experiments demonstrate that CLAUDIA out-
performs state-of-the-art baselines across several datasets,
showcasing its adaptability and effectiveness.

II. RELATED WORK

This section provides an overview of related work, including
prior CA-HAR model designs, recent advancements in the UI
task, and research related to contrastive learning.

A. CA-HAR Models

Prior CA-HAR work primarily focused on two aspects: 1)
Directly modeling instance-label relationships and 2) Enhanc-
ing (1) by auxiliary modeling of label-label relationships.

1) Directly Modeling Instance-Label Relationships: Early
CA-HAR models used handcrafted sensor features with tradi-
tional or deep learning methods [8], [13]. However, manual
feature extraction is labor-intensive and lacks generalizability.
Recently, Deep Neural Networks (DNNs) have shown success
by auto-extracting features, using architectures such as CNNs
[14], RNNs [15], and Graph Neural Networks (GNNs) [16].
Though DNNs offer improved generalization, they often lack
interpretability, which is addressed in recent works combining
learned and handcrafted features [17], [18].

2) Enhanced Auxiliary Modeling of Inter-Label Relation-
ships: To capture label relationships, some studies transformed
the task into graph learning, such as HAR-GCNN [19], which
uses graph CNNs, and HHGNN [9], encoding user, context,
and activity labels as nodes and co-occurrences as hyperedges.
These approaches enhanced HAR performance by capturing
label dependencies. Despite these advances, inter-instance
relationships remain under-explored in CA-HAR research. Our
work introduces supervised contrastive learning on instance
pairs to address this, improving feature quality (Section III).

B. User Identification and Applications

User identification has gained importance with the rise of
smartphones. Zou et al. [20] used CNN and LSTM to extract
gait features for user identification, while Mekruksavanich and
Jitpattanakul [21] developed an ensemble model combining
activity and user classifiers. However, these methods struggle
with real-world complexity. Our unified UCA-HAR model
integrates UI with CA-HAR, showing superior performance
across a wide and diverse range of activity scenarios, demon-
strating its versatility and potential.

C. Contrastive Loss for HAR

We apply supervised contrastive learning to regularize inter-
instance relationships and enhance feature quality. Unlike self-
supervised contrastive methods relying on augmentation or
external data [22], [23], our approach utilizes labeled data to
achieve improved performance [24].

III. PROPOSED CLAUDIA FRAMEWORK

We describe our novel framework in the following subsec-
tions. We first illustrate the task formulation in Section III-A.
We then demonstrate a high-level picture of our design in
Sec. III-B, followed by each sub-module. Lastly, we introduce
the loss objectives in Sec. III-C, including a UI sub-task loss.

A. Task Formulation

Given input raw data Xraw ∈ RN∗S∗T , where N represents
the number of samples, S denotes the number of sensors, and
T indicates the snapshots per sample, we compute handcrafted
features f , such that:

Xhc = f(Xraw), f : RS∗T → RD (1)

Xhc provides a more compact representation, where D ≪
S × T . Traditional HAR methods Mθ map input to labels:

Mθ : Xraw/hc → Y, (2)

Our innovative performance of the UI sub-task, along with
our design with supervised contrastive loss objective on inter-
instance relationship modeling, are our unique contributions.

B. Model Overview

CLAUDIA M contains three components (Fig. 1):

1) Data encoder Mθt : Extracts features from (Xraw, Xhc),
producing Xr (Eq. 3).

Xr = Mθt(Xraw)⊕Xhc, Xr ∈ RN∗dt (3)
where ⊕ is feature concatenation and dt is the new feature
dimension. We used a two-layer LSTM for sequence learning.

2) Label encoder: Encodes activities, user identities, and con-
text settings into binary labels Y . While there are other
methods beyond 0/1 label encoding [9], [25]–[27], we test
with the straightforward method based on its simplicity and
note these methods are supplemental to our design.

3) Alignment module Mθcls : Aligns encoded data with label
representations using separate linear projection followed by
af ctivation for each label type, resulting in predictions Ŷ ,
including activity ŶA, phone placement ŶPP , and UI ŶU .

C. Objective Function

Our overall objective minimizes the total loss L, which is
composed of the classification loss Lcls and the contrastive
loss Ld, weighted by α:

θ̂ = argmin
θ

L(Mθ, Xraw, Y )

L = Lcls + αLd

(4)



Fig. 1. Framework of CLAUDIA.The upper part illustrates the network design, comprising of data encoding and classification. The lower part depicts the
objective function, consisting of two types of losses. Our technical innovation lies in two key aspects: 1) the addition of a UI sub-task, thereby broadening
the scope of Context-Aware (CA) HAR to effectively include User-Aware (UA) HAR, and 2) a novel approach to improve feature quality by regularizing
inter-instance relationships using supervised contrastive loss.

Classification Loss: Lcls includes activity LA, phone place-
ment LPP , and UI LU tasks, weighted by γ1 and γ2:

Lcls = LA + γ1LPP + γ2LU (5)

As activities and general contexts may co-occur, we leverage
Binary Cross Entropy (BCE) for LA, LPP (Eq. 6). In this case,
class indices range from 0 to C − 1, where C represents the
total number of classes. ŷn, c and yn, c denotes the predicted
and ground truth label, respectively, while ωn,c represents
the class weight, which is calculated based on the inverse
frequency ratio to address the class imbalance issue. On the
other hand, as user identities are usually mutually exclusive,
we adopted general Cross Entropy (CE) for LU (Eq. 7.)

Lbce = −ωn,c[yn,c · logσ(ŷn,c) + (1− yn,c) · log(1− σ(ŷn,c))] (6)

Lce = −
C∑

c=1

log
exp(ŷn,c)∑C
i=1 exp(ŷn,i)

yn,c (7)

Instance-Pair Supervised Contrastive Loss: We introduce
our novel design for the sample-based supervised contrastive
loss in the data encoder. Given any chosen anchor xa, ya in
any batched samples B with Xb, Yb in a training step, we first
separate the batch into positive pairs and negative pairs:

B = {(x, y) | x = Xb[i], y = Yb[i], i = 0, 1, ...}
B+

a = {(x, y) | y · yTa > 0, (x, y) ∈ B}
B−

a = {(x, y) | y · yTa == 0, (x, y) ∈ B}
B = B+

a ∪B−
a , ∅ = B+

a ∩B−
a

(8)

Essentially, the positive pairs contain instances that share at
least one label (i.e., non-zeros) with the anchor instance, while
the negative pairs share no label with the anchor. Note that
the size of both B+

a , B−
a can be volatile even under a fixed

batch size. The changing size directly impedes applying a
contrastive loss similar to Contrastive Language-Image Pre-
training (CLIP) [28]. To accommodate the issue, we calculated
the average of both positive and negative pairs:

x+
a =

1

|B+
a |

∑
{x for (x, y) ∈ B+

a }

x−
a =

1

|B−
a |

∑
{x for (x, y) ∈ B−

a }
(9)

When the negative pair set is empty, we utilize a zero vector to
account for its average. Another option is to sample fixed num-
bers k+, k− of the positive and negative sets. However, such a
method would necessitate an undersampling and oversampling
design, and would inevitably involve an extra hyperparameter
search for k+, k−. Taking these factors into consideration, we
opted for a computationally more straightforward choice as
mentioned. We leave the exploration of alternate sampling
methods as future work for interested readers.

Using the supervised contrastive loss function, we pull the
anchor xa towards the positive sample x+

a and enforce the
distances between anchor xa and the negative sample x−

a even
further away. Such an optimization direction can be reached
via an cross-entropy loss:

pxa = [sim(xa, x
+
a ), sim(xa, x

−
a )]

qxa = [1, 0]

Ld =
1

|B|
∑
x∈B

CE(pxa
, qxa

)
(10)

We re-emphasize that while prior work in the HAR domain
mainly focused on classification loss (instance-label mapping
regulation), we propose explicitly regularizing inter-instance
relationships using a supervised contrastive loss.



TABLE I
COMPARISON OF 3 BENCHMARK CA-HAR DATASETS. THE ACCELEROMETER, GYROSCOPE, MAGNETOMETER, AND GRAVITY ARE TRI-AXIAL SENSORS.

SAMPLING RATE IS ONCE PER MINUTE OR WHEN ITS VALUE CHANGED MORE THAN A THRESHOLD VALUE IF NO SAMPLING RATE WAS SPECIFIED.

Dataset WASH scripted WASH unscripted Extrasensory

Category Scripted Unscripted Unscripted
Instances 294,512 7,773,479 6,355,350
Features 144 139 170
Participants 107 108 60
Contexts 5 5 4
Activities 12 12 12

Common Sensors
Accelerometer(40Hz), Gyroscope(40Hz), Magnetometer(40Hz),

Location, Environment Measure, Phone State

Unique Sensors Gravity(40Hz), Audio(46Hz)

Context Labels In Pocket, In Hand, In Bag

Unique Contexts On Table On Table On Table-Face Down/Up

Common Activities Lying Down, Sitting, Walking, Sleeping, Standing, Running, Stairs-Going Down/Up

Unique Activities Talking on Phone, Bathroom, Jogging, Typing Talking, Bath-Shower, Toilet, Exercising

IV. EXPERIMENTS

We introduce real-world CA-HAR datasets in Section IV-A
and describe state-of-the-art baselines in Section IV-B. We
then describe our experimental setup (Sec. IV-C), evaluation
metrics (Sec. IV-D), and experimental results (Sec. IV-E).

A. Datasets

CLAUDIA was evaluated on three CA-HAR datasets,
encompassing scripted and unscripted data collection study
designs: WASH1 (Scripted and Unscripted) and Extrasensory
[29] (Unscripted) with detailed statistics in Table I. In scripted
datasets, subjects perform activities as instructed, visiting
specific pre-defined target labels in a constrained order. In
contrast, unscripted datasets allow participants live their lives
unconstrained, then annotate their data periodically. Unlike
prior studies focusing on either solely on scripted or unscripted
data, we evaluated both to gain comprehensive insights. We
predicted 12 activity labels common to all three datasets,
ensuring a fair comparison with previous work [30]–[32].

Pre-processing: Instances with conflicting labels (e.g.,
sleeping while running) were removed (13% of WASH un-
scripted and 34% of Extrasensory data). Sensor readings were
segmented with a 3-second window and 1.5-second step.

Feature extraction and selection: We extracted handcrafted
features (f ) identified as highly predictive in prior work [8],
[9], [17], [18], [25], yielding 144, 139, and 170 features for
the three datasets, respectively. Sensor signals were resampled
into fixed-length (50 samples) sequences using the Fourier
method [33], resulting in xraw ∈ N 12×50. Features were
normalized using training set statistics (i.e., x = (f − µ)/s)
with missing values filled with zeros.

B. Baseline HAR Models

We compared CLAUDIA to a diverse set of state-of-
the-art CA-HAR models, covering graph-based (GCN [26],
HGCN [27], HHGNN [9]), non-graph-based (ExtraMLP [8],
LightGBM [34], CRUFT [17], GaitAuth [20], GaitIden [20]),
deep learning (ExtraMLP, CRUFT, GaitAuth, GaitIden), and

1https://tinyurl.com/darpaWash

machine learning (LightGBM) techniques. Due to space limits,
we report the detailed descriptions of each model in our
supplement materials (available in our repository).

C. Experimental Setup

We split data with training (60%), validation (20%), and
testing (20%) for all users. Validation set was used to de-
termine optimal model hyperparameters via grid search. For
CLAUDIA, we used the RAdam [35] optimizer, and set batch
size = 1024. We share hyperparameters in our repository.

D. Evaluation Metrics

We used Matthews Correlation Coefficient (MCC) (Eq.11)
[36] and Macro-F1 scores (Eq. 12) for imbalanced CA-HAR
datasets. MCC reflects model performance across all labels,
accounting for data imbalance. The Macro-F1 score, calcu-
lated as the average F1 across all labels, combines precision
(Precision = TP

TP+FP ) and recall (Recall = TP
TP+FN ),

providing a comprehensive evaluation.

MCC = TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

(11)

F1 = 2 ∗ (Precisionci ∗Recallci)/(Precisionci +Recallci) (12)

E. Experiment Results

1) Main HAR Results: We present comprehensive results
of evaluation on HAR performance in Fig 2.

Overall Performance: CLAUDIA outperforms all baseline
models across all datasets. Specifically, CLAUDIA outper-
forms the best baselines by an average of 11.7%, 14.2%, and
13.8% in MCC on the WASH scripted, WASH unscripted,
and Extrasensory dataset, respectively; When measured with
Macro-F1 scores, it also improved 5.4%, 7.3%, and 7.0%
against the best baselines.

Noteworthy Models and Labels:
We present the detailed results for WASH unscripted in

Table II, with other dataset results available in our repository
and supplementary materials (which follow similar trends).
Notably, CLAUDIA showed significant improvement in rec-
ognizing activities like Walking and Bathroom/Toilet, which



Fig. 2. Average activity recognition performance of all models across all datasets.

TABLE II
MODEL PERFORMANCE ON THE WASH unscripted DATASET, EACH CELL CONTAINS MCC/MACRO-F1 SCORES.

Category UI/UA non-GNN GNN Our Model

Model GaitAuth GaitIden ExtraMLP LightGBM CRUFT GCN HGCN HHGNN CLAUDIA Improv.(%)

Lying Down .842/.916 .810/.899 .831/.912 .783/.887 .820/.907 .848/.921 .729/.859 .893/.945 .975/.987 9.2/4.4
Sitting .886/.942 .820/.908 .741/.867 .735/.864 .758/.876 .743/.868 .684/.838 .816/.907 .961/.980 8.5/4.1

Walking .808/.899 .698/.838 .523/.731 .536/.741 .510/.721 .519/.732 .498/.716 .623/.794 .891/.945 10.3/5.1
Sleeping .938/.969 .916/.958 .921/.960 .922/.961 .915/.957 .935/.967 .927/.963 .954/.977 .989/.994 3.6/1.8

Talking On Phone .767/.872 .620/.779 .436/.656 .545/.730 .417/.645 .465/.675 .489/.695 .657/.806 .875/.935 14.1/7.2
Bathroom .592/.761 .552/.740 .427/.659 .499/.704 .425/.660 .406/.641 .481/.694 .615/.780 .817/.902 32.7/15.6
Standing .751/.864 .636/.795 .463/.686 .486/.703 .457/.681 .489/.705 .450/.677 .605/.777 .889/.943 18.3/9.1
Jogging .836/.912 .749/.862 .520/.712 .964/.982 .551/.737 .599/.765 .409/.641 .712/.837 .922/.960 -4.3/-2.2
Running .712/.839 .677/.821 .420/.647 .946/.973 .479/.692 .489/.695 .344/.604 .604/.769 .881/.938 -6.9/-3.6

Stairs-Going Down .700/.833 .806/.780 .376/.626 .488/.697 .382/.636 .374/.624 .516/.721 .529/.726 .806/.897 15.1/7.7
Stairs-Going Up .683/.822 .571/.752 .388/.634 .469/.686 .397/.645 .399/.640 .545/.740 .537/.731 .791/.888 15.9/8.0

Typing .900/.948 .832/.912 .636/.794 .666/.814 .636/.793 .672/.817 .467/.670 .770/.876 .949/.974 5.5/2.7

involve periodic patterns and varied user movements, often
with weaker labeling due to privacy concerns—aligning well
with CLAUDIA’s strengths. Additionally, our model was also
impressive on Stairs-Going Up/Down, which are challenging
to distinguish [37].

Although LightGBM had an edge on Jogging and Running
(inherently similar in nature and could confound each other),
CLAUDIA remains the best among unified models.

Comparative Analysis across Datasets: Generally speaking,
most models exhibited higher performance on the WASH
Unscripted and Extrasensory datasets compared to the WASH
Scripted dataset. This could be attributed to the WASH Scripted
having the least number of instances and a lower instance-to-
user ratio, as reported in Table I.

TABLE III
ABLATION STUDY COMPARES OUR CLAUDIAMODEL WITH ITS VARIANTS

FOR THE ACTIVITY RECOGNITION TASK.

Model WASH scripted WASH unscripted Extrasensory

CLAUDIA .592/.762 .895/.945 .920/.958
w/o UI .487/.696 .871/.932 .909/.952
w/o CL .574/.751 .873/.933 .899/.947
w/o TS .478/.688 .764/.870 .843/.915

2) Ablation on CLAUDIA: We conducted an ablation
study on CLAUDIA to assess the contributions of each mod-
ules. Table III presents the corresponding MCC and Macro-
F1 scores for the full model and its variants: 1) w/o UI:

CLAUDIA without the user identification module (γ2 = 0);
2) w/o Contrastive Loss (CL): CLAUDIA without instance-
level contrastive regularization (α = 0); 3) w/o Time-Series
(TS) encoding: Omits the sequence learning model, using
only handcrafted features. The results demonstrate that the
performance of CLAUDIA deteriorates when any of these
key components is removed, underscoring the contribution of
each module to its performance. Notably, the time-series mod-
ule has the most significant impact especially on unscripted
datasets. Integrating them enables CLAUDIA to achieve
robust results across both scripted and unscripted datasets.

V. ANALYSIS

A. Context Identification

CLAUDIA achieves MCC/Macro-F1 scores 0.813/0.900,
0.946/0.973, and 0.974/0.987 on the WASH scripted, WASH
unscripted, and Extrasensory datasets respectively. Detailed
confusion matrices are provided in the supplementary material.

B. User Identification

CLAUDIA demonstrated near-perfect UI performance,
achieving MCC and Macro-F1 scores of 0.995, 0.999, and
1.000 on the three datasets. It significantly outperformed GaitI-
den (with .959/.959, .962/.982, and .965/.963 MCC/Macro-F1
scores), especially on WASH scripted, indicating CLAUDIA’s
effectiveness even when user distinctions were less clear.



VI. CONCLUSION AND FUTURE WORK

In this work, we improve Context-Aware Human Activity
Recognition (CA-HAR) task performance by 1) expanding the
contextual scope to include user identification and in learning
user-specific patterns, and 2) introducing a novel inter-instance
relationship objective that supplements existing instance-label
modeling targets by enforcing user-invariant activity embed-
dings. We propose CLAUDIA, a framework that leverages
both handcrafted feature and raw time-series data, innovatively
performs user identification as an auxiliary sub-task to the
CA-HAR framework. The resulting framework, CLAUDIA,
significantly improves HAR performance across multiple real-
world CA-HAR datasets with average enhancements ranging
from 11.7% to 14.2% in Matthew’s Correlation Coefficient
(MCC) and 5.4% to 7.3% in Macro F1 score. Furthermore, we
provide extensive qualitative and quantitative analysis results.
Since we only experimented with recurrent-based networks
for time series modeling, we leave the exploration of other
architectures, such as Transformers, for future work.
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