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Deep Heterogeneous Contrastive Hyper-Graph Learning for
In-the-Wild Context-Aware Human Activity Recognition

WEN GE
∗
, GUANYI MOU

∗
, EMMANUEL O. AGU, and KYUMIN LEE

Human Activity Recognition (HAR) is a challenging, multi-label classification problem as activities may co-occur and sensor

signals corresponding to the same activity may vary in different contexts (e.g., different device placements). This paper

proposes a Deep Heterogeneous Contrastive Hyper-Graph Learning (DHC-HGL) framework that captures heterogenous

Context-Aware HAR (CA-HAR) hypergraph properties in a message-passing and neighborhood-aggregation fashion. Prior

work only explored homogeneous or shallow-node-heterogeneous graphs. DHC-HGL handles heterogeneous CA-HAR data

by innovatively 1) Constructing three different types of sub-hypergraphs that are each passed through different custom

HyperGraph Convolution (HGC) layers designed to handle edge-heterogeneity and 2) Adopting a contrastive loss function to

ensure node-heterogeneity. In rigorous evaluation on two CA-HAR datasets, DHC-HGL significantly outperformed state-of-

the-art baselines by 5.8% to 16.7% on Matthews Correlation Coefficient (MCC) and 3.0% to 8.4% on Macro F1 scores. UMAP

visualizations of learned CA-HAR node embeddings are also presented to enhance model explainability. Our code is publicly

available
1
to encourage further research.

CCS Concepts: • Human-centered computing→ Ubiquitous and mobile computing; • Computing methodologies→
Supervised learning.
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1 INTRODUCTION

Human Activity Recognition (HAR) [35], which involves recognizing human activities from sensor signals

generated by Inertial Measurement Units (IMUs) attached to human bodies, is an important task in Context-

Aware systems and has diverse real-world applications [8, 24]. HAR has drawn great interest from both academia

and industry domains due to the nearly ubiquitous ownership of smart devices that contain various types of

sensors [14–16, 41]. HAR is a challenging problem for several reasons. First, activities may co-occur (e.g., sitting

and talking simultaneously, as shown in Fig. 2), making HAR a challenging multi-label classification problem.

Secondly, some instances may have some missing labels (i.e., the ground truth of some labels is unknown).

Moreover, sensor signals for the same activity may vary significantly due to the impact of contextual factors such

as phone placement [7, 19] and user performance style [3, 9], as shown in Fig. 1.
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(a)𝑈𝑠𝑒𝑟1 walking with phone in bag
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(b)𝑈𝑠𝑒𝑟1 walking with phone in hand
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(c)𝑈𝑠𝑒𝑟2 walking with phone in hand

Fig. 1. Accelerometer signal corresponding to the Walking activity in various contexts and performers from real-world

Extrasensory dataset [40]. Comparing Fig. 1a and Fig. 1b, we observe disparate accelerometer readings of the same activity

under different contexts. Meanwhile, as we compare Fig. 1b and Fig. 1c, different users might perform the same activity

differently, producing distinct sensor readings, even with the same contextual factors.

Inspired by these observations, recent research found it beneficial to incorporate the context of sensor signals

and user information during data analyses and formulate the Context-Aware Human Activity Recognition

(CA-HAR) task [32, 48] to effectively boost HAR performance. In a CA-HAR task, a pattern recognition model

infers both human activities being performed and the user’s context from a set of sensor signals. In this paper,

we focus on a neural network CA-HAR model to predict the user’s current activity along with their context (i.e.,

smartphone placement), which are provided as labels in the dataset.

Prior CA-HAR work generally falls into three categories: 1) non-graph methods, 2) feature-dependent graph

methods, and 3) feature-independent graph methods. Early prior work [2, 14, 15, 41] mostly utilized non-graph

methods, where researchers performed handcrafted features and then directly applied existing machine learning

methods for activity recognition without trying to construct a graph. To improve performance, other researchers

proposed feature-dependent graph methods [23, 29], which designed specialized graph structures such as graphs

derived from geographic features. A location-based graph improves HAR performance by factoring in the location

where activities are performed. For instance, people are more likely to sleep at home or perform workouts in gyms.

However, location-based graphs require that users agree to allow the collection of privacy-sensitive information

such as GPS coordinates. Unfortunately, prior work has found that less than 50% of users are willing to grant

such access permission [11], limiting the applicability of location-based graph approaches.

Feature-independent graph approaches are more general and do not rely on specific features within a dataset.

Instead, graphs are formed solely based on three common elements across all datasets: 1) the user, 2) the context

(placement of a device that eventually collects signals), and 3) the activity. Thus, label correlations can be learned

across instances by assimilating message-passing algorithms with their graph neural network counterparts.

In this paper, we build upon this line of feature-independent approaches, and argue that the CA-HAR task

is naturally expressed as a supervised graph learning task, where nodes are associated with the <user, context,

activity+> tuples, and the sensor signals are graph edges. While inferencing, given the previously unseen test

sensor signal as an edge in the graph, the CA-HAR task is to classify the edge (defined by its connecting nodes)

through a similarity kernel [16]. Such a CA-HAR graph differs from ordinary graph because it has both a

hypergraph property (an edge can connect to more than two nodes) and a heterogeneity property (there are

more than one type of nodes and edges), thus making it a special heterogeneous hypergraph. Heterogeneous

hypergraphs have been leveraged in other domains for real-world applications including location-based social

network modeling [44, 45], document recommendation [51], contagion analysis [38], spam detection [39], and

link prediction [12]. To the best of our knowledge, only a few works have explored creating feature-independent

graphs for the CA-HAR task. The most relevant prior research was conducted by Ge et al. [16], which proposed a

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 4, Article 159. Publication date: December 2023.
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Fig. 2. Real-world examples mapping into our heterogeneous hypergraph. A CA-HAR task has three types of nodes: users 𝑢,

activities 𝑎, and sensor context 𝑐 . We use red, green, and blue colors to represent these nodes with heterogeneity. The first

example shows 𝑈𝑠𝑒𝑟1 (𝑢1) is typing (𝑎𝑇𝑦 ) with phone in hand (𝐶𝐻 ). Thus, a hyperedge connecting three nodes {𝑢1, 𝑎𝑇𝑦, 𝑐𝐻 }
is formed to represent the situation. Another example showcased scenarios where activities may co-occur: 𝑈𝑠𝑒𝑟2 (𝑢2) is

sitting (𝑎𝑆 ) and talking (𝑎𝑇𝑎) simultaneously with phone on table (𝑐𝑇 ). In this case, a hyperedge connecting four nodes

{𝑢2, (𝑎𝑇𝑎, 𝑎𝑆 ), 𝑐𝑇 } is needed to well-represent the situation. A corresponding incidence matrix is also shown to represent the

subgraph with only these seven nodes and two hyperedges.

hypergraph convolutional neural networks based approach and utilized separate linear projections to account for

node-heterogeneity. We highlight two crucial ways in which their work differs from ours:

1) The shallow-node-heterogeneity problem. Using separate linear projections to map node representations

into sub-spaces does not necessarily guarantee sufficient node-heterogeneity. The separate linear projections

may still eventually lead to similar representations. A quantitive comparison in Sec. 5 shows its sub-optimal

performance, and a qualitative visualization in Fig. 10b shows that it still has inter-mixing representations across

different types of nodes.

2)Missing labels that are common in in-the-wild CA-HAR data that result in missing hyperedges in

our constructed graph, are not addressed. We present evidence that this problem is not trivial by presenting

hyperedge count statistics in Fig. 7 for two real-world datasets where over 9.5% {𝑢, 𝑐} hyperedges in theWASH
dataset indicate a high activity missing rate, and over 42% {𝑢, 𝑎} hyperedges in the Extrasensory dataset indicates

a high context missing rate. Motivated by the observation of missing labels, which commonly occur in CA-HAR

data, resulting in missing hyperedges in our constructed graph, we designated this issue as an edge-heterogeneity

problem that was accommodated by constructing corresponding sub-hypergraphs.

To address the problems mentioned above, we propose a novel framework Deep Heterogeneous Contrastive

Hyper-Graph Learning (DHC-HGL) to address both node-heterogeneity and edge-heterogeneity in the heteroge-

neous hypergraph for the CA-HAR task with the following key pieces: 1) We address explicit node-heterogeneity

with contrastive loss [17] where similar samples were pulled together, and dissimilar samples were pushed apart.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 4, Article 159. Publication date: December 2023.
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In our case, we defined similar nodes as same-type nodes (i.e., both are users or activities, or contexts), while

dissimilar nodes as nodes with heterogeneity (i.e., user-context pairs, user-activity pairs, or context-activity pairs).

The main reason for introducing contrastive loss is to ensure node-heterogeneity from a loss/objective regular-

ization perspective, rather than only having shallow linear projections proposed by Ge et al.. 2) We designed

three specific hypergraph convolutional networks for the sub-hypergraphs denoted as 𝐺 (𝑢,𝑐,𝑎) , 𝐺 (𝑢,𝑐 ) , and 𝐺 (𝑢,𝑎) ,
where each sub-hypergraph consists of hyperedges connecting to unique types of nodes, such that optimal layer

parameters can be learned independently. This is in contrast to the unified graph learning layer and one global

hypergraph utilized by Ge et al.. To the best of our knowledge, our work is the first to introduce contrastive loss

and edge-heterogeneity toward solving the CA-HAR task. In extensive evaluation, DHC-HGL consistently out-

performed various state-of-the-art models on two real-life CA-HAR datasets. The further analysis illustrated how

our contrastive loss better regularized the node embedding distributions, such that node-heterogeneity was well

preserved and represented through Uniform Manifold Approximation and Projection for Dimension Reduction

(UMAP) visualizations, thus enhancing model interpretability and explainability for human understanding.

This work makes the following key contributions:

• We cast the CA-HAR task as a supervised message-passing task trained using graph neural networks. We

transform CA-HAR data to a heterogeneous hypergraph with three sub-hypergraphs accounting for different

label-occurrence scenarios. Our CA-HAR graph explicitly encodes the relationships between node entities, as

user performance style and context (e.g., phone placement) can enhance the performance of HAR [23, 51].

• We address node-heterogeneity in the CA-HAR graph by introducing a contrastive loss, which forces the

same-type node embeddings to be close together while pushing nodes from different categories further away.

• We address edge-heterogeneity caused by missing labels in the CA-HAR graph by varying edge types based on

their connecting nodes and leveraging different corresponding hypergraph convolution layers with separate

parameters for capturing their unique message passing patterns.

• We performed a rigorous evaluation of our novel DHC-HGL based on the proposed node-heterogeneity

and edge-heterogeneity methods and achieved superior performance against various baselines, including

non-graph methods, ordinary graph methods, and prior shallow heterogeneity hypergraph methods, with a

large margin where the average activity recognition improvements ranged from 5.8% to 16.7% on Matthews

Correlation Coefficient (MCC) and 3.0% to 8.4% on Macro F1 scores. Further ablation study verified the

non-trivial contribution of each novel component of our framework.

2 PRELIMINARY

In this section, we first introduce the definitions around key concepts in graphs. We then show some illustrations

around these definitions as well as real-world examples in the CA-HAR task.

Definition 1. (Heterogeneous Hypergraph [28, 39]). A heterogeneous hypergraph 𝐺 = {𝑉 , 𝐸,𝑇𝑣,𝑇𝑒 ,𝑊 } contains
vertices 𝑉 and hyperedges 𝐸, whereas 𝑇𝑣,𝑇𝑒 represents the corresponding types of vertices and edges and𝑊 denotes
the edge weights. Below are the related concepts:
• (Hyperedge in a hypergraph) Each hyperedge in a hypergraph can connect to more than two nodes, in contrast
to ordinary graphs where each edge only connects to two nodes. Thus, hyperedges can be represented as set of
connected nodes 𝑒 = {𝑣𝑘 | 𝑣𝑘 ∈ 𝑉 } ⊆ 𝑉 , for 𝑒 ∈ 𝐸.

• (Graph Heterogeneity) The hypergraph is heterogeneous when |𝑇𝑣 | + |𝑇𝑒 | > 2. Node-Heterogeneity occurs when
𝑇𝑣 > 1 and Edge-Heterogeneity occurs when 𝑇𝑒 > 1.

• (Edge Weights) Typically,𝑊 ∈ 𝑅 |𝐸 | is the matrix representing hyperedge weights.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 4, Article 159. Publication date: December 2023.
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Node

Ordinary Edge

(a) Work on an ordinary graph. E.g.,

GCN [21].

U3

U2

U1

H

T

Ta

Ty

S

U4

Nodes with heterogeneity

Hyperedge 

(b) Work on hypergraph with node-

heterogeneity. E.g., HHGNN [16].

U3

U2

U1

H

T

Ta

Ty

S

U4

Hyperedge with heterogeneity

Nodes with heterogeneity

(c) Work on an hypergraph with

both node-heterogeneity and edge-

heterogeneity (our approach).

Fig. 3. Prior work (Fig. 3a and Fig. 3b) constructs different CA-HAR graphs. Our approach (Fig. 3c) considers both node-

heterogeneity and edge-heterogeneity. Intuitively, Fig. 3a is a simplified version of Fig. 3b, while Fig. 3c further generalizes

beyond Fig. 3a and Fig. 3b. Fig. 4 presents an illustration with different sub-hypergraphs.

(a) Sub-hypergraph 𝐺 (𝑢,𝑐,𝑎) contains

hyperedges connecting all three types

of nodes (user, phone placement and ac-

tivity). E.g., 𝑈𝑠𝑒𝑟1 is typing with phone
in hand, and𝑈𝑠𝑒𝑟2 is sitting and talking
with phone on table.

(b) Sub-hypergraph 𝐺 (𝑢,𝑐 ) contains a

hyperedge connecting user and phone

placement nodes while activity nodes

can be missing. E.g., 𝑈𝑠𝑒𝑟1 holds phone
in hand and no activity label reported.

(c) Sub-hypergraph 𝐺 (𝑢,𝑎) contains a

hyperedge connecting user and activ-

ity nodes while phone placement nodes

can be missing. E.g.,𝑈𝑠𝑒𝑟3 is typing and
walking simultaneously, and no context

label is reported.

Fig. 4. The original heterogeneous hypergraph is further transformed into three sub-graphs that account for different types

of hyperedges. In each sub-graph, node-heterogeneity is represented using different colors. However, only one type of

hyperedge is incorporated. Thus, the sub-graphs capture graph information at a higher granularity.

• (Incidence Matrix) The relationship between nodes and hyperedges can be represented by an incidence matrix
𝐼𝑛𝑐 ∈ 𝑅 |𝑉 |× |𝐸 | with entries defined as:

𝐼𝑛𝑐 (𝑣, 𝑒) =
{
1, if 𝑣 ∈ 𝑒

0, otherwise
(1)
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We present real-world examples of the heterogeneous hypergraph properties of the CA-HAR task in Fig. 2, a

comparison of graphs formed in Fig. 3, and a high-level abstraction of three sub-hypergraphs in Fig. 4. Intuitively,

Fig. 3a is a simplified version of Fig. 3b, while Fig. 3c further generalizes beyond Fig. 3a and Fig. 3b. We found that

real-world datasets contain edge-heterogeneity where edges may connect to different types of nodes, namely

𝐺 (𝑢,𝑐,𝑎) in Fig. 4a, 𝐺 (𝑢,𝑐 ) in Fig. 4b, and 𝐺 (𝑢,𝑎) in Fig. 4c. More specifically, 1) each hyperedge in 𝐺 (𝑢,𝑐,𝑎) connects
to all three types of nodes simultaneously (i.e., user, context, and activity nodes); 2) the hyperedges in 𝐺 (𝑢,𝑐 )
only connect to user and context nodes, and 3) 𝐺 (𝑢,𝑎) contains hyperedges that are associated with only user

and activity nodes. Directly applying pattern recognition models on Fig. 3b without factoring in the existence of

edge-heterogeneity in Fig. 4a, 4b, and 4c can yield sub-optimal performance, as the message-passing patterns

through these different hyperedges may vary. The key reason for addressing edge-heterogeneity is that it accounts

for missing labels common in in-the-wild CA-HAR datasets by modeling hyperedges at a higher granularity. The

inferior performance of the variant of our proposed model and HHGNN [16], which both applied a unified Graph

Neural Network(GNN) without edge-heterogeneity, presented in Sections 5.5 and 6, support this claim.

3 RELATED WORK

Context-aware human activity recognition (CA-HAR) is an emerging task in academia and industry [14–16, 41],

as CA-HAR is crucial in many real-world applications, such as healthcare [32], smart homes [5], and biometric

authentication [52]. Prior works focused on recognizing human activities given various types of data, such as

images [37] and videos [26], wearable sensors [19], smartwatches [41], and smartphone sensors [14–16, 41]. This

work focuses on leveraging smartphone sensor signals for recognizing human activities, but one may extend our

work to other data sources or modalities with minimum customization efforts.

More recently, many deep learning models were proposed for Context-Aware Human Activity Recognition

(CA-HAR), and they mainly fall into the following categories:

Non-graph CA-HAR methods. Existing non-graph HAR methods mainly focused on feature engineering,

utilizing predictive handcrafted features extracted from raw signals [16, 41], feature mining (i.e., directly learning

from raw signals) [46], or combining both types of features [2, 14, 15]. In terms of deep learning frameworks, the

most common methods are Multi-Layer perceptron (MLP) on handcrafted features [41], Convolutional Neural

Networks (CNN) that capture spatial correlations [3, 14, 15], Recurrent Neural Networks (RNNs, LSTMs) on

learning temporal dependencies [14, 15], and uncertainty measurements for mitigating data noise problems

and missing label problems [14, 15, 46]. Despite exploring multiple perspectives in the HAR task, the common

problem within non-graph HAR methods is they do not explicitly model the inter-entity (users, context, and

activities) dependencies.

Feature/Sensor dependent graph HARmethods. Graph Neural Networks (GNNs) have been widely applied in

HAR, particularly on videos in the Computer Vision domain, including learning Actor Relation Graph connections

for group activity recognition [43] and utilizing spatial-temporal graphs for skeleton-based action recognition [37].

Another sensor-based HAR method proposed by Martin et al. [29] built two personalized mobility graphs

(transition frequency and Euclidean distances as edge weights) using GPS sensors and applied two GCNs to

recognize human activities. The derivation of the graphs depends on the availability of specific features/sensors,

e.g., GPS sensors, which might violate user privacy and require users’ permission. Unfortunately, less than 50% of

users were willing to grant access to GPS sensors [11]. In summary, the feature/sensor-dependent graph method

is a double-edged sword: they enabled models to better learn spatial and temporal correlations through a graph

perspective; however, such a method also relies highly on the specific feature’s existence, which limited their

applicable scope in the HAR domain.

Feature independent graph methods. Unlike feature-dependent graph methods, feature-independent graph

methods can construct graphs without requiring external information. Some prior work utilized fully connected

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 4, Article 159. Publication date: December 2023.
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graphs [31, 49] for activities where edges are weighted through similarity kernels. Others formed graphs based

on K-nearest-neighbours [33], i.e., they connect each node with the TopK nearest neighbors based on the feature

embeddings [27]. Despite different designs for their downstream neural networks, they share drawbacks wherein

their ordinary graphs do not contain hyperedges. Thus, they do not factor in the co-occurrence of more than two

entities. Moreover, although node-heterogeneity can be incorporated into their frameworks, edge-heterogeneity

was mostly overlooked.

The most relevant work to our research is from Ge et al. [16]. The authors transformed context-aware human

activity visit patterns into a corresponding heterogeneous hypergraph.

To address the node-heterogeneity characteristic, the user, phone placement, and activity nodes were treated as

different types of nodes with separate fully connected layers in-betweenmultiple HyperGraph Convolution Layers

(HGC) [4]. Despite their encouraging work, several problems remain unresolved: 1) Shallow-node-heterogeneity:
Having separate linear projections for different types of nodes essentially sends their representation into sub-

spaces, but there is no guarantee on the distribution of the representations. In fact, in the worst case scenario,

separate linear projections can learn similar weights, thus behaving in the same way as a single unified fully

connected layer without node-heterogeneity. 2) Overlooking edge-heterogeneity. As a direct result, the missing

label problem that is common in in-the-wild CA-HAR datasets is not properly handled.

Prior Graph Neural Network (GNN) research:

Graph Neural Networks (GNNs) have attracted a lot of attention. The key idea of GNNs is to define graph

nodes and egdes, that are used to generate node representations by aggregating information from the node’s

neighbors. For example, GCN [21] learns node embeddings from its first-order neighbors using the Kipf nor-

malized aggregation. GraphSAGE [18] scales to large datasets by utilizing neighborhood sampling and neural

networks such as Long Short Term Memory (LSTM) models to aggregate neighbor’s information. GAT [42]

introduces attention mechanisms that specify different importance weights to different neighbors. Recently, more

GNNs have proposed various mechanisms that adapt GNNs to handle real-world applications better, including

higher-order relationships between objects, and different types of nodes and edges. For instance, hyperConv [4]

incorporates higher-order relationships by allowing information propagation between multiple nodes concur-

rently. HetGNN [47] was proposed for various graph mining tasks, including link prediction, recommendation,

node classification, and clustering. It addressed node-heterogeneity by grouping different types of neighbors

sampled using a Random Walk with Restart (RWR) algorithm and designing a specific module to extract het-

erogeneous content from each neighboring node. However, using the same restart probability for all nodes

limits the expressiveness of the sampled neighbors, further limiting the expressiveness of the aggregated node

representation. HERec [36], originally proposed for recommender systems, addresses data heterogeneity by using

a meta-path based random walk strategy to convert a heterogeneous graph into a homogeneous graph. However,

manually defining meta-paths to model these semantic relationships in heterogeneous graphs heavily relies on

the quality of the designer’s domain knowledge.

Novelty of our work in relation to prior work: Our work differs from prior works (especially the HHGNN

model proposed by Ge et al. [16]) in at least two crucial ways: 1) we address node-heterogeneity with a contrastive

loss objective, which pulls nodes from the same type closer by minimizing their distance and nodes from different

types far apart by maximizing their distance. The key reason for using a contrastive loss function is that it

explicitly regularizes the node representations, rather than implicitly projecting node representations into sub-

spaces. Consequently, we are able to guarantee node-heterogeneity in a distance-based manner. Specifically,

nodes of the same type have similar representations, while nodes of different types are distant from each other. It

not only improved the model performance but also enhanced human-level understanding of the learned node

representation distributions. and 2) we explicitly address edge-heterogeneity in our hypergraph framework design

by distinguishing hyperedges via its connected nodes and designing separate hypergraph convolution layers to

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 4, Article 159. Publication date: December 2023.



330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

159:8 • W.Ge and G.Mou et al.

HGC

HGC

HGC

×2
Contrastive
Loss

Classification

G(u,c,a)

G(u,c)

G(u,a)

⊗ Ŷc  

Ŷa  

X

⊗

⊗ Ŷc  

Ŷa  

X

⊗

⊕

⊕

⊕

⊕

Concatenate

Multiple

User/Context/Activity Nodes 

User/Context/Activity Vector 

HGC Hypergraph Convolution

Average Sum

User/Context/Activity Nodes 

User/Context/Activity Vector 

HGC Hypergraph Convolution

Average Sum

⊕

⊗

Contrastive Loss

User/Context/Activity Nodes 

User/Context/Activity Vector 

HGC Hypergraph Convolution

Average Sum

⊕

⊗

Contrastive Loss

Concatenate

Multiple

User/Context/Activity Nodes 

User/Context/Activity Vector 

HGC Hypergraph Convolution

Average Sum

⊕

⊗

Contrastive Loss

Fig. 5. Overview of our DHC-HGL Framework. It consists of two key components: the graph learning module for label

encoding and the classification module for signal encoding. Given the heterogeneous hypergraph formulated (each node is

defined as the user, context, and activity tuple), the model updates node representations using a GNN while factoring in

node-heterogeneity (via separate projections and custom HGC layers), and edge-heterogeneity (via split subgraphs). During

classification, the learned label encoding is utilized to infer connected nodes for the given signal. The objective loss function

combines BCE loss for multi-label classification and contrastive loss that handles node-heterogeneity.

allow independent message propagation. The key rationale for the design is: by addressing edge-heterogeneity,

we provide a solution that accounts for missing labels which are common in in-the-wild CA-HAR datasets.

4 PROPOSED FRAMEWORK

We formulate the CA-HAR problem in Section 4.1. Each component of our framework is then described in

Section 4.2. A conceptual visualization of our proposed DHC-HGL is shown in Fig. 5.

4.1 Problem Formation

CA-HAR is a supervised multi-label classification task where a dataset 𝐷 contains data instances 𝑥 ∈ 𝑋 , the

corresponding data labels 𝑦 ∈ 𝑌 , and the users involved 𝑢 ∈ 𝑈 :

𝐷 = {(𝑥,𝑦,𝑢) | 𝑥 ∈ 𝑅𝑀 , 𝑦 ∈ [0, 1]𝐻 , 𝑢 ∈ [1, 2, ..., |𝑈 |]} (2)

where𝑀 is the dimension of the sensor signal, and 𝐻 is the number of labels per instance, which is equivalent to

the total number of contexts and activities.

𝐻 = |𝑐𝑜𝑛𝑡𝑒𝑥𝑡 | + |𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 | (3)

A CA-HAR model𝑚 learns an effective mapping between data instance X and data label Y:

𝑚 : 𝑋 → 𝑌,𝑚(𝑥𝑖 ) = 𝑦𝑖 , 0 ≤ 𝑖 < |𝑋 | (4)

Under a heterogeneous hypergraph transformation, each sensor signal 𝑥 ∈ 𝑋 can be associated with three types

of elements: users, context, and activities, where the last two belong to Y. If each sensor signal is considered
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as a hyperedge and the three types of elements are considered as graph nodes, the original dataset D will be

transformed into a graph G.

𝑉 = {𝑈 } + {𝑌 }
𝐸 = {𝑒𝑖 }0≤𝑖< |𝐸 |

𝐺 = (𝐸,𝑉 )
(5)

Each edge 𝑒 can also be uniquely represented by their connecting nodes as a set:

𝑒𝑖 = {𝑣𝑖𝑘 | 𝑣𝑖𝑘 ∈ 𝑉 , 𝑘 = 0, 1, ...} (6)

Now that the new model𝑚𝐺 is given a hyperedge 𝑒 as input, it tries to infer the set of nodes connecting to

hyperedge 𝑣 :

𝑚𝐺 (𝑒) = 𝑣, 𝑒 ∈ 𝐸, 𝑣 ⊆ 𝑉 (7)

4.2 Network Design

Our network is composed of two key components: the graph learning module for label (𝑌 ) encoding, and the

classification module for signal (𝑋 ) encoding. At a high level, the graph learning module encodes the labels based

on their co-occurrence relationship in a message-passing fashion, while the classification module encodes the

data representations. During training, node representations are updated by comparing the label encodings with

all training data/signal encodings. During inference, the final prediction is made via a dot product between label

encodings and the test data/signal encodings, thus deriving the labels that are most similar to a given signal.

To the best of our knowledge, one of the many advantages of introducing graph learning into the CA-

HAR domain is that we are able to transform simplified binary label encoding into more expressive vector

representations. This goal is achieved with the help of aggregated signal information. Moreover, we are able to

enhance the signal specificity of data encoding. Thus, both the macro-level and micro-level information from a

given dataset can be obtained.

Our main contributions, however, are based on two key insights in improving the graph learning expressiveness

that were overlooked in prior work. First, we address edge-heterogeneity to resolve the problem of missing labels

as described in earlier sections. Secondly, we ensure node-heterogeneity using explicit, objective contrastive

loss regularization, rather than simpler separate linear projections that may degrade to projected nodes that

do not capture heterogeneity. We describe the details of our network design in the following subsections, and

demonstrate their outstanding performance in Section 5.

4.2.1 Graph Learning. Given the formulated graph 𝐺 = (𝐸,𝑉 ), each node is initialized to the average of all

instances connected to it:

𝐸𝑚𝑏𝑣 =𝑚𝑒𝑎𝑛(𝑥𝑡 ),where 𝑦𝑡 == 1, 𝑣 ∈ 𝑉 (8)

The node embedding is arranged in the order of users (u), context (c), and activities (a)

𝑉𝑔 = ⊕[𝑉𝑢,𝑉𝑐 ,𝑉𝑎] (9)

where ⊕ represents the concatenation operation. The hyperedges are initialized to the average of sensor signal

instances that have the same connecting nodes:

𝑒 = {𝑣𝑘 }𝑘=0,1,..., where 𝑒 ∈ 𝐸, 𝑣𝑘 ∈ 𝑉 , {𝑣𝑘 } ⊆ 𝑉

𝐸𝑚𝑏𝑒 =𝑚𝑒𝑎𝑛(𝑥𝑘 𝑗 ), for all ∪ {𝑢𝑘 𝑗 , 𝑦𝑘 𝑗 } 𝑗=0,1,... == {𝑣𝑘 }
(10)

Given the graph G and initialized vector representations as inputs, we try to learn node representations using

the graph network. To factor in node-heterogeneity, separate linear projections are then applied, followed by
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non-linear activations and dropout on each type of node.

𝑉
′
𝑔 = ⊕[𝑉 ′

𝑢 ,𝑉
′
𝑐 ,𝑉

′
𝑎 ]

𝑉
′
𝑡 = 𝛿 · 𝛼 · 𝑙𝑡 (𝑉𝑡 ), 𝑡 ∈ (𝑢, 𝑐, 𝑎)

(11)

where 𝛿 represents a dropout operation, 𝛼 is a non-linear activation function, and 𝑙𝑢, 𝑙𝑐 , 𝑙𝑎 are three linear

projections corresponding to different node types. The hyperedges are then split into three groups based on the

different types of nodes they are connected to, namely:

• {𝑢, 𝑐, 𝑎} edges: edges connect all three types of nodes
• {𝑢, 𝑐} edges: edges connect only user and context nodes, and no activity was provided

• {𝑢, 𝑎} edges: edges connect only user nodes and activity nodes, and no context was provided

The distribution of each type of hyperedge is shown in Fig. 7 for two real world datasets (i.e.,WASH Unscripted and

Extrasensory, with detailed descriptions in Section 5.1). Thus, there are three subgraphs𝐺 (𝑢,𝑐,𝑎) ,𝐺 (𝑢,𝑐 ) , and𝐺 (𝑢,𝑎) .
Each component goes through a different hyperConv layer [4] with non-linear activation and dropouts. Their

results are aggregated into the whole graph through a summation function to form final node representations.

𝑉
′′
𝑔𝑠 = 𝛿 · 𝛼 · 𝐻𝐺𝐶𝑠 (𝑉

′
𝑔𝑠 )

𝑉
′′
𝑔 = 𝑎𝑔𝑔𝑟 (𝑉 ′′

𝑔𝑠 )
𝑠 ∈ {(𝑢, 𝑎), (𝑢, 𝑐, 𝑎), (𝑢, 𝑐)}

(12)

The combination of Eq. 9, 11 and 12 form one full layer of our heterogeneous hypergraph convolutional layer.

In practice, several such layers can be stacked together for learning multi-hop neighborhood graph properties

such that long-term dependencies may be better captured. Take the user node 𝑈1 in Fig. 3b as an example: one

heterogenous hypergraph convolution layer can aggregate information from its 1-hop neighbors (i.e., node H
and Ty) while with two layers, we can aggregate additional information from node𝑈3,𝑈4 and S, where user node
𝑈3 can be considered as a similar user of𝑈1, given the common context they share (i.e., node H ). Thus the learned

node embedding can capture richer information about the graph structure, which can further benefit the HAR

task.

4.2.2 Classification. After learning effective node representations𝑉
′′
𝑔 , the model can infer connected nodes given

hyperedge representations 𝑥 (i.e., sensor feature). This procedure can be considered an edge-type classification

problem. First, both node representations and the sensor signal edge are projected into the same dimensions.

Then the dot product is computed for comparing vector similarities between a given sensor signal and nodes. As

activities may co-occur, a sigmoid transformation on each dot product result is adopted, rather than the softmax

function across results. The sigmoid results are treated as probabilities of each label as connecting nodes.

𝑥
′
𝑡 = 𝛿 · 𝛼 · 𝑙𝑥𝑡 (𝑥)

𝑉
′′
𝑔𝑡 = 𝛿 · 𝛼 · 𝑙𝑣𝑡 (𝑉

′′
𝑔 )

𝑌 = ⊕[𝜎 ·𝑉 ′′
𝑔𝑡 ⊗ 𝑋

′
𝑡 ], 𝑡 ∈ {𝑐, 𝑎}

(13)

where ⊗ represents the dot product operation and 𝜎 represents the sigmoid function. 𝑙𝑥𝑡 and 𝑙𝑣𝑡 are two linear

projections to map node and edge representations into the same dimension, such that a dot product can be applied

to the two components.
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Fig. 6. Illustration of how contrastive loss improves learning of node embeddings. Left: initial node embedding formed as Eq. 8.

Mid: learned node embedding w/o contrastive regularization. Right: learned node embedding w/ contrastive regularization.

4.3 Objective Loss Function

We now design a loss function that has two components: 1) A muti-label classification loss with label-wise Binary

Cross Entropy (BCE) loss 𝐿𝑏𝑐𝑒 and 2) A node-heterogeneity contrastive loss 𝐿𝑐 :

min

𝜃𝑔,𝜃𝑐

𝐿 = min

𝜃𝑔,𝜃𝑐

𝐿𝐵𝐶𝐸 (𝑌,𝑌 ) +min

𝜃𝑔

𝐿𝑐 (𝑉
′′
𝑔 )

where 𝑉
′′
𝑔 = 𝜃𝑔 (𝑉𝑔), 𝑌 = 𝜃𝑐 (𝑉

′′
𝑔 , 𝑥)

(14)

where BCE loss is commonly adopted as:

𝐿𝐵𝐶𝐸 =
1

𝑁

𝑁∑︁
𝑛=1

𝐶∑︁
𝑐=1

[−𝜔𝑛,𝑐 (𝑦𝑛,𝑐𝑙𝑜𝑔𝑦𝑛,𝑐 + (1 − 𝑦𝑛,𝑐 )𝑙𝑜𝑔(1 − 𝑦𝑛,𝑐 ))] (15)

𝑁 is the number of instances within each batch and 𝐶 is the number of classification labels.

To explicitly represent node-heterogeneity, we introduced a contrastive loss on node embeddings (Eq. 16),

which essentially pulls nodes of the same type closer and pushes nodes of different types further away (Fig. 6).

It calculates node embedding similarity pairwisely and pulls nodes of the same type closer by maximizing the

similarity between them and vice versa. As there are a limited number of nodes (|U|+|C|+|A|), we adopted fully

contrastive loss [17] that iterates over all node pairs rather than sampling-based loss [20, 34] which performs

calculations based on sampled positive and negative pairs:

𝐿𝑐 =
1

𝐻 (𝐻 − 1)
∑︁

𝑉𝑖 ,𝑉𝑗 ∈𝑉
′′
𝑔 ,𝑖≠𝑗

𝑊 (𝑖, 𝑗) · 𝑓 (𝑉𝑖 ,𝑉𝑗 ) (16)

where 𝑓 is the distance function based on cosine similarity, and𝑊 is a weight function:

𝑊 (𝑖, 𝑗) =
{
𝜆1, if 𝐼 (𝑖, 𝑗) == 1

−𝜆2, otherwise

(17)

𝐼 is the node type identification function. It outputs 1 if two nodes have the same type. Otherwise, it outputs -1.

𝜆1, 𝜆2 are hyperparameters whose optimal values can be found using grid search.
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Table 1. Context-aware Human Activity Datasets Information. The Accelerometer, Gyroscope, and Magnetometer are 3-axis

sensors. If the sample rate is unspecified, the sensor is sampled once per example.

Dataset #Instances #Participants #Features Common Sensors Unique Sensors

WASH 7,773,479 108 139 Accelerometer(40Hz), Gyroscope(40Hz)

Location, Magnet(40Hz)

Env. Measure, Phone State

Response

Extrasensory 6,355,350 60 170

Gravity

Audio(46Hz)

Table 2. Context-aware Human Activity Labels.

Dataset

Common

Context Label

Unique

Context Label

#Context

Label

Common

Activity Label

Unique

Activity Label

#Activity

Label

WASH

In Pocket

In Hand

In Bag

On Table-Face Down

On Table-Face Up
5

Lying Down, Sitting

Walking, Sleeping

Standing, Running

Stairs-GoingDown

Stairs-Going Up

Exercising

Talking On Phone

Bathroom

Jogging, Typing

12

Extrasensory On Table 4

Talking

Bath-Shower

Toilet

13

5 EXPERIMENTS

5.1 Context-aware Human Activity Recognition Datasets

We evaluate DHC-HGL on two unscripted context-aware human activity recognition datasets, namelyWASH 2

and Extrasensory [40]. Unscripted datasets were collected in-the-wild, with participants running a data-gathering

app on their smartphones as they lived their lives and provided context-aware activity labels periodically.

Unscripted datasets are realistic and can provide better insights into participants’ real-world behavior patterns.

However, such datasets are quite noisy with user-provided labels that may be missing, wrong or conflicting

with each other. Additionally, on different phone types, not all sensors are always available. Sensor readings

may also be missing for several reasons, including weak signals and the fact that participants sometimes turn

off their phones to save power or not give permission to collect data from certain sensors (e.g., GPS for privacy

reasons). We describe pre-processing methods on the two datasets in Section 5.1.1. Detailed statistics of these

datasets are presented in Table 1. The Extrasensory [40] dataset collected 20 seconds of sensor measurement

per minute from smartphones and smartwatches. 60 participants from diverse ethnic backgrounds, including 34

females and 26 males, were recruited in the study for approximately one week.WASH followed a similar data

collection and labeling methodology as Extrasensory, 108 users participated in a data collection study for about

two weeks. Context and activity labels collected by both datasets’ are listed in Table 2. We selected 17/51 labels

from Extrasensory that are similar to labels in theWASH dataset to ensure a fair comparison.

5.1.1 Dataset Pre-processing. First, we resolved label conflicts by removing problematic data instances falling

into the following cases: 1) Users provided more than one phone placement label resulting in co-occurring

phone placement. Phone placements are mutually exclusive in the real world as a phone can be carried in only

one position (e.g. in hand, back or coat pocket) at a time. 2) Multiple conflicting activity labels that cannot be

performed simultaneously were provided by the study participant (co-occurred). For example, a smartphone user

cannot sleep and run at the same time.

2
https://tinyurl.com/8wvrhr7k
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Fig. 7. Hyperedge distribution on two datasets. Specifically, {𝑢, 𝑐, 𝑎} represents hyperedges simultaneously connecting

user, context and activity nodes, {𝑢, 𝑐} represents hyperedges connecting only user and context node, and {𝑢, 𝑎} represents
hyperedges connecting only user and activity node.

Table 3. Comparison of existing CA-HAR methods.

Category Model
Handcraft

Feature
Methods Hypergraph

Heterogeneity

Node Edge

Non Graph-based method

CRUFT ✓ Deep Learning - - -

LightGBM ✓ Machine Learning - - -

ExtraMLP ✓ Deep Learning - - -

Graph-based method

GCN ✓ Deep Learning

HHGNN ✓ Deep Learning ✓ ✓
DHC-HGL ✓ Deep Learning ✓ ✓ ✓

Next, the raw multi-sensor signals were segmented into equal-sized time windows with a duration of 3 secs

and a 1.5 sec step size, yielding 7,773,479 and 6,355,350 instances (Tab. 1), respectively. Next, the features extracted

in many prior similar works were extracted [14–16, 41] subject to sensor availability in both datasets. Finally, we

generated 139 and 170 handcrafted features after removing identical features, respectively.

Lastly, we normalized features in the train set into a range of 0 to 1 using Eq. 18 and then applied it to the test

and validation sets.

𝑧 = (𝑥 − 𝜇)/𝑠 (18)

where 𝜇 and 𝑠 are the mean and standard deviation of features in the training set. 𝑥 and 𝑧 are the original and

transformed features, respectively. As previously mentioned, the normalized features were used to initialize our

graph with the aggregated mean function. The missing values in the initialized graph were filled with zeros. The

number of unique hyperedges is reported in Fig. 7. It is instructive to note that in prior works, hyperedges were

treated as being similar (no heterogeneity). In contrast, edge-heterogeneity was incorporated into our framework.
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5.2 Baseline HAR Models

As part of our rigorous evaluation, we compared our proposed DHC-HGL performance to several state-of-the-art

baselines, including non-graph based models, ordinary graph-based models, and heterogeneous hypergraph

models. Table 3 summarizes the key differences between them. We provide brief descriptions of models with

rationale on why they were selected in the following content.

• CRUFT [14]: is a state-of-the-art non-graph-based framework that achieved some of the best results till date.

It jointly learns using two branches: one MLP branch analyzing handcrafted features and one CNN-BiLSTM

branch analyzing raw accelerometer and gyroscope data. It exploited temporal correlation among instances by

learning multiple consecutive samples together. CRUFT also incorporated an uncertainty estimation module

to deal with noisy CA-HAR data collected in-the-wild. The random splitting of our data may undermine

CRUFT performance as temporal correlation might not be fully revealed.

• LightGBM [1]: is a widely applied variant of the Gradient Boosted Machines Decision Tree (GBDT) classifier.

To compute the information gain of possible split points and reduce the number of features, mutually

exclusive features are bundled, and it samples data with large gradients, facilitating fast computation and

high performance. We trained separate models for each context label and then combined the results. This is a

non-graph-based method, which achieved good performance across many labels in prior works [13, 16].

• ExtraMLP [41]: was a state-of-the-art CA-HAR deep learning model, an MLP-based model that analyzed

fine-grained handcrafted features extracted from both smartphone and smartwatch, and outperformed other

models on the Extrasensory dataset in [40]. Using a multi-label formulation, it can recognize multiple co-

occurring context labels and mitigate imbalanced context labels.

• GCN [21]: is a classic graph convolutional neural network that is essentially a simplified version of our

proposed method. Two GCNs were stacked on the ordinary homogeneous graph in order to learn center node

representations from 2-hop neighbors. It was included as a baseline because it previously demonstrated its

ability to predict the purpose of a user’s visit from geographic information (GPS-based mobility data) [29].

Unlike DHC-HGL, it considers all edges homogenous/same and does not consider the hyperedges or node/edge

heterogeneity. Including it evaluated the utility of the hyperedges and heterogeneity properties of DHC-HGL.

• HHGNN [16]: built the same graph as we used in this paper. Node-heterogeneity and hypergraph properties

were addressed by mapping different nodes with corresponding linear projection functions and applying

Hypergraph Convolution Layers (HGC). However, a shared HGC was used for all types of hypergraphs, which

overlooked and did not take maximal advantage of the edge heterogeneity property. Moreover, assigning

specific linear functions for different kinds of nodes is an implicit and plain solution to the node-heterogeneity

problem. In contrast, our DHC-HGL addressed node-heterogeneity using explicit contrastive loss in the node

embedding latent space.

• DHC-HGL: is our proposed framework. In contrast to the above-mentioned models, it not only addressed

implicit node-heterogeneity using separate linear projections, but also explicitly addressed node-heterogeneity

using a contrastive loss on nodes in embedding space. Furthermore, DHC-HGL addressed edge-heterogeneity

in a hypergraph by introducing separate hypergraph convolutional layers on different hyperedges and their

connecting nodes.

5.3 Experimental Setup

We randomly split each dataset into 60% for training, 20% for validation, and 20% for hold-out testing. Grid search

was used to determine optimal hyperparameter values for all models in our experiment. For our proposed model,

the RAdam [25] optimizer was utilized. The training batch size is fixed as 1024 and the epoch size is set to 300.
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Fig. 8. Average performance of all models across all labels (Overall) and on each category (Context, Activity). Our proposed

DHC-HGL is shown in red.

We had learning rate of 8e-4 on the Extrasensory dataset and 1e-3 on the WASH dataset The optimal values of 𝜆1
and 𝜆2 in the loss function were <0.03, 0.01> and <0.3, 0.1> for the WASH and Extrasensory datasets respectively.

5.4 Evaluation Metrics

Due to the extremely imbalanced nature of the CA-HAR datasets, Matthews Correlation Coefficient (MCC),

Eq. 19) and Macro F1 Score (MacF1, Eq. 20) were our main evaluation metrics. MCC is a statistical tool used for

model evaluation. Its job is to gauge or measure the difference between the predicted values and actual values.

In practice, MCC ranges from -1 to +1, and takes all elements in the confusion matrix (True Positive (TP), True

Negative (TN), False Positive (FP), and False Negative (FN)) into account, making it a reliable statistical rate even

for imbalanced datasets [10]. F1-score is the harmonic mean of precision and recall. It is one of the most popular

adopted evaluation metrics in classification tasks, and calculating the Macro F1 Score helped us to characterize

the overall performance of the proposed model.

𝑀𝐶𝐶 =
𝑇𝑃 ×𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁√︁

(𝑇𝑃 + 𝐹𝑃) (𝑇𝑃 + 𝐹𝑁 ) (𝑇𝑁 + 𝐹𝑃) (𝑇𝑁 + 𝐹𝑁 )
(19)

𝑀𝑎𝑐𝐹1 =
1

𝐶

𝐶∑︁
𝐶𝑖=1

2 ∗
𝑝𝑟𝑒𝑐𝑖 ∗ 𝑟𝑒𝑐𝑐𝑖
𝑝𝑟𝑒𝑐𝑖 + 𝑟𝑒𝑐𝑐𝑖

(20)

where C stands for the number of classes. “pre” and “rec” refer to precision and recall. Resultant values of metrics

on specific labels are reported as well as averages of their category on the hold-out test set.

5.5 Experiment Results

We show the overall and average performance of all models on each category in Fig. 8. Detailed results for

specific labels on two real-world CA-HAR datasets are reported in Tables 4 and 5. Our findings derived from

these experimental results are described in this section.

Overall performance: As shown in Fig. 8, DHC-HGL consistently achieves significantly better recognition over

baseline models across different datasets, highlighting the effectiveness and generalizability of our proposed
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Table 4. Detailed Results on the WASH CA-HAR Dataset. For each label, the best results are marked in gray, and the second

best results are underlined. DHC-HGL achieved the best performance on most labels.

Category Label

CRUFT LightGBM ExtraMLP GCN HHGNN DHC-HGL

MCC MacF1 MCC MacF1 MCC MacF1 MCC MacF1 MCC MacF1 MCC Impv. ↑ MacF1 Impv. ↑

Context

In Pocket 0.648 0.801 0.640 0.799 0.629 0.789 0.644 0.803 0.771 0.878 0.849 (13.3%) 0.921 (6.6%)

In Hand 0.522 0.716 0.524 0.722 0.514 0.713 0.511 0.707 0.718 0.846 0.781 (11.1%) 0.883 (5.8%)

In Bag 0.756 0.867 0.706 0.837 0.683 0.821 0.701 0.833 0.838 0.914 0.908 (11.3%) 0.953 (5.7%)

On Table-Face Down 0.803 0.896 0.802 0.896 0.805 0.897 0.819 0.904 0.867 0.931 0.942 (11.1%) 0.971 (5.5%)

On Table-Face Up 0.793 0.894 0.862 0.880 0.800 0.898 0.781 0.890 0.872 0.936 0.928 (8.1%) 0.964 (3.8%)

Context Avg 0.704 0.835 0.687 0.827 0.686 0.823 0.691 0.827 0.813 0.901 0.902 (10.9%) 0.950 (5.4%)

Activity

Lying Down 0.820 0.907 0.783 0.887 0.831 0.912 0.848 0.921 0.893 0.945 0.943 (8.3%) 0.971 (4.0%)

Sitting 0.758 0.876 0.735 0.864 0.741 0.867 0.743 0.686 0.816 0.907 0.898 (12.7%) 0.949 (5.8%)

Walking 0.510 0.721 0.536 0.741 0.523 0.731 0.519 0.732 0.623 0.794 0.738 (23.9%) 0.860 (10.7%)

Sleeping 0.915 0.957 0.922 0.961 0.921 0.960 0.935 0.967 0.954 0.977 0.947 (3.1%) 0.987 (1.5%)

Talking On Phone 0.417 0.645 0.545 0.730 0.436 0.656 0.465 0.675 0.657 0.806 0.760 (12.9%) 0.869 (6.5%)

Bathroom 0.425 0.660 0.499 0.704 0.427 0.659 0.406 0.641 0.615 0.780 0.718 (19.8%) 0.846 (10.0%)

Standing 0.457 0.681 0.486 0.703 0.463 0.686 0.489 0.705 0.605 0.777 0.716 (27.4%) 0.845 (12.9%)

Jogging 0.551 0.737 0.964 0.982 0.520 0.712 0.599 0.765 0.712 0.837 0.717 (-11.2%) 0.841 (-5.9%)

Running 0.479 0.692 0.946 0.973 0.420 0.647 0.489 0.695 0.604 0.769 0.680 (-22.7%) 0.819 (-12.5%)

Stairs-Going Down 0.382 0.636 0.488 0.697 0.376 0.626 0.374 0.624 0.529 0.726 0.623 (23.3%) 0.789 (11.1%)

Stairs-Going Up 0.397 0.645 0.469 0.686 0.388 0.634 0.399 0.640 0.537 0.731 0.638 (27.7%) 0.799 (13.4%)

Typing 0.636 0.793 0.666 0.814 0.636 0.794 0.672 0.817 0.770 0.876 0.865 (16.2%) 0.930 (8.0%)

Exercising 0.493 0.699 0.626 0.783 0.463 0.672 0.523 0.715 0.692 0.826 0.769 (14.9%) 0.874 (7.7%)

Activity Avg 0.557 0.742 0.667 0.810 0.550 0.735 0.574 0.751 0.693 0.827 0.808 (16.7%) 0.897 (8.4%)

Overall Avg 0.598 0.768 0.672 0.814 0.588 0.760 0.606 0.772 0.726 0.848 0.834 (14.9%) 0.911 (7.5%)

model. The success of both HHGNN and DHC-HGL demonstrates that explicitly encoding the user and context

in the CA-HAR graph can capture correlations between them and facilitate learning better representations. Based

on the same initial heterogeneous hypergraph, the better performance of DHC-HGL can prove that our deep

heterogeneity design further benefits CA-HAR tasks. To be specific, DHC-HGL outperform the best baseline,

HHGNN, with an overall improvement of 14.9% and 4.1% in MCC and 7.5% and 2.2% in Macro F1 on the WASH

and ExtraSensory datasets, respectively.

Model performance on each label category: On theWASH dataset, MCC and Macro F1 improved by 10.9% and

5.4% for context (phone placement) and improved by 16.7% and 8.4% for activity recognition. On the Extrasensory
dataset, MCC and Macro F1 results improved by 5.8% and 3.0% for activity recognition and had performance on

par with the best baseline for context category (i.e., the performance difference is less than 0.3%). As most CA-HAR

tasks consider activities as the most important category to recognize, the observation of higher performance

gains in the activity category is encouraging.

Detailed results for each specific label on the WASH CA-HAR dataset: Detailed results for all models

on the WASH dataset are listed in Table 4. Among the baseline models, first, it can be observed that HHGNN

outperformed all other models, which strongly demonstrates the advantage of modeling CA-HAR tasks as a

heterogeneous hypergraph. Additionally, DHC-HGL outperforms all baselines on most labels by a large margin,

except for the Jogging and Running labels, which have very small positive support instances (are scarce) (with

only 3804 and 2422 positive instances, separately) compared to other labels with larger positive instance support.

For instance, Sleeping has 2,935,264 positive instances. On the other hand, Jogging and Running produce similar

sensor signals, making them challenging to discriminate [6]. LightGBM overcomes this confusion by training

a separate model for each label. Other baselines that train a single model for all labels achieved are less able

to discriminate Jogging and Running. Another possible explanation is that as labels were self-reported, many
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Table 5. Detailed Results on the Extrasensory CA-HAR Dataset. For each label, the best results are in gray, and the second

best results are underlined. DHC-HGL achieved the best performance on all activities and performance mostly on-par with

or better than the best baselines.

Category Label

CRUFT LightGBM ExtraMLP GCN HHGNN DHC-HGL

MCC MacF1 MCC MacF1 MCC MacF1 MCC MacF1 MCC MacF1 MCC Impv. ↑ MacF1 Impv. ↑

Context

In Pocket 0.782 0.884 0.839 0.916 0.801 0.825 0.809 0.898 0.950 0.974 0.952 (0.2%) 0.976 (0.1%)

In Hand 0.638 0.797 0.736 0.855 0.682 0.686 0.747 0.864 0.931 0.965 0.925 (-0.7%) 0.962 (-0.4%)

In Bag 0.775 0.878 0.895 0.945 0.788 0.786 0.862 0.928 0.964 0.982 0.954 (-1.1%) 0.976 (-0.6%)

On Table 0.835 0.915 0.872 0.935 0.864 0.956 0.876 0.937 0.966 0.983 0.969 (0.3%) 0.984 (0.1%)

Context Avg 0.758 0.868 0.835 0.913 0.784 0.813 0.824 0.907 0.953 0.976 0.950 (-0.3%) 0.975 (-0.2%)

Activity

Lying Down 0.918 0.959 0.911 0.955 0.936 0.958 0.941 0.971 0.962 0.981 0.977 (1.6%) 0.989 (0.8%)

Sitting 0.772 0.885 0.755 0.876 0.797 0.889 0.781 0.888 0.870 0.935 0.907 (4.3%) 0.953 (2.0%)

Walking 0.535 0.730 0.560 0.746 0.554 0.539 0.580 0.758 0.718 0.846 0.772 (7.5%) 0.878 (3.8%)

Sleeping 0.934 0.967 0.934 0.967 0.950 0.965 0.952 0.976 0.979 0.989 0.985 (0.6%) 0.993 (0.3%)

Talking 0.635 0.794 0.697 0.833 0.681 0.703 0.740 0.859 0.858 0.927 0.895 (4.3%) 0.946 (2.1%)

Bath-Shower 0.495 0.703 0.729 0.848 0.496 0.404 0.648 0.798 0.780 0.880 0.827 (5.9%) 0.908 (3.1%)

Toilet 0.416 0.661 0.524 0.716 0.429 0.326 0.446 0.666 0.670 0.813 0.743 (10.8%) 0.859 (5.7%)

Standing 0.579 0.762 0.573 0.760 0.621 0.648 0.639 0.802 0.766 0.875 0.828 (8.1%) 0.911 (4.0%)

Running 0.609 0.782 0.656 0.802 0.616 0.555 0.724 0.845 0.866 0.930 0.883 (1.9%) 0.938 (0.9%)

Stairs-Going Down 0.431 0.674 0.791 0.886 0.441 0.334 0.462 0.676 0.695 0.831 0.807 (2.1%) 0.898 (1.3%)

Stairs-Going Up 0.429 0.674 0.654 0.801 0.446 0.341 0.513 0.710 0.706 0.837 0.770 (9.1%) 0.876 (4.6%)

Exercising 0.642 0.800 0.735 0.852 0.665 0.636 0.673 0.812 0.803 0.909 0.868 (4.5%) 0.930 (2.3%)

Activity Avg 0.616 0.783 0.710 0.837 0.636 0.608 0.675 0.813 0.808 0.896 0.855 (5.8%) 0.923 (3.0%)

Overall Avg 0.651 0.804 0.741 0.856 0.673 0.659 0.712 0.837 0.845 0.916 0.879 (4.1%) 0.936 (2.2%)

participants may have confused Jogging and Running. It is instructive to note that when compared to the best

overall baseline HHGNN, DHC-HGL managed to improve on the Jogging and Running labels.

Detailed results for each specific label on the Extrasensory CA-HAR dataset: Detailed experimental results

of all models for all labels are reported in Table 5. It can be observed that slightly different fromWASH dataset,

DHC-HGL outperforms baselines on all activity labels, even including labels where HHGNN could not outperform

LightGBM (e.g., Stairs-Going Down). Meanwhile, DHC-HGL did not achieve as significant improvements on

context labels on Extrasensory as it did on theWASH dataset. It is still worth noting that results for DHC-HGL on

context labels are on-par with the best baselines, with a difference of no more than 1.1%. The lack of improvement

on context labels might be due to the limited amount of {𝑢, 𝑐} edges inWASH as reported in Fig. 7, where only

1.2% of total hyperedges are {𝑢, 𝑐} in Extrasensory, compared to 9.6% in WASH.
Nevertheless, most of the results of DHC-HGL on the Extrasensory dataset are consistent with results achieved

on the WASH dataset.

6 ANALYSIS

In this section, we attempt to dive deeper into our results and derive additional insights on the performance of

our proposed DHC-HGL in a Q&A fashion.

RQ1: Howmuch does each proposed novel component contribute? In order to deal with the heterogeneous

nature of CA-HAR data effectively, our proposed DHC-HGL framework integrates several key components. A key

question that arises is the utility of the various components of DHC-HGL. To answer this question, an ablation

study was conducted on both CA-HAR datasets in order to understand the contributions made by the contrastive

loss and edge heterogeneity aspects of the DHC-HGL design to its improved performance for the CA-HAR task.

Results are shown in Fig. 9. The models explored are described below:

• DHC-HGL: Proposed approach using optimal hyperparameter values.
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Fig. 9. Ablation study compares DHC-HGL with its variants. EH: designs addressing edge-heterogeneity. CL: designs

introducing contrastive loss for node-heterogeneity.

(a) Original nodes (b) HHGNN learned nodes (c) DHC-HGL w/o CL

Zoom in

(d) DHC-HGL w/ CL

Fig. 10. UMAP visualization of 10a) the originalWASH initialized node, 10b) HHGNN learned node embedding, 10c) node

embedding learned by DHC-HGL without contrastive loss, and 10d) node embedding learned by DHC-HGL with contrastive

loss (full model). The red, green, and blue dots in the graph represent user, context, and activity nodes, respectively.

• DHC-HGL w/o edge heterogeneity(EH): The hyperedge splitting procedure was removed, which

yielded an integrated graph that is passed through a common, single hyperConv layer.

• DHC-HGL w/o contrastive loss (CL): The contrastive loss was removed from DHC-HGL. In this way,

the graph learned is only used for classification. It is included in order to evaluate the contribution of the

contrastive loss to both model performance and interpretability aspects.

Unsurprisingly, performance in terms of MCC/MacF1 decreased by -3.7%/-2.0% and -2.0%/-1.2% when the con-

trastive loss was removed; and decreased by -3.8%/-2.1% and -3.0%/-1.6% when the same hypergraph convolution

layer was used without distinguishing the type of hyperedges that occur in the WASH and Extrasensory datasets,

respectively. In summary, 1) both the innovative contrastive loss and passing different types of hypergraphs

through different hypergraph convolution layers had non-trivial contributions to the overall performance im-

provement of DHC-HGL, and 2) using different hypergraph convolutional layers to address edge-heterogeneity
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appeared to have a larger influence than the designed contrastive loss. This is understandable as no other com-

ponent addresses edge-heterogeneity. In contrast, the contrastive loss function addressed node-heterogeneity,

which is partly resolved by separate linear projections as proposed in HHGNN and leveraged in DHC-HGL.

RQ2: Does DHC-HGL accurately capture the relationships between various nodes? We previously

suggested that DHC-HGL captured predictive relationships between various entities within context labels. In

order to validate this claim, here, in Fig. 10, we present UMAP [30] visualizations of node representations generated

from the WASH dataset when various graph-based models were applied. Visualizations on the Extrasensory
dataset followed a similar pattern.

UMAP projects representations from high-dimensional to two-dimensional space while preserving both local

properties (within each cluster) and global properties (among clusters). Essentially, nodes that are close in high

dimensions remain close after UMAP projection. The visualization on the left (Fig 10a) shows that the initialized

points are close to being uniformly distributed. HHGNN tried to deal with node heterogeneity by assigning

specific linear functions to different types of nodes, but the learned node embedding (Fig. 10b) is not able to

distinguish different types of nodes well, which is consistent with our previous claim that separate linear functions

are not adequate to handle node heterogeneity. By applying DHC-HGL, nodes form clusters with clear boundaries

(Fig. 10d). Additionally, user nodes formed different groups, suggesting the possibility of building customized

models. A comparison of Figs 10c and 10d further demonstrates the contribution of contrastive loss not only

quantitatively but also its improvement of interpretability.

RQ3: How does model structure influence recognition performance? We explore the robustness of DHC-

HGL by investigating the impact of two key hyperparameters: 1) node embedding size and 2) the number of

graph learning layers. A performance visualization is shown in Fig. 11 with four subplots. The best-performing

baseline HHGNN with a node embedding dimension of 1536
3
is included as a yellow line in all subplots.

Impact of node embedding dimension in Fig. 11a and Fig. 11b:
(1) DHC-HGL achieved its best performance on the WASH dataset with 6144 dimensions and on the Ex-

trasensory dataset with 3072 dimensions. Overall, a performance gain can be observed as the embedding

dimension increases, where a higher dimension enables the model to capture more information from

the graph. However, there is also a saturation point at which the performance stops increasing after the

embedding dimension is larger than the optimal value.

(2) DHC-HGL consistently outperformed HHGNN in most cases in the regions of the graphs around the

optimal node embedding dimensions, which indicates its robustness. A larger gain is achieved on the

WASH dataset compared to the Extrasensory dataset.

Impact of number of graph learning layer in Fig. 11c and Fig. 11d:
(1) DHC-HGL achieved its best performance with two graph learning layers, on bothWASH and Extrasensory

datasets. The performance was reduced when more than two graph learning layers were used. One

possible reason is that deeper graph learning layers make it more difficult for the model to generalize and

are also prone to overfitting. Another possible reason is that deeper graph learning layers might cause

over-smoothing [22, 50], where learned node embeddings become similar and indistinguishable.

(2) DHC-HGL yields better performance than HHGNN under most cases, indicating DHC-HGL’s robustness

w.r.t the number of graph learning layers.

7 LIMITATIONS

Our work has a few limitations we now mention. First, our definition of context as phone placement in the

CA-HAR problem statement followed and was inspired by prior work. Interested researchers may extend our

3
These are the best hyperparameters found through grid search.
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Fig. 11. Hyperparameter evaluation.

work to other context definitions subject to availability of data on other relevant contextual information such as

device type. Secondly, while we formed the heterogeneous hypergraph on the training set in a user-aware mode,

the inference on the test set was user-agnostic / user-implicit (i.e., we did not use user identity as an input while

inferencing, nor did we infer user nodes given input sensor signal). We leave user-explicit inference and inferring

user identity as future work as it requires minimum adaptation effort. Admittedly, we evaluated the effectiveness

of our framework mainly on the hypergraph convolutional neural network backbone. We believe that our design

is backbone-agnostic and that our novel contributions can serve as plug-ins for various hypergraph learning

backbones. Lastly, casting the CA-HAR task into a graph learning task is only one of the possible approaches for

resolving the problem. We may consider further combining other modalities with the message-passing design to

improve the model performance.
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8 CONCLUSION AND FUTURE WORK

Context-aware Human Activity Recognition is an emerging but challenging problem for academia and in-

dustry domains. Prior work mainly researched non-graph-based, feature-dependent ordinary-graph-based, or

hypergraph-based methods and models that implicitly addressed node-heterogeneity. In this work, we introduced

a novel feature-independent hypergraph-based neural networks approach DHC-HGL, which addresses both

edge-heterogeneity and node-heterogeneity in a CA-HAR data-transformed hypergraph. More specifically, 1) for

handling edge-heterogeneity, we leverage different hypergraph convolutional layers for various edge types in

contrast to unified hypergraph convolutional layers with shared parameters for all hyperedges. 2) To enforce

explicit node-heterogeneity, we designed a contrastive loss applied to the node embedding latent space. Such a

contrastive loss enlarges the distance between different types of nodes while pulling nodes of the same type closer.

In an extensive experimental study, DHC-HGL yielded a superior performance boost on two large datasets and

provided better UMAP visualizations of label representation distributions, which enhances model interpretability.

In future work, we plan to evaluate our design on more neural network backbones other than GCN-based

models as our model is intuitively backbone-agnostic. We adopted the straightforward summation function as

our aggregation method of hypergraph neural networks. In the future, we will explore other possibilities, such as

mean pooling and attention-based pooling. Following prior works, our definition of context was restricted to

the device placement in this work due to the limited availability of other contextual factors (e.g., device type) in

experimental CA-HAR datasets. However, in the future, it would be interesting to explore whether exploiting

other context labels/features can help to further improve the model performance. In any case, our novel designed

components can easily be adapted to incorporate other contextual factors with minimum effort. We would also

like to point out the possibility of extending this work to handle both user-explicit and user-implicit CA-HAR

tasks by introducing user identity as part of the input. This will facilitate user-explicit settings, introducing

unknown user nodes for user-implicit settings, or inferring not only contexts and activities but also user identities.

Although this work focused on CA-HAR tasks, DHC-HGL also has the potential applicability to other general

time series problems and link prediction problems, including diagnosing cardiovascular disease (CVD) using

Electrocardiogram (ECG) signals and document recommendation.
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